**Commenced**in January 2007

**Frequency:**Monthly

**Edition:**International

**Paper Count:**30526

##### Highly Conductive Polycrystalline Metallic Ring in a Magnetic Field

**Authors:**
Isao Tomita

**Abstract:**

**Keywords:**
Electrical conduction,
Magnetic Field,
electron phase coherence,
polycrystalline metal

**Digital Object Identifier (DOI):**
doi.org/10.5281/zenodo.1111877

**References:**

[1] M. B¨uttiker, Y. Imry, and R. Landauer, “Josephson behavior in small normal one-dimensional rings,” Phys. Lett. 96A, 1983, pp.365-367.

[2] Y. Imry and N. S. Shiren, “Energy averaging and the flux-periodic phenomena in small normal-metal rings,” Phys. Rev. B 33, 1986, pp.7992-7997.

[3] N. Trivedi and D. A. Browne, “Mesoscopic ring in a magnetic field: Reactive and dissipative response,” Phys. Rev. B 38, 1988, pp. 9581-9593.

[4] J. J. Sakurai, Modern Quantum Mechanics, Revised ed., New York: Addison-Wesley Publishing, 1994. Chap. 2.

[5] L. P. Levy, G. Dolan J. Dunsmuir, and H. Bouchiat, “Magnetization of mesoscopic copper rings: Evidence for persistent currents,” Phys. Rev. Lett. 64, 1990, pp. 2074-2077.

[6] D. Mailly, C. Chapelier, and A. Benoit, “Experimental observation of persistent currents in GaAs-AlGaAs single loop,” Phys. Rev. Lett. 70, 1993, pp. 2020-2023.

[7] V. Chandrasekhar, R. A. Webb, M. J. Brady, M. B. Ketchen, W. J. Gallagher, and A. Kleinsasser, “Magnetic response of a single, isolated gold loop,” Phys. Rev. Lett. 67, 1991, pp. 3578-3581.

[8] E. K. Riedel and F. von Oppen, “Mesoscopic persistent current in small rings,” Phys. Rev. B 47, 1993, pp. 15449-15459.

[9] P. Nozieres and D. Pines, The Theory of Quantum Liquids, Vol. 1, 1st ed., New York: Benjamin, 1966. Chap. 1.

[10] T. Matsubara, “A new approach to quantum-statistical mechanics,” Prog. Theor. Phys. 14, 1955, pp. 351-378.

[11] A. A. Abrikosov, L. P. Gorkov, and I. E. Dzyaloshinski, Methods of Quantum Field Theory in Statistical Physics, 1st ed., New York: Dover, 1975.

[12] S. Washburn and R. A. Webb, “Aharonov-Bohm effect in normal metal quantum coherence and transport,” Adv. Phys. 35, 1986, pp.375-422. This paper reports that the measurement of a conductance through an Au wire or ring at very low temperature (< 1 K) showed a large conductance fluctuation arising from the electron scattering with disorder in addition to the average conductance. This also holds in measuring a current at very low temperature.

[13] A. D. Stone, “Magnetoresistance fluctuations in mesoscopic wires and rings,” Phys. Rev. Lett. 54, 1985, pp.2692-2695.

[14] P. A. Lee and A. D. Stone, “Universal conductance fluctuations in metals,” Phys. Rev. Lett. 55, 1985, pp.1622-1625.

[15] G. Bouzerar, D. Poilblanc, and G. Montambaux, “Persistent currents in one-dimensional disordered rings of interacting electrons,” Phys. Rev. B 49, 1994, pp. 8258-8262.

[16] H. Kato H and D. Yoshioka, “Suppression of persistent currents in one-dimensional disordered rings by the Coulomb interaction,” Phys. Rev. B 50, 1994, pp. 4943-4946.

[17] D. Yoshioka and H. Kato, “The effect of the Coulomb interaction on the mesoscopic persistent current,” Physica B 212, 1995, pp. 251-255. The Hartree and Fock terms in this paper seemingly give an enhancement in the current, but actually the Fock term has a different sign from the Hartree term, so they almost cancel each other in summation, and eventually the e-e interaction does not contribute to an increase in the current.

[18] P. M. Th. M. van Attekum, P. H. Woerlee, G. C. Verkade, and A. A. M. Hoeben, “Influence of grain boundaries and surface Debye temperature on the electrical resistance of thin gold films,” Phys. Rev. B 29, 1984, pp. 645-650.

[19] X. Chen, Z. Y. Deng, W. Lu, and S. C. Shen, “Persistent current in a one-dimensional correlated disordered ring,” Phys. Rev. B 61, 2000, pp. 2008-2013.

[20] I. Tomita, “Persistent current in a one-dimensional correlated disordered ring,” Physica A 308, 2002, pp. 1-14.

[21] Y. M. Liu, R. W. Peng, X. Q. Huang, M. Wang, A. Hu, and S. S. Jiang, “Absence of suppression in the persistent current by delocalization in random-dimer mesoscopic rings,” J. Phys. Soc. Japan 72, 2003, pp. 346-351.

[22] P. W. Anderson, D. J. Thouless, E. Abrahams, and D. S. Fisher, “New method for a scaling theory of localization,” Phys. Rev. B 22, 1980, pp.3519-3526.