Search results for: Electrical discharge machining(EDM)
928 Electrical Equivalent Analysis of Micro Cantilever Beams for Sensing Applications
Authors: B. G. Sheeparamatti, J. S. Kadadevarmath
Abstract:
Microcantilevers are the basic MEMS devices, which can be used as sensors, actuators and electronics can be easily built into them. The detection principle of microcantilever sensors is based on the measurement of change in cantilever deflection or change in its resonance frequency. The objective of this work is to explore the analogies between mechanical and electrical equivalent of microcantilever beams. Normally scientists and engineers working in MEMS use expensive software like CoventorWare, IntelliSuite, ANSYS/Multiphysics etc. This paper indicates the need of developing electrical equivalent of the MEMS structure and with that, one can have a better insight on important parameters, and their interrelation of the MEMS structure. In this work, considering the mechanical model of microcantilever, equivalent electrical circuit is drawn and using force-voltage analogy, it is analyzed with circuit simulation software. By doing so, one can gain access to powerful set of intellectual tools that have been developed for understanding electrical circuits Later the analysis is performed using ANSYS/Multiphysics - software based on finite element method (FEM). It is observed that both mechanical and electrical domain results for a rectangular microcantlevers are in agreement with each other.Keywords: Electrical equivalent circuit analogy, FEM analysis, micro cantilevers, micro sensors.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2458927 Electrical Field Around the Overhead Transmission Lines
Authors: S.S. Razavipour, M. Jahangiri, H. Sadeghipoor
Abstract:
In this paper, the computation of the electrical field distribution around AC high-voltage lines is demonstrated. The advantages and disadvantages of two different methods are described to evaluate the electrical field quantity. The first method is a seminumerical method using the laws of electrostatic techniques to simulate the two-dimensional electric field under the high-voltage overhead line. The second method which will be discussed is the finite element method (FEM) using specific boundary conditions to compute the two- dimensional electric field distributions in an efficient way.
Keywords: Electrical field, unloaded transmission lines, finite element method, electrostatic images technique.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8369926 Study of Structure and Properties of Polyester/Carbon Blends for Technical Applications
Authors: Manisha A. Hira, Arup Rakshit
Abstract:
Textile substrates are endowed with flexibility and ease of making–up, but are non-conductors of electricity. Conductive materials like carbon can be incorporated into textile structures to make flexible conductive materials. Such conductive textiles find applications as electrostatic discharge materials, electromagnetic shielding materials and flexible materials to carry current or signals. This work focuses on use of carbon fiber as conductor of electricity. Carbon fibers in staple or tow form can be incorporated in textile yarn structure to conduct electricity. The paper highlights the process for development of these conductive yarns of polyester/carbon using Friction spinning (DREF) as well as ring spinning. The optimized process parameters for processing hybrid structure of polyester with carbon tow on DREF spinning and polyester with carbon staple fiber using ring spinning have been presented. The studies have been linked to highlight the electrical conductivity of the developed yarns. Further, the developed yarns have been incorporated as weft in fabric and their electrical conductivity has been evaluated. The paper demonstrates the structure and properties of fabrics developed from such polyester/carbon blend yarns and their suitability as electrically dissipative fabrics.Keywords: Carbon fiber, hybrid yarns, electrostatic dissipative fabrics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1380925 Stability of Electrical Drives Supplied by a Three Level Inverter
Authors: M. S. Kelaiaia, H. Labar, S. Kelaiaia, T. Mesbah
Abstract:
The development of the power electronics has allowed increasing the precision and reliability of the electrical devices, thanks to the adjustable inverters, as the Pulse Wide Modulation (PWM) applied to the three level inverters, which is the object of this study. The authors treat the relation between the law order adopted for a given system and the oscillations of the electrical and mechanical parameters of which the tolerance depends on the process with which they are integrated (paper factory, lifting of the heavy loads, etc.).Thus, the best choice of the regulation indexes allows us to achieve stability and safety training without investment (management of existing equipment). The optimal behavior of any electric device can be achieved by the minimization of the stored electrical and mechanical energy.Keywords: Multi level inverter, PWM, Harmonics, oscillation, control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1372924 Energy Efficiency Analysis of Discharge Modes of an Adiabatic Compressed Air Energy Storage System
Authors: Shane D. Inder, Mehrdad Khamooshi
Abstract:
Efficient energy storage is a crucial factor in facilitating the uptake of renewable energy resources. Among the many options available for energy storage systems required to balance imbalanced supply and demand cycles, compressed air energy storage (CAES) is a proven technology in grid-scale applications. This paper reviews the current state of micro scale CAES technology and describes a micro-scale advanced adiabatic CAES (A-CAES) system, where heat generated during compression is stored for use in the discharge phase. It will also describe a thermodynamic model, developed in EES (Engineering Equation Solver) to evaluate the performance and critical parameters of the discharge phase of the proposed system. Three configurations are explained including: single turbine without preheater, two turbines with preheaters, and three turbines with preheaters. It is shown that the micro-scale A-CAES is highly dependent upon key parameters including; regulator pressure, air pressure and volume, thermal energy storage temperature and flow rate and the number of turbines. It was found that a micro-scale AA-CAES, when optimized with an appropriate configuration, could deliver energy input to output efficiency of up to 70%.
Keywords: CAES, adiabatic compressed air energy storage, expansion phase, micro generation, thermodynamic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1117923 A Study on the Condition Monitoring of Transmission Line by On-line Circuit Parameter Measurement
Authors: Il Dong Kim, Jin Rak Lee, Young Jun Ko, Young Taek Jin
Abstract:
An on-line condition monitoring method for transmission line is proposed using electrical circuit theory and IT technology in this paper. It is reasonable that the circuit parameters such as resistance (R), inductance (L), conductance (g) and capacitance (C) of a transmission line expose the electrical conditions and physical state of the line. Those parameters can be calculated from the linear equation composed of voltages and currents measured by synchro-phasor measurement technique at both end of the line. A set of linear voltage drop equations containing four terminal constants (A, B ,C ,D ) are mathematical models of the transmission line circuits. At least two sets of those linear equations are established from different operation condition of the line, they may mathematically yield those circuit parameters of the line. The conditions of line connectivity including state of connecting parts or contacting parts of the switching device may be monitored by resistance variations during operation. The insulation conditions of the line can be monitored by conductance (g) and capacitance(C) measurements. Together with other condition monitoring devices such as partial discharge, sensors and visual sensing device etc.,they may give useful information to monitor out any incipient symptoms of faults. The prototype of hardware system has been developed and tested through laboratory level simulated transmission lines. The test has shown enough evident to put the proposed method to practical uses.
Keywords: Transmission Line, Condition Monitoring, Circuit Parameters, Synchro- phasor Measurement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3198922 Dependence of Particle Initiated PD Characteristics on Size and Position of Metallic Particle Adhering to the Spacer Surface in GIS
Authors: F. N. Budiman, Y. Khan, A. A. Khan, A. Beroual, N. H. Malik, A. A. Al-Arainy
Abstract:
It is well known that metallic particles reduce the reliability of Gas-Insulated Substation (GIS) equipments by initiating partial discharge (PDs) that can lead to breakdown and complete failure of GIS. This paper investigates the characteristics of PDs caused by metallic particle adhering to the solid spacer. The PD detection and measurement were carried out by using IEC 60270 method with particles of different sizes and at different positions on the spacer surface. The results show that a particle of certain size at certain position possesses a unique PD characteristic as compared to those caused by particles of different sizes and/or at different positions. Therefore PD characteristics may be useful for the particle size and position identification.Keywords: Particle, partial discharge, GIS, spacer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1616921 Analytical Formulae for the Approach Velocity Head Coefficient
Authors: Abdulrahman Abdulrahman
Abstract:
Critical depth meters, such as abroad crested weir, Venture Flume and combined control flume are standard devices for measuring flow in open channels. The discharge relation for these devices cannot be solved directly, but it needs iteration process to account for the approach velocity head. In this paper, analytical solution was developed to calculate the discharge in a combined critical depth-meter namely, a hump combined with lateral contraction in rectangular channel with subcritical approach flow including energy losses. Also analytical formulae were derived for approach velocity head coefficient for different types of critical depth meters. The solution was derived by solving a standard cubic equation considering energy loss on the base of trigonometric identity. The advantage of this technique is to avoid iteration process adopted in measuring flow by these devices. Numerical examples are chosen for demonstration of the proposed solution.
Keywords: Broad crested weir, combined control meter, control structures, critical flow, discharge measurement, flow control, hydraulic engineering, hydraulic structures, open channel flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1028920 Remote Training with Self-Assessment in Electrical Engineering
Authors: Zoja Raud, Valery Vodovozov
Abstract:
The paper focuses on the distance laboratory organisation for training the electrical engineering staff and students in the fields of electrical drive and power electronics. To support online knowledge acquisition and professional enhancement, new challenges in remote education based on an active learning approach with self-assessment have been emerged by the authors. Following the literature review and explanation of the improved assessment methodology, the concept and technological basis of the labs arrangement are presented. To decrease the gap between the distance study of the up-to-date equipment and other educational activities in electrical engineering, the improvements in the following-up the learners’ progress and feedback composition are introduced. An authoring methodology that helps to personalise knowledge acquisition and enlarge Web-based possibilities is described. Educational management based on self-assessment is discussed.Keywords: Advanced training, active learning, distance learning, electrical engineering, remote laboratory, self-assessment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2130919 Developing a Regulator for Improving the Operation Modes of the Electrical Drive Motor
Authors: Baghdasaryan Marinka
Abstract:
The operation modes of the synchronous motors used in the production processes are greatly conditioned by the accidentally changing technological and power indices. As a result, the electrical drive synchronous motor may appear in irregular operation regimes. Although there are numerous works devoted to the development of the regulator for the synchronous motor operation modes, their application for the motors working in the irregular modes is not expedient. In this work, to estimate the issues concerning the stability of the synchronous electrical drive system, the transfer functions of the electrical drive synchronous motors operating in the synchronous and induction modes have been obtained. For that purpose, a model for investigating the frequency characteristics has been developed in the LabView environment. Frequency characteristics for assessing the transient process of the electrical drive system, operating in the synchronous and induction modes have been obtained, and based on their assessment, a regulator for improving the operation modes of the motor has been proposed. The proposed regulator can be successfully used to prevent the irregular modes of the electrical drive synchronous motor, as well as to estimate the operation state of the drive motor of the mechanism with a changing load.
Keywords: Electrical drive system, synchronous motor, regulator, stability, transition process.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 709918 Research of Dynamics Picking Mechanism of Sulzer Projectile Loom
Authors: A. Jomartov, K. Jomartova
Abstract:
One of the main and responsible units of Sulzer projectile loom is picking mechanism. It is specifically designed to accelerate projectile to speed of 25 m / s. Initial speed projectile of Sulzer projectile loom is independent of speed loom and determined the potential energy torsion rod. This paper investigates the dynamics picking mechanism of Sulzer projectile loom during its discharge. A result of calculation model, we obtain the law of motion lever of picking mechanism during its discharge. Construction of dynamic model the picking mechanism of Sulzer projectile loom on software complex SimulationX can make calculations for different thickness of torsion rods taking into account the backlashes in the connections, the dissipative forces and resistance forcesKeywords: Dynamics, loom, picking mechanism, projectile, SimulationX.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3589917 The effect of the Thickness of Electrical sheet on Overvoltage in the Asynchronous Motors Fed by PWM- converters
Authors: Belassel Mohand-Tahar
Abstract:
This work is devoted to the calculation of the undulatory parameters and the study of the influence thickness of electrical sheet on overvoltage compared to the carcass and between whorls (sections) of the asynchronous motors supplied with PWM converters.Keywords: Asynchronous Motors, , PWM, Undulatory Process, Undulatory Parameters, Undulatory Voltage, electrical sheet.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1376916 Effect of Copper Particle on the PD Characteristics in a Coaxial Duct with Mixture of SF6 (10%) and N2 (90%) Gases
Authors: B. Rajesh Kamath, J. Sundara Rajan, M. K. Veeraiah, M. Z. Kurian
Abstract:
Insulation performance of a gas insulated system is severely affected by particle contaminants. These metallic particles adversely affect the characteristics of insulating system. These particles can produce surface charges due to partial discharge activities. These particles which are free to move enhance the local electric fields. This paper deals with the influence of conducting particle placed in a co-axial duct on the discharge characteristics of gas mixtures. Co-axial duct placed in a high pressure chamber is used for the purpose. A gas pressure of 0.1, 0.2 and 0.3 MPa have been considered with a 10:90 SF6 and N2 gas mixtures. The 2D and 3D histograms of clean duct and duct with copper particle are discussed in this paper.
Keywords: B. Rajesh Kamath, J. Sundara Rajan, M. K. Veeraiah, M. Z. Kurian
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1733915 Simulation of Static Frequency Converter for Synchronous Machine Operation and Investigation of Shaft Voltage
Authors: Arun Kumar Datta, M. A. Ansari, N. R. Mondal, B. V. Raghavaiah, Manisha Dubey, Shailendra Jain
Abstract:
This study is carried out to understand the effects of Static frequency converter (SFC) on large machine. SFC has a feature of four quadrant operations. By virtue of this it can be implemented to run a synchronous machine either as a motor or alternator. This dual mode operation helps a single machine to start & run as a motor and then it can be converted as an alternator whenever required. One such dual purpose machine is taken here for study. This machine is installed at a laboratory carrying out short circuit test on high power electrical equipment. SFC connected with this machine is broadly described in this paper. The same SFC has been modeled with the MATLAB/Simulink software. The data applied on this virtual model are the actual parameters from SFC and synchronous machine. After running the model, simulated machine voltage and current waveforms are validated with the real measurements. Processing of these waveforms is done through Fast Fourier Transformation (FFT) which reveals that the waveforms are not sinusoidal rather they contain number of harmonics. These harmonics are the major cause of generating shaft voltage. It is known that bearings of electrical machine are vulnerable to current flow through it due to shaft voltage. A general discussion on causes of shaft voltage in perspective with this machine is presented in this paper.
Keywords: Alternators, AC-DC power conversion, capacitive coupling, electric discharge machining, frequency converter, Fourier transforms, inductive coupling, simulation, Shaft voltage, synchronous machines, static excitation, thyristor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6057914 A Silicon Controlled Rectifier-Based ESD Protection Circuit with High Holding Voltage and High Robustness Characteristics
Authors: Kyoung-il Do, Byung-seok Lee, Hee-guk Chae, Jeong-yun Seo Yong-seo Koo
Abstract:
In this paper, a Silicon Controlled Rectifier (SCR)-based Electrostatic Discharge (ESD) protection circuit with high holding voltage and high robustness characteristics is proposed. Unlike conventional SCR, the proposed circuit has low trigger voltage and high holding voltage and provides effective ESD protection with latch-up immunity. In addition, the TCAD simulation results show that the proposed circuit has better electrical characteristics than the conventional SCR. A stack technology was used for voltage-specific applications. Consequentially, the proposed circuit has a trigger voltage of 17.60 V and a holding voltage of 3.64 V.Keywords: ESD, SCR, latch-up, power clamp, holding voltage.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 829913 Study of Hydrophobicity Effect on 220kV Double Tension Insulator String Surface Using Finite Element Method
Authors: M. Nageswara Rao, V. S. N. K. Chaitanya, P. Vijaya Haritha
Abstract:
Insulators are one of the most significant equipment in power system. The insulators’ operation may affect the power flow, line loss and reliability. The electrical parameters that influence the performance of insulator are surface leakage current, corona and dry band arcing. Electric field stresses on the insulator surface will degrade the insulating properties and lead to puncture. Electric filed stresses can be analyzed by numerical methods and experimental evaluation. As per economic aspects, evaluation by numerical methods are best. In outdoor insulation, a hydrophobic surface can facilitate to prevent water film formation on the insulation surface, which is decisive for diminishing leakage currents and partial discharge (PD) under heavy polluted environments and harsh weather conditions. Polymer materials like silicone rubber have an outstanding hydrophobic property among general insulation materials. In this paper, electrical field intensity of 220 kV porcelain and polymer double tension insulator strings at critical regions are analyzed and compared by using Finite Element Method. Hydrophobic conditions of polymer insulator with equal and unequal water molecule conditions are verified by using finite element method.
Keywords: Porcelain insulator, polymer insulator, electric field analysis, EFA, finite element method, FEM, hydrophobicity, FEMM-2D.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 698912 Assessing and Evaluating the Course Outcomes of Electrical Circuit Course for Bachelor of Science in Electrical and Electronic Engineering Program
Authors: Muhibul Haque Bhuyan, Sher Shermin Azmiri Khan
Abstract:
At present, it is an imperative and stimulating task to grow the concepts and skills of undergraduate students in any course. Educators must build up students' higher-order complex and critical thinking abilities. But many of them find it difficult to assess and evaluate these abilities of students who undertake their courses during undergraduate studies. In this research work, a simple assessment and evaluation process for the electrical circuit course of the undergraduate Electrical and Electronic Engineering (EEE) program is reported using the Outcome-Based Education (OBE) approach. The methodology of the work, course contents design, course outcomes (COs) preparation and mapping it with program outcomes (POs), question setting following Bloom's taxonomy, assessment strategy of the students, CO and PO evaluation records, statistics, and charts have been reported for a student-cohort of electrical circuit course taken in Spring 2019 Semester at EEE Department of Southeast University (SEU). It is found that the benchmark fixed by the course instructor has been achieved by the students of that course through CO assessment and evaluation. Recommendations of the course teacher for further quality enhancement based on CO achievement are also presented.
Keywords: OBE, COs, POs, assessment and evaluation, electrical circuit course.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 629911 Optimization of Wire EDM Parameters for Fabrication of Micro Channels
Authors: Gurinder Singh Brar, Sarbjeet Singh, Harry Garg
Abstract:
Wire Electric Discharge Machining (WEDM) is thermal machining process capable of machining very hard electrically conductive material irrespective of their hardness. WEDM is being widely used to machine micro scale parts with the high dimensional accuracy and surface finish. The objective of this paper is to optimize the process parameters of wire EDM to fabricate the micro channels and to calculate the surface finish and material removal rate of micro channels fabricated using wire EDM. The material used is aluminum 6061 alloy. The experiments were performed using CNC wire cut electric discharge machine. The effect of various parameters of WEDM like pulse on time (TON) with the levels (100, 150, 200), pulse off time (TOFF) with the levels (25, 35, 45) and current (IP) with the levels (105, 110, 115) were investigated to study the effect on output parameter i.e. Surface Roughness and Material Removal Rate (MRR). Each experiment was conducted under different conditions of pulse on time, pulse off time and peak current. For material removal rate, TON and Ip were the most significant process parameter. MRR increases with the increase in TON and Ip and decreases with the increase in TOFF. For surface roughness, TON and Ip have the maximum effect and TOFF was found out to be less effective.Keywords: Micro Channels, Wire Electric Discharge Machining (WEDM), Metal Removal Rate (MRR), Surface Finish.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2697910 Photocatalytic Detoxification Method for Zero Effluent Discharge in Dairy Industry: Effect of Operational Parameters
Authors: Janhavi Inamdar, S.K. Singh
Abstract:
Laboratory experiments have been performed to investigate photocatalytic detoxification by using TiO2 photocatalyst for treating dairy effluent. Various operational parameters such as catalyst concentration, initial concentration, angle of tilt of solar flat plate reactor and flow rate were investigated. Results indicated that the photocatalytic detoxification process can efficiently treat dairy effluent. Experimental runs with dairy wastewater can be used to identify the optimum operational parameters to perform wastewater degradation on large scale for recycling purpose. Also effect of two different types of reactors on degradation process was analyzed.
Keywords: Photocatalytic detoxification, TiO2 photocatalyst, solar flat plate reactor, Zero effluent discharge.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1930909 Industrial Applications of Laser Engraving: Influence of the Process Parameters on Machined Surface Quality
Authors: F.Agalianos, S.Patelis , P. Kyratsis, E. Maravelakis, E.Vasarmidis, A.Antoniadis
Abstract:
Laser engraving is a manufacturing method for those applications where previously Electrical Discharge Machining (EDM) was the only choice. Laser engraving technology removes material layer-by-layer and the thickness of layers is usually in the range of few microns. The aim of the present work is to investigate the influence of the process parameters on the surface quality when machined by laser engraving. The examined parameters were: the pulse frequency, the beam speed and the layer thickness. The surface quality was determined by the surface roughness for every set of parameters. Experimental results on Al7075 material showed that the surface roughness strictly depends on the process parameters used.
Keywords: Laser engraving, Al7075, Yb: YAG laser, laser process parameters, material roughness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2559908 GSM Based Automated Embedded System for Monitoring and Controlling of Smart Grid
Authors: Amit Sachan
Abstract:
The purpose of this paper is to acquire the remote electrical parameters like Voltage, Current, and Frequency from Smart grid and send these real time values over GSM network using GSM Modem/phone along with temperature at power station. This project is also designed to protect the electrical circuitry by operating an Electromagnetic Relay. The Relay can be used to operate a Circuit Breaker to switch off the main electrical supply. User can send commands in the form of SMS messages to read the remote electrical parameters. This system also can automatically send the real time electrical parameters periodically (based on time settings) in the form of SMS. This system also send SMS alerts whenever the Circuit Breaker trips or whenever the Voltage or Current exceeds the predefined limits.
Keywords: GSM Modem, Initialization of ADC module of microcontroller, PIC-C compiler for Embedded C programming, PIC kit 2 programmer for dumping code into Micro controller, Express SCH for Circuit design, Proteus for hardware simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9480907 Solving the Nonlinear Heat Conduction in a Spherical Coordinate with Electrical Simulation
Authors: A. M. Gheitaghy, H. Saffari, G. Q. Zhang
Abstract:
Numerical approach based on the electrical simulation method is proposed to solve a nonlinear transient heat conduction problem with nonlinear boundary for a spherical body. This problem represents a strong nonlinearity in both the governing equation for temperature dependent thermal property and the boundary condition for combined convective and radiative cooling. By analysing the equivalent electrical model using the electrical circuit simulation program HSPICE, transient temperature and heat flux distributions at sphere can be obtained easily and fast. The solutions clearly illustrate the effect of the radiation-conduction parameter Nrc, the Biot number and the linear coefficient of temperature dependent conductivity and heat capacity. On comparing the results with corresponding numerical solutions, the accuracy and efficiency of this computational method is found to be good.Keywords: Convective boundary, radiative boundary, electrical simulation method, nonlinear heat conduction, spherical coordinate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1390906 Removal of Lead in High Rate Activated Sludge System
Authors: Mamdouh Y. Saleh, Gaber EL Enany, Medhat H. Elzahar, Mohamed Z. Elshikhipy, Rana Hamouda
Abstract:
The heavy metals pollution in water, sediments and fish of Lake Manzala affected form the disposal of wastewater, industrial and agricultural drainage water into the lake on the environmental situation. A pilot plant with an industrial discharge flow of 135L/h designed according to the activated sludge plant to simulate between the biological and chemical treatment with the addition of alum to the aeration tank with dosages of 100, 150, 200 and 250 mg/L. The industrial discharge had concentrations of Lead and BOD5 with an average range 1.22, 145mg/L respectively. That means the average Pb was high up to 25 times than the allowed permissible concentration. The optimization of the chemical-biological process using 200mg/L Alum dosage compared has improvement of Lead and BOD5 removal efficiency to 61.76% and 56% respectively.
Keywords: Industrial wastewater, Activated sludge, BOD5, Lead, Alum salt.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2573905 Oil Palm Empty Fruit Bunch as a New Organic Filler for Electrical Tree Inhibition
Authors: M. H. Ahmad, A. A. A. Jamil, H. Ahmad, M. A. M. Piah, A. Darus, Y. Z. Arief, N. Bashir
Abstract:
The use of synthetic retardants in polymeric insulated cables is not uncommon in the high voltage engineering to study electrical treeing phenomenon. However few studies on organic materials for the same investigation have been carried. .This paper describes the study on the effects of Oil Palm Empty Fruit Bunch (OPEFB) microfiller on the tree initiation and propagation in silicone rubber with different weight percentages (wt %) of filler to insulation bulk material. The weight percentages used were 0 wt % and 1 wt % respectively. It was found that the OPEFB retards the propagation of the electrical treeing development. For tree inception study, the addition of 1(wt %) OPEFB has increase the tree inception voltage of silicone rubber. So, OPEFB is a potential retardant to the initiation and growth of electrical treeing occurring in polymeric materials for high voltage application. However more studies on the effects of physical and electrical properties of OPEFB as a tree retardant material are required.Keywords: Oil palm empty fruit bunch, electrical tree, siliconerubber, fillers.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2363904 Highly Conductive Polycrystalline Metallic Ring in a Magnetic Field
Authors: Isao Tomita
Abstract:
Electrical conduction in a quasi-one-dimensional polycrystalline metallic ring with a long electron phase coherence length realized at low temperature is investigated. In this situation, the wave nature of electrons is important in the ring, where the electrical current I can be induced by a vector potential that arises from a static magnetic field applied perpendicularly to the ring’s area. It is shown that if the average grain size of the polycrystalline ring becomes large (or comparable to the Fermi wavelength), the electrical current I increases to ~I0, where I0 is a current in a disorder-free ring. The cause of this increasing effect is examined, and this takes place if the electron localization length in the polycrystalline potential increases with increasing grain size, which gives rise to coherent connection of tails of a localized electron wave function in the ring and thus provides highly coherent electrical conduction.Keywords: Electrical Conduction, Electron Phase Coherence, Polycrystalline Metal, Magnetic Field.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1630903 Silicon Nanowire for Thermoelectric Applications: Effects of Contact Resistance
Authors: Y. Li, K. Buddharaju, N. Singh, G. Q. Lo, S. J. Lee
Abstract:
Silicon nanowire (SiNW) based thermoelectric device (TED) has potential applications in areas such as chip level cooling/ energy harvesting. It is a great challenge however, to assemble an efficient device with these SiNW. The presence of parasitic in the form of interfacial electrical resistance will have a significant impact on the performance of the TED. In this work, we explore the effect of the electrical contact resistance on the performance of a TED. Numerical simulations are performed on SiNW to investigate such effects on its cooling performance. Intrinsically, SiNW individually without the unwanted parasitic effect has excellent cooling power density. However, the cooling effect is undermined with the contribution of the electrical contact resistance.
Keywords: Thermoelectric, silicon, nanowire, electrical contact resistance, parasitics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2104902 Analysis of an Electrical Transformer: A Bond Graph Approach
Authors: Gilberto Gonzalez-A
Abstract:
Bond graph models of an electrical transformer including the nonlinear saturation are presented. These models determine the relation between self and mutual inductances, and the leakage and magnetizing inductances of power transformers with two and three windings using the properties of a bond graph. The modelling and analysis using this methodology to three phase power transformers or transformers with internal incipient faults can be extended.Keywords: Bond graph, electrical transformer, nonlinear saturation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1539901 Design and Analysis of Extra High Voltage Non-Ceramic Insulator by Finite Element Method
Authors: M. Nageswara Rao, V. S. N. K. Chaitanya, P. Pratyusha
Abstract:
High voltage insulator has to withstand sever electrical stresses. Higher electrical stresses lead to erosion of the insulator surface. Degradation of insulating properties leads to flashover and in some extreme cases it may cause to puncture. For analyzing these electrical stresses and implement necessary actions to diminish the electrical stresses, numerical methods are best. By minimizing the electrical stresses, reliability of the power system will improve. In this paper electric field intensity at critical regions of 400 kV silicone composite insulator is analyzed using finite element method. Insulator is designed using FEMM-2D software package. Electric Field Analysis (EFA) results are analyzed for five cases i.e., only insulator, insulator with two sides arcing horn, High Voltage (HV) end grading ring, grading ring-arcing horn arrangement and two sides grading ring. These EFA results recommended that two sides grading ring is better for minimization of electrical stresses and improving life span of insulator.
Keywords: Polymer insulator, electric field analysis, numerical methods, finite element method, FEMM-2D.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1148900 Using Electrical Impedance Tomography to Control a Robot
Authors: Shayan Rezvanigilkolaei, Shayesteh Vefaghnematollahi
Abstract:
Electrical impedance tomography is a non-invasive medical imaging technique suitable for medical applications. This paper describes an electrical impedance tomography device with the ability to navigate a robotic arm to manipulate a target object. The design of the device includes various hardware and software sections to perform medical imaging and control the robotic arm. In its hardware section an image is formed by 16 electrodes which are located around a container. This image is used to navigate a 3DOF robotic arm to reach the exact location of the target object. The data set to form the impedance imaging is obtained by having repeated current injections and voltage measurements between all electrode pairs. After performing the necessary calculations to obtain the impedance, information is transmitted to the computer. This data is fed and then executed in MATLAB which is interfaced with EIDORS (Electrical Impedance Tomography Reconstruction Software) to reconstruct the image based on the acquired data. In the next step, the coordinates of the center of the target object are calculated by image processing toolbox of MATLAB (IPT). Finally, these coordinates are used to calculate the angles of each joint of the robotic arm. The robotic arm moves to the desired tissue with the user command.Keywords: Electrical impedance tomography, EIT, Surgeon robot, image processing of Electrical impedance tomography.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2333899 Electrical Impedance Imaging Using Eddy Current
Authors: A. Ambia, T. Takemae, Y. Kosugi, M. Hongo
Abstract:
Electric impedance imaging is a method of reconstructing spatial distribution of electrical conductivity inside a subject. In this paper, a new method of electrical impedance imaging using eddy current is proposed. The eddy current distribution in the body depends on the conductivity distribution and the magnetic field pattern. By changing the position of magnetic core, a set of voltage differences is measured with a pair of electrodes. This set of voltage differences is used in image reconstruction of conductivity distribution. The least square error minimization method is used as a reconstruction algorithm. The back projection algorithm is used to get two dimensional images. Based on this principle, a measurement system is developed and some model experiments were performed with a saline filled phantom. The shape of each model in the reconstructed image is similar to the corresponding model, respectively. From the results of these experiments, it is confirmed that the proposed method is applicable in the realization of electrical imaging.Keywords: Back projection algorithm, electrical impedancetomography, eddy current, magnetic inductance tomography.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1695