Search results for: Gene expression data
6880 Equilibrium Modeling of Carbon Dioxide Adsorption on Zeolites
Authors: Alireza Behvandi, Somayeh Tourani
Abstract:
High pressure adsorption of carbon dioxide on zeolite 13X was investigated in the pressure range (0 to 4) Mpa and temperatures 298, 308 and 323K. The data fitting is accomplished with the Toth, UNILAN, Dubinin-Astakhov and virial adsorption models which are generally used for micro porous adsorbents such as zeolites. Comparison with experimental data from the literature indicated that the virial model would best determine results. These results may be partly attributed to the flexibility of the virial model which can accommodate as many constants as the data warrants.Keywords: adsorption models, zeolite, carbon dioxide
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28896879 Application of Java-based Pointcuts in Aspect Oriented Programming (AOP) for Data Race Detection
Authors: Sadaf Khalid, Fahim Arif
Abstract:
Wide applicability of concurrent programming practices in developing various software applications leads to different concurrency errors amongst which data race is the most important. Java provides greatest support for concurrent programming by introducing various concurrency packages. Aspect oriented programming (AOP) is modern programming paradigm facilitating the runtime interception of events of interest and can be effectively used to handle the concurrency problems. AspectJ being an aspect oriented extension to java facilitates the application of concepts of AOP for data race detection. Volatile variables are usually considered thread safe, but they can become the possible candidates of data races if non-atomic operations are performed concurrently upon them. Various data race detection algorithms have been proposed in the past but this issue of volatility and atomicity is still unaddressed. The aim of this research is to propose some suggestions for incorporating certain conditions for data race detection in java programs at the volatile fields by taking into account support for atomicity in java concurrency packages and making use of pointcuts. Two simple test programs will demonstrate the results of research. The results are verified on two different Java Development Kits (JDKs) for the purpose of comparison.Keywords: Aspect Bench Compiler (abc), Aspect OrientedProgramming (AOP), AspectJ, Aspects, Concurrency packages, Concurrent programming, Cross-cutting Concerns, Data race, Eclipse, Java, Java Development Kits (JDKs), Pointcuts
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19376878 Dissecting Big Trajectory Data to Analyse Road Network Travel Efficiency
Authors: Rania Alshikhe, Vinita Jindal
Abstract:
Digital innovation has played a crucial role in managing smart transportation. For this, big trajectory data collected from trav-eling vehicles, such as taxis through installed global positioning sys-tem (GPS)-enabled devices can be utilized. It offers an unprecedented opportunity to trace the movements of vehicles in fine spatiotemporal granularity. This paper aims to explore big trajectory data to measure the travel efficiency of road networks using the proposed statistical travel efficiency measure (STEM) across an entire city. Further, it identifies the cause of low travel efficiency by proposed least square approximation network-based causality exploration (LANCE). Finally, the resulting data analysis reveals the causes of low travel efficiency, along with the road segments that need to be optimized to improve the traffic conditions and thus minimize the average travel time from given point A to point B in the road network. Obtained results show that our proposed approach outperforms the baseline algorithms for measuring the travel efficiency of the road network.
Keywords: GPS trajectory, road network, taxi trips, digital map, big data, STEM, LANCE
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5186877 Actionable Rules: Issues and New Directions
Authors: Harleen Kaur
Abstract:
Knowledge Discovery in Databases (KDD) is the process of extracting previously unknown, hidden and interesting patterns from a huge amount of data stored in databases. Data mining is a stage of the KDD process that aims at selecting and applying a particular data mining algorithm to extract an interesting and useful knowledge. It is highly expected that data mining methods will find interesting patterns according to some measures, from databases. It is of vital importance to define good measures of interestingness that would allow the system to discover only the useful patterns. Measures of interestingness are divided into objective and subjective measures. Objective measures are those that depend only on the structure of a pattern and which can be quantified by using statistical methods. While, subjective measures depend only on the subjectivity and understandability of the user who examine the patterns. These subjective measures are further divided into actionable, unexpected and novel. The key issues that faces data mining community is how to make actions on the basis of discovered knowledge. For a pattern to be actionable, the user subjectivity is captured by providing his/her background knowledge about domain. Here, we consider the actionability of the discovered knowledge as a measure of interestingness and raise important issues which need to be addressed to discover actionable knowledge.
Keywords: Data Mining Community, Knowledge Discovery inDatabases (KDD), Interestingness, Subjective Measures, Actionability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19456876 Model Discovery and Validation for the Qsar Problem using Association Rule Mining
Authors: Luminita Dumitriu, Cristina Segal, Marian Craciun, Adina Cocu, Lucian P. Georgescu
Abstract:
There are several approaches in trying to solve the Quantitative 1Structure-Activity Relationship (QSAR) problem. These approaches are based either on statistical methods or on predictive data mining. Among the statistical methods, one should consider regression analysis, pattern recognition (such as cluster analysis, factor analysis and principal components analysis) or partial least squares. Predictive data mining techniques use either neural networks, or genetic programming, or neuro-fuzzy knowledge. These approaches have a low explanatory capability or non at all. This paper attempts to establish a new approach in solving QSAR problems using descriptive data mining. This way, the relationship between the chemical properties and the activity of a substance would be comprehensibly modeled.Keywords: association rules, classification, data mining, Quantitative Structure - Activity Relationship.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17946875 Post Pandemic Mobility Analysis through Indexing and Sharding in MongoDB: Performance Optimization and Insights
Authors: Karan Vishavjit, Aakash Lakra, Shafaq Khan
Abstract:
The COVID-19 pandemic has pushed healthcare professionals to use big data analytics as a vital tool for tracking and evaluating the effects of contagious viruses. To effectively analyse huge datasets, efficient NoSQL databases are needed. The analysis of post-COVID-19 health and well-being outcomes and the evaluation of the effectiveness of government efforts during the pandemic is made possible by this research’s integration of several datasets, which cuts down on query processing time and creates predictive visual artifacts. We recommend applying sharding and indexing technologies to improve query effectiveness and scalability as the dataset expands. Effective data retrieval and analysis are made possible by spreading the datasets into a sharded database and doing indexing on individual shards. Analysis of connections between governmental activities, poverty levels, and post-pandemic wellbeing is the key goal. We want to evaluate the effectiveness of governmental initiatives to improve health and lower poverty levels. We will do this by utilising advanced data analysis and visualisations. The findings provide relevant data that support the advancement of UN sustainable objectives, future pandemic preparation, and evidence-based decision-making. This study shows how Big Data and NoSQL databases may be used to address problems with global health.
Keywords: COVID-19, big data, data analysis, indexing, NoSQL, sharding, scalability, poverty.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 766874 From Modeling of Data Structures towards Automatic Programs Generating
Authors: Valentin P. Velikov
Abstract:
Automatic program generation saves time, human resources, and allows receiving syntactically clear and logically correct modules. The 4-th generation programming languages are related to drawing the data and the processes of the subject area, as well as, to obtain a frame of the respective information system. The application can be separated in interface and business logic. That means, for an interactive generation of the needed system to be used an already existing toolkit or to be created a new one.Keywords: Computer science, graphical user interface, user dialog interface, dialog frames, data modeling, subject area modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14546873 Visual Analytics in K 12 Education - Emerging Dimensions of Complexity
Authors: Linnea Stenliden
Abstract:
The aim of this paper is to understand emerging learning conditions, when a visual analytics is implemented and used in K 12 (education). To date, little attention has been paid to the role visual analytics (digital media and technology that highlight visual data communication in order to support analytical tasks) can play in education, and to the extent to which these tools can process actionable data for young students. This study was conducted in three public K 12 schools, in four social science classes with students aged 10 to 13 years, over a period of two to four weeks at each school. Empirical data were generated using video observations and analyzed with help of metaphors within Actor-network theory (ANT). The learning conditions are found to be distinguished by broad complexity, characterized by four dimensions. These emerge from the actors’ deeply intertwined relations in the activities. The paper argues in relation to the found dimensions that novel approaches to teaching and learning could benefit students’ knowledge building as they work with visual analytics, analyzing visualized data.
Keywords: Analytical reasoning, complexity, data use, problem space, visual analytics, visual storytelling, translation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16996872 Effect of Retinoic Acid on Fetus Reproductive Organ Mice (Mus musculus) Swiss Webster
Authors: Yulia Irnidayanti
Abstract:
Retinoic acid is like a steroid hormone that plays a role in embryo formation, proliferation of spermatogonia cells, ephitelial cells differentiation and organogenesis. Retinoic acid can influences seminiferous tubule formation during embryonic testis development and also play a role in the regulation of ovarian function and female reproductive tract by suppressing the hormones FSH receptor expression. The excessive use of retinoic acid caused abnormalities in the fetus. The result showed that there is the influence of retinoic acid on the developmet of mice fetal testes, for examples disruption of the formation of seminiferous tubules and tubules seemed to be hollow, spermatogonia cells are relatively few in number and caused Leydig cells count relatively more. While in the female fetus does not caused the formation of primordial follicles and disrupted the development of germinal ephitelial cells of fetal ovaries of female mice (mus musculus) Swiss Webster.Keywords: Retinoic acid, Leydig cell, Spermatogonia cells, Semin- ferous tubules, Primordial follicles
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15816871 An Energy Efficient Cluster Formation Protocol with Low Latency In Wireless Sensor Networks
Authors: A. Allirani, M. Suganthi
Abstract:
Data gathering is an essential operation in wireless sensor network applications. So it requires energy efficiency techniques to increase the lifetime of the network. Similarly, clustering is also an effective technique to improve the energy efficiency and network lifetime of wireless sensor networks. In this paper, an energy efficient cluster formation protocol is proposed with the objective of achieving low energy dissipation and latency without sacrificing application specific quality. The objective is achieved by applying randomized, adaptive, self-configuring cluster formation and localized control for data transfers. It involves application - specific data processing, such as data aggregation or compression. The cluster formation algorithm allows each node to make independent decisions, so as to generate good clusters as the end. Simulation results show that the proposed protocol utilizes minimum energy and latency for cluster formation, there by reducing the overhead of the protocol.Keywords: Sensor networks, Low latency, Energy sorting protocol, data processing, Cluster formation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27466870 Hypothesis of a Holistic Treatment of Cancer: Crab Method
Authors: Devasis Ghosh
Abstract:
The main hindrance to total cure of cancer is a) the failure to control continued production of cancer cells, b) its sustenance and c) its metastasis. This review study has tried to address this issue of total cancer cure in a more innovative way. A 10-pronged “CRAB METHOD”, a novel holistic scientific approach of Cancer treatment has been hypothesized in this paper. Apart from available Chemotherapy, Radiotherapy and Oncosurgery, (which shall not be discussed here), seven other points of interference and treatment has been suggested, i.e. 1. Efficient stress management. 2. Dampening of ATF3 expression. 3. Selective inhibition of Platelet Activity. 4. Modulation of serotonin production, metabolism and 5HT receptor antagonism. 5. Auxin, its anti-proliferative potential and its modulation. 6. Melatonin supplementation because of its oncostatic properties. 7. HDAC Inhibitors especially valproic acid use due to its apoptotic role in many cancers. If all the above stated seven steps are thoroughly taken care of at the time of initial diagnosis of cancer along with the available treatment modalities of Chemotherapy, Radiotherapy and Oncosurgery, then perhaps, the morbidity and mortality rate of cancer may be greatly reduced.Keywords: ATF3 dampening, auxin modulation, cancer, platelet activation, serotonin, stress, valproic acid.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14526869 An Approach to Practical Determination of Fair Premium Rates in Crop-Hail Insurance Using Short-Term Insurance Data
Authors: Necati Içer
Abstract:
Crop-hail insurance plays a vital role in managing risks and reducing the financial consequences of hail damage on crop production. Predicting insurance premium rates with short-term data is a major challenge in numerous nations because of the unique characteristics of hailstorms. This study aims to suggest a feasible approach for establishing equitable premium rates in crop-hail insurance for nations with short-term insurance data. The primary goal of the rate-making process is to determine premium rates for high and zero loss costs of villages and enhance their credibility. To do this, a technique was created using the author's practical knowledge of crop-hail insurance. With this approach, the rate-making method was developed using a range of temporal and spatial factor combinations with both hypothetical and real data, including extreme cases. This article aims to show how to incorporate the temporal and spatial elements into determining fair premium rates using short-term insurance data. The article ends with a suggestion on the ultimate premium rates for insurance contracts.
Keywords: Crop-hail insurance, premium rate, short-term insurance data, spatial and temporal parameters.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 466868 The Pixel Value Data Approach for Rainfall Forecasting Based on GOES-9 Satellite Image Sequence Analysis
Authors: C. Yaiprasert, K. Jaroensutasinee, M. Jaroensutasinee
Abstract:
To develop a process of extracting pixel values over the using of satellite remote sensing image data in Thailand. It is a very important and effective method of forecasting rainfall. This paper presents an approach for forecasting a possible rainfall area based on pixel values from remote sensing satellite images. First, a method uses an automatic extraction process of the pixel value data from the satellite image sequence. Then, a data process is designed to enable the inference of correlations between pixel value and possible rainfall occurrences. The result, when we have a high averaged pixel value of daily water vapor data, we will also have a high amount of daily rainfall. This suggests that the amount of averaged pixel values can be used as an indicator of raining events. There are some positive associations between pixel values of daily water vapor images and the amount of daily rainfall at each rain-gauge station throughout Thailand. The proposed approach was proven to be a helpful manual for rainfall forecasting from meteorologists by which using automated analyzing and interpreting process of meteorological remote sensing data.
Keywords: Pixel values, satellite image, water vapor, rainfall, image processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18676867 Multistage Data Envelopment Analysis Model for Malmquist Productivity Index Using Grey's System Theory to Evaluate Performance of Electric Power Supply Chain in Iran
Authors: Mesbaholdin Salami, Farzad Movahedi Sobhani, Mohammad Sadegh Ghazizadeh
Abstract:
Evaluation of organizational performance is among the most important measures that help organizations and entities continuously improve their efficiency. Organizations can use the existing data and results from the comparison of units under investigation to obtain an estimation of their performance. The Malmquist Productivity Index (MPI) is an important index in the evaluation of overall productivity, which considers technological developments and technical efficiency at the same time. This article proposed a model based on the multistage MPI, considering limited data (Grey’s theory). This model can evaluate the performance of units using limited and uncertain data in a multistage process. It was applied by the electricity market manager to Iran’s electric power supply chain (EPSC), which contains uncertain data, to evaluate the performance of its actors. Results from solving the model showed an improvement in the accuracy of future performance of the units under investigation, using the Grey’s system theory. This model can be used in all case studies, in which MPI is used and there are limited or uncertain data.
Keywords: Malmquist Index, Grey's Theory, Charnes Cooper & Rhodes (CCR) Model, network data envelopment analysis, Iran electricity power chain.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5576866 Comparative Analysis of the Public Funding for Greek Universities: An Ordinal DEA/MCDM Approach
Authors: Yiannis Smirlis, Dimitris K. Despotis
Abstract:
This study performs a comparative analysis of the 21 Greek Universities in terms of their public funding, awarded for covering their operating expenditure. First it introduces a DEA/MCDM model that allocates the fund into four expenditure factors in the most favorable way for each university. Then, it presents a common, consensual assessment model to reallocate the amounts, remaining in the same level of total public budget. From the analysis it derives that a number of universities cannot justify the public funding in terms of their size and operational workload. For them, the sufficient reduction of their public funding amount is estimated as a future target. Due to the lack of precise data for a number of expenditure criteria, the analysis is based on a mixed crisp-ordinal data set.Keywords: Data envelopment analysis, Greek universities, operating expenditures, ordinal data.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17736865 Inversion of Electrical Resistivity Data: A Review
Authors: Shrey Sharma, Gunjan Kumar Verma
Abstract:
High density electrical prospecting has been widely used in groundwater investigation, civil engineering and environmental survey. For efficient inversion, the forward modeling routine, sensitivity calculation, and inversion algorithm must be efficient. This paper attempts to provide a brief summary of the past and ongoing developments of the method. It includes reviews of the procedures used for data acquisition, processing and inversion of electrical resistivity data based on compilation of academic literature. In recent times there had been a significant evolution in field survey designs and data inversion techniques for the resistivity method. In general 2-D inversion for resistivity data is carried out using the linearized least-square method with the local optimization technique .Multi-electrode and multi-channel systems have made it possible to conduct large 2-D, 3-D and even 4-D surveys efficiently to resolve complex geological structures that were not possible with traditional 1-D surveys. 3-D surveys play an increasingly important role in very complex areas where 2-D models suffer from artifacts due to off-line structures. Continued developments in computation technology, as well as fast data inversion techniques and software, have made it possible to use optimization techniques to obtain model parameters to a higher accuracy. A brief discussion on the limitations of the electrical resistivity method has also been presented.Keywords: Resistivity, inversion, optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 60796864 Increasing the System Availability of Data Centers by Using Virtualization Technologies
Authors: Chris Ewe, Naoum Jamous, Holger Schrödl
Abstract:
Like most entrepreneurs, data center operators pursue goals such as profit-maximization, improvement of the company’s reputation or basically to exist on the market. Part of those aims is to guarantee a given quality of service. Quality characteristics are specified in a contract called the service level agreement. Central part of this agreement is non-functional properties of an IT service. The system availability is one of the most important properties as it will be shown in this paper. To comply with availability requirements, data center operators can use virtualization technologies. A clear model to assess the effect of virtualization functions on the parts of a data center in relation to the system availability is still missing. This paper aims to introduce a basic model that shows these connections, and consider if the identified effects are positive or negative. Thus, this work also points out possible disadvantages of the technology. In consequence, the paper shows opportunities as well as risks of data center virtualization in relation to system availability.
Keywords: Availability, cloud computing IT service, quality of service, service level agreement, virtualization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9976863 Data Oriented Modeling of Uniform Random Variable: Applied Approach
Authors: Ahmad Habibizad Navin, Mehdi Naghian Fesharaki, Mirkamal Mirnia, Mohamad Teshnelab, Ehsan Shahamatnia
Abstract:
In this paper we introduce new data oriented modeling of uniform random variable well-matched with computing systems. Due to this conformity with current computers structure, this modeling will be efficiently used in statistical inference.Keywords: Uniform random variable, Data oriented modeling, Statistical inference, Prodigraph, Statistically complete tree, Uniformdigital probability digraph, Uniform n-complete probability tree.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16346862 Proportionally Damped Finite Element State-Space Model of Composite Laminated Plate with Localized Interface Degeneration
Authors: Shi Qi Koo, Ahmad Beng Hong Kueh
Abstract:
In the present work, the finite element formulation for the investigation of the effects of a localized interfacial degeneration on the dynamic behavior of the [90°/0°] laminated composite plate employing the state-space technique is performed. The stiffness of the laminate is determined by assembling the stiffnesses of subelements. This includes an introduction of an interface layer adopting the virtually zero-thickness formulation to model the interfacial degeneration. Also, the kinematically consistent mass matrix and proportional damping have been formulated to complete the free vibration governing expression. To simulate the interfacial degeneration of the laminate, the degenerated areas are defined from the center propagating outwards in a localized manner. It is found that the natural frequency, damped frequency and damping ratio of the plate decreases as the degenerated area of the interface increases. On the contrary, the loss factor increases correspondingly.
Keywords: Dynamic finite element, localized interface degeneration, proportional damping, state-space modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20866861 Topic Modeling Using Latent Dirichlet Allocation and Latent Semantic Indexing on South African Telco Twitter Data
Authors: Phumelele P. Kubheka, Pius A. Owolawi, Gbolahan Aiyetoro
Abstract:
Twitter is one of the most popular social media platforms where users share their opinions on different subjects. Twitter can be considered a great source for mining text due to the high volumes of data generated through the platform daily. Many industries such as telecommunication companies can leverage the availability of Twitter data to better understand their markets and make an appropriate business decision. This study performs topic modeling on Twitter data using Latent Dirichlet Allocation (LDA). The obtained results are benchmarked with another topic modeling technique, Latent Semantic Indexing (LSI). The study aims to retrieve topics on a Twitter dataset containing user tweets on South African Telcos. Results from this study show that LSI is much faster than LDA. However, LDA yields better results with higher topic coherence by 8% for the best-performing model in this experiment. A higher topic coherence score indicates better performance of the model.
Keywords: Big data, latent Dirichlet allocation, latent semantic indexing, Telco, topic modeling, Twitter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4676860 The Self-Energy of an Ellectron Bound in a Coulomb Field
Authors: J. Zamastil, V. Patkos
Abstract:
Recent progress in calculation of the one-loop selfenergy of the electron bound in the Coulomb field is summarized. The relativistic multipole expansion is introduced. This expansion is based on a single assumption: except for the part of the time component of the electron four-momentum corresponding to the electron rest mass, the exchange of four-momentum between the virtual electron and photon can be treated perturbatively. For non Sstates and normalized difference n3En −E1 of the S-states this itself yields very accurate results after taking the method to the third order. For the ground state the perturbation treatment of the electron virtual states with very high three-momentum is to be avoided. For these states one can always rearrange the pertinent expression in such a way that free-particle approximation is allowed. Combination of the relativistic multipole expansion and free-particle approximation yields very accurate result after taking the method to the ninth order. These results are in very good agreement with the previous results obtained by the partial wave expansion and definitely exclude the possibility that the uncertainity in determination of the proton radius comes from the uncertainity in the calculation of the one-loop selfenergy.
Keywords: Hydrogen-like atoms, self-energy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16846859 Utilization of 3-N-trimethylamino-1-propanol by Rhodococcus sp. strain A4 isolated from Natural Soil
Authors: Isam A. Mohamed Ahmed, Jiro Arima, Tsuyoshi Ichiyanagi, Emi Sakuno, Nobuhiro Mori
Abstract:
The aim of this study was to screen for microorganism that able to utilize 3-N-trimethylamino-1-propanol (homocholine) as a sole source of carbon and nitrogen. The aerobic degradation of homocholine has been found by a gram-positive Rhodococcus sp. bacterium isolated from soil. The isolate was identified as Rhodococcus sp. strain A4 based on the phenotypic features, physiologic and biochemical characteristics, and phylogenetic analysis. The cells of the isolated strain grown on both basal-TMAP and nutrient agar medium displayed elementary branching mycelia fragmented into irregular rod and coccoid elements. Comparative 16S rDNA sequencing studies indicated that the strain A4 falls into the Rhodococcus erythropolis subclade and forms a monophyletic group with the type-strains of R. opacus, and R. wratislaviensis. Metabolites analysis by capillary electrophoresis, fast atom bombardment-mass spectrometry, and gas chromatography- mass spectrometry, showed trimethylamine (TMA) as the major metabolite beside β-alanine betaine and trimethylaminopropionaldehyde. Therefore, the possible degradation pathway of trimethylamino propanol in the isolated strain is through consequence oxidation of alcohol group (-OH) to aldehyde (-CHO) and acid (-COOH), and thereafter the cleavage of β-alanine betaine C-N bonds yielded trimethylamine and alkyl chain.Keywords: Homocholine, 3-N-trimethylamino-1-propanol, Quaternary ammonium compounds, 16S rDNA gene sequence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15366858 Prediction of Compressive Strength of SCC Containing Bottom Ash using Artificial Neural Networks
Authors: Yogesh Aggarwal, Paratibha Aggarwal
Abstract:
The paper presents a comparative performance of the models developed to predict 28 days compressive strengths using neural network techniques for data taken from literature (ANN-I) and data developed experimentally for SCC containing bottom ash as partial replacement of fine aggregates (ANN-II). The data used in the models are arranged in the format of six and eight input parameters that cover the contents of cement, sand, coarse aggregate, fly ash as partial replacement of cement, bottom ash as partial replacement of sand, water and water/powder ratio, superplasticizer dosage and an output parameter that is 28-days compressive strength and compressive strengths at 7 days, 28 days, 90 days and 365 days, respectively for ANN-I and ANN-II. The importance of different input parameters is also given for predicting the strengths at various ages using neural network. The model developed from literature data could be easily extended to the experimental data, with bottom ash as partial replacement of sand with some modifications.Keywords: Self compacting concrete, bottom ash, strength, prediction, neural network, importance factor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22306857 Optimization of Methods for Development of Fermented-Distillate of Passion Fruit Beverage
Authors: Luciana C. Azevedo, Reinaldo S. Dantas, Antonio G. B. De Sá, Adalberto M. Filho, Patrícia M. Azoubel
Abstract:
Fermented beverages have high expression in the market for beverages in general, is increasingly valued in situations where the characteristic aroma and flavor of the material that gave rise to them are kept after processing. This study aimed to develop a distilled beverage from passion fruit, and assess, by sensory tests and chromatographic profile, the influence of different treatments (FM1- spirit with pulp addiction and FM2 – spirit with bigger ratio of pulp in must) in the setting of volatiles in the fruit drink, and performing chemical characterization taking into account the main parameters of quality established by the legislation. The chromatograms and the first sensorial tests had indicated that sample FM1 possess better characteristics of aroma, as much of how much quantitative the qualitative point of view. However, it analyzes it sensorial end (preference test) disclosed the biggest preference of the cloth provers for sample FM2-2 (note 7.93), being the attributes of decisive color and flavor in this reply, confirmed for the observed values lowest of fixed and total acidity in the samples of treatment FM2.Keywords: Fermented-distilled drink, fruit spirits, passion fruit.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18186856 Comparative Study on Recent Integer DCTs
Authors: Sakol Udomsiri, Masahiro Iwahashi
Abstract:
This paper presents comparative study on recent integer DCTs and a new method to construct a low sensitive structure of integer DCT for colored input signals. The method refers to sensitivity of multiplier coefficients to finite word length as an indicator of how word length truncation effects on quality of output signal. The sensitivity is also theoretically evaluated as a function of auto-correlation and covariance matrix of input signal. The structure of integer DCT algorithm is optimized by combination of lower sensitive lifting structure types of IRT. It is evaluated by the sensitivity of multiplier coefficients to finite word length expression in a function of covariance matrix of input signal. Effectiveness of the optimum combination of IRT in integer DCT algorithm is confirmed by quality improvement comparing with existing case. As a result, the optimum combination of IRT in each integer DCT algorithm evidently improves output signal quality and it is still compatible with the existing one.Keywords: DCT, sensitivity, lossless, wordlength.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13846855 A Review: Comparative Analysis of Different Categorical Data Clustering Ensemble Methods
Authors: S. Sarumathi, N. Shanthi, M. Sharmila
Abstract:
Over the past epoch a rampant amount of work has been done in the data clustering research under the unsupervised learning technique in Data mining. Furthermore several algorithms and methods have been proposed focusing on clustering different data types, representation of cluster models, and accuracy rates of the clusters. However no single clustering algorithm proves to be the most efficient in providing best results. Accordingly in order to find the solution to this issue a new technique, called Cluster ensemble method was bloomed. This cluster ensemble is a good alternative approach for facing the cluster analysis problem. The main hope of the cluster ensemble is to merge different clustering solutions in such a way to achieve accuracy and to improve the quality of individual data clustering. Due to the substantial and unremitting development of new methods in the sphere of data mining and also the incessant interest in inventing new algorithms, makes obligatory to scrutinize a critical analysis of the existing techniques and the future novelty. This paper exposes the comparative study of different cluster ensemble methods along with their features, systematic working process and the average accuracy and error rates of each ensemble methods. Consequently this speculative and comprehensive analysis will be very useful for the community of clustering practitioners and also helps in deciding the most suitable one to rectify the problem in hand.
Keywords: Clustering, Cluster Ensemble methods, Co-association matrix, Consensus function, Median partition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26096854 Influence of Confined Acoustic Phonons on the Shubnikov – de Haas Magnetoresistance Oscillations in a Doped Semiconductor Superlattice
Authors: Pham Ngoc Thang, Le Thai Hung, Nguyen Quang Bau
Abstract:
The influence of confined acoustic phonons on the Shubnikov – de Haas magnetoresistance oscillations in a doped semiconductor superlattice (DSSL), subjected in a magnetic field, DC electric field, and a laser radiation, has been theoretically studied based on quantum kinetic equation method. The analytical expression for the magnetoresistance in a DSSL has been obtained as a function of external fields, DSSL parameters, and especially the quantum number m characterizing the effect of confined acoustic phonons. When m goes to zero, the results for bulk phonons in a DSSL could be achieved. Numerical calculations are also achieved for the GaAs:Si/GaAs:Be DSSL and compared with other studies. Results show that the Shubnikov – de Haas magnetoresistance oscillations amplitude decrease as the increasing of phonon confinement effect.
Keywords: Shubnikov–de Haas magnetoresistance oscillations, quantum kinetic equation, confined acoustic phonons, laser radiation, doped semiconductor superlattices.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14646853 Application of Data Envelopment Analysis to Assess Quality Management Efficiency
Authors: Chuen Tse Kuah, Kuan Yew Wong, Farzad Behrouzi
Abstract:
This paper is aimed to give an illustration on the application of Data Envelopment Analysis (DEA) as a tool to assess Quality Management (QM) efficiency. A variant of DEA, slack based measure (SBM) is used for this purpose. From this study, it is found that DEA is suitable to measure QM efficiency and give improvement suggestions to the inefficient QM.Keywords: Quality Management, Data Envelopment Analysis, Slack Based Measure, Efficiency Measurement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20946852 Exploring the Correlation between Population Distribution and Urban Heat Island under Urban Data: Taking Shenzhen Urban Heat Island as an Example
Authors: Wang Yang
Abstract:
Shenzhen is a modern city of China's reform and opening-up policy, the development of urban morphology has been established on the administration of the Chinese government. This city`s planning paradigm is primarily affected by the spatial structure and human behavior. The subjective urban agglomeration center is divided into several groups and centers. In comparisons of this effect, the city development law has better to be neglected. With the continuous development of the internet, extensive data technology has been introduced in China. Data mining and data analysis has become important tools in municipal research. Data mining has been utilized to improve data cleaning such as receiving business data, traffic data and population data. Prior to data mining, government data were collected by traditional means, then were analyzed using city-relationship research, delaying the timeliness of urban development, especially for the contemporary city. Data update speed is very fast and based on the Internet. The city's point of interest (POI) in the excavation serves as data source affecting the city design, while satellite remote sensing is used as a reference object, city analysis is conducted in both directions, the administrative paradigm of government is broken and urban research is restored. Therefore, the use of data mining in urban analysis is very important. The satellite remote sensing data of the Shenzhen city in July 2018 were measured by the satellite Modis sensor and can be utilized to perform land surface temperature inversion, and analyze city heat island distribution of Shenzhen. This article acquired and classified the data from Shenzhen by using Data crawler technology. Data of Shenzhen heat island and interest points were simulated and analyzed in the GIS platform to discover the main features of functional equivalent distribution influence. Shenzhen is located in the east-west area of China. The city’s main streets are also determined according to the direction of city development. Therefore, it is determined that the functional area of the city is also distributed in the east-west direction. The urban heat island can express the heat map according to the functional urban area. Regional POI has correspondence. The research result clearly explains that the distribution of the urban heat island and the distribution of urban POIs are one-to-one correspondence. Urban heat island is primarily influenced by the properties of the underlying surface, avoiding the impact of urban climate. Using urban POIs as analysis object, the distribution of municipal POIs and population aggregation are closely connected, so that the distribution of the population corresponded with the distribution of the urban heat island.
Keywords: POI, satellite remote sensing, the population distribution, urban heat island thermal map.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9366851 Protein Production by Bacillus Subtilis Atcc 21332 in the Presence of Cymbopogon Essential Oils
Authors: Hanina M. N., Hairul Shahril M., Mohd Fazrullah Innsan M. F., Ismatul Nurul Asyikin I., Abdul Jalil A. K, Salina M. R., Ahmad I.B.
Abstract:
Proteins levels produced by bacteria may be increased in stressful surroundings, such as in the presence of antibiotics. It appears that many antimicrobial agents or antibiotics, when used at low concentrations, have in common the ability to activate or repress gene transcription, which is distinct from their inhibitory effect. There have been comparatively few studies on the potential of antibiotics or natural compounds in nature as a specific chemical signal that can trigger a variety of biological functions. Therefore, this study was focusing on the effect of essential oils from Cymbopogon flexuosus and C. nardus in regulating proteins production by Bacillus subtilis ATCC 21332. The Minimum Inhibition Concentrations (MICs) of both essential oils on B. subtilis were determined by using microdilution assay, resulting 0.2% and 1.56% for each C. flexuosus and C. nardus subsequently. The bacteria were further exposed to each essential oils at concentration of 0.01XMIC for 2 days. The proteins were then isolated and analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Protein profile showed that a band with approximate size of 250 kD was appeared for the treated bacteria with essential oils. Thus, Bacillus subtilis ATCC 21332 in stressful condition with the presence of essential oils at low concentration could induce the protein production.Keywords: Bacillus subtilis ATCC 21332, Cymbopogon essential oils, protein
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2159