WASET
	@article{(Open Science Index):https://publications.waset.org/pdf/10002476,
	  title     = {Optimization of Wire EDM Parameters for Fabrication of Micro Channels},
	  author    = {Gurinder Singh Brar and  Sarbjeet Singh and  Harry Garg},
	  country	= {},
	  institution	= {},
	  abstract     = {Wire Electric Discharge Machining (WEDM) is
thermal machining process capable of machining very hard
electrically conductive material irrespective of their hardness.
WEDM is being widely used to machine micro scale parts with the
high dimensional accuracy and surface finish. The objective of this
paper is to optimize the process parameters of wire EDM to fabricate
the micro channels and to calculate the surface finish and material
removal rate of micro channels fabricated using wire EDM. The
material used is aluminum 6061 alloy. The experiments were
performed using CNC wire cut electric discharge machine. The effect
of various parameters of WEDM like pulse on time (TON) with the
levels (100, 150, 200), pulse off time (TOFF) with the levels (25, 35,
45) and current (IP) with the levels (105, 110, 115) were investigated
to study the effect on output parameter i.e. Surface Roughness and
Material Removal Rate (MRR). Each experiment was conducted
under different conditions of pulse on time, pulse off time and peak
current. For material removal rate, TON and Ip
were the most significant process parameter. MRR increases with the increase in
TON and Ip and decreases with the increase in TOFF. For surface
roughness, TON and Ip have the maximum effect and TOFF was found
out to be less effective.},
	    journal   = {International Journal of Mechanical and Mechatronics Engineering},
	  volume    = {9},
	  number    = {10},
	  year      = {2015},
	  pages     = {1729 - 1732},
	  ee        = {https://publications.waset.org/pdf/10002476},
	  url   	= {https://publications.waset.org/vol/106},
	  bibsource = {https://publications.waset.org/},
	  issn  	= {eISSN: 1307-6892},
	  publisher = {World Academy of Science, Engineering and Technology},
	  index 	= {Open Science Index 106, 2015},
	}