


Abstract—The COVID-19 pandemic has pushed healthcare

professionals to use big data analytics as a vital tool for tracking and
evaluating the effects of contagious viruses. To effectively analyse
huge datasets, efficient NoSQL databases are needed. The analysis of
post-COVID-19 health and well-being outcomes and the evaluation of
the effectiveness of government efforts during the pandemic is made
possible by this research’s integration of several datasets, which cuts
down on query processing time and creates predictive visual artifacts.
We recommend applying sharding and indexing technologies to
improve query effectiveness and scalability as the dataset expands.
Effective data retrieval and analysis are made possible by spreading
the datasets into a sharded database and doing indexing on individual
shards. Analysis of connections between governmental activities,
poverty levels, and post-pandemic wellbeing is the key goal. We want
to evaluate the effectiveness of governmental initiatives to improve
health and lower poverty levels. We will do this by utilising advanced
data analysis and visualisations. The findings provide relevant data that
support the advancement of UN sustainable objectives, future
pandemic preparation, and evidence-based decision-making. This
study shows how Big Data and NoSQL databases may be used to
address problems with global health.

Keywords—COVID-19, big data, data analysis, indexing, NoSQL,

sharding, scalability, poverty.

I. INTRODUCTION

HE focus of this study is to accurately understand the
effects of the COVID-19 pandemic, which continues to

pose enormous problems globally, advanced data-driven
techniques are required. In Phase 1 of our study, we tackled the
challenges of COVID-19 datasets [1], [2] and looked at how
government policies affected people’s health, happiness, and
levels of poverty. Our goal is to gather important insights about
the pandemic’s impact and government initiatives using
NoSQL databases, sharding, indexing, and predictive
modelling approaches. These insights will drive future
preparedness and recovery measures to improve global health
and well-being.

Our study suggests using sharding and indexing strategies on
a NoSQL database, notably MongoDB, to satisfy the demand
for increased query performance and scalability. We intend to
overcome the limits of conventional relational databases in
processing large and highly variable COVID-19 datasets by
integrating Big Data Analytics with NoSQL technology,

Karan Vishavjit, Aakash Lakra, and Shafaq Khan are with Department of

Computer Science, University of Windsor, Canada (e-mail:
vishavj@uwindsor.ca, lakraa@uwindsor.ca, shafaq.khan@uwindsor.ca)

implementing sharding [3], and indexing [4].
In order to enable parallel processing and improve query

speed, we suggest using sharding to divide data among many
clusters. To further improve the performance of query
execution, we will simultaneously apply indexing to each shard.
These methods are used in our study in an effort to accelerate
the query processing, increase scalability, and provide priceless
visual artifacts that reveal post-pandemic health, well-being,
and poverty levels. Additionally, we recognise and address the
shortcomings of previous research, emphasizing the adoption of
sharding and thorough analyses of various datasets to fill in the
gaps.

II. RELATED WORKS

A. An Empirical Performance Comparison between MySQL
and MongoDB [5]

In the COMEX Database, the effectiveness of relational
(MySQL) and non-relational (MongoDB) databases was
compared. In data manipulation, query processing, and
aggregations, MongoDB outperformed MySQL. MongoDB
exceeded MySQL in terms of performance and query
processing speed. MongoDB outperforms MySQL in terms of
massive dataset handling and scalability. The inclusion of
sharding and indexing increased MongoDB’s performance
even more.

B. Assessment of SQL and NoSQL Systems to Store and Mine
COVID-19 Data [6]

For storing COVID-19 data, the study compared SQL
(relational) and NoSQL (MongoDB and Cassandra) databases.
In terms of query retrieval time, CPU use, and size,
nonrelational databases (e.g., MongoDB) beat relational
databases. MongoDB performed better when dealing with big
amounts of data and unstructured datasets. Relational databases
(SQL) are best suited for structured data and join queries,
whereas NoSQL (MongoDB) is best suited for unstructured
data. Relational databases are better suited for complicated
queries requiring numerous joins, whereas NoSQL databases
may be better suited for basic, denormalized queries.

C. Query Optimization Using Indexing and Sharding in
MongoDB [7]

MongoDB’s speed was greatly enhanced by indexing and

Post Pandemic Mobility Analysis through Indexing
and Sharding in MongoDB: Performance

Optimization and Insights
Karan Vishavjit, Aakash Lakra, Shafaq Khan

T

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:18, No:8, 2024

449International Scholarly and Scientific Research & Innovation 18(8) 2024 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

8,
 N

o:
8,

 2
02

4
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

13
74

2.
pd

f

sharding, especially for bigger datasets. Evaluation of complex
queries was lacking, which made it difficult to comprehend
performance problems in the actual world. MongoDB’s
indexing employs data structures to speed up data retrieval,
whereas MySQL uses B-trees. In contrast to MySQL, which has
to modify its structure in order to accommodate changes,
MongoDB’s dynamic architecture makes it simple to modify
data without impacting already-existing entries. MySQL needs
relational tables for data organization, but MongoDB’s
document-based approach supports layered structures, making
it suited for hierarchical data representation.

III. METHODOLOGY

A. Technology Used

1) Database technology: MongoDB, a NoSQL database, will
continue to be used because of its effectiveness and
scalability in managing huge, unstructured datasets like
COVID-19 data. The implementation will involve setting
up a MongoDB cluster with several shards to hold the
various COVID-19 data subsets.

2) Sharding and Indexing: To spread data over several
MongoDB instances (shards) [8] and to assure parallel
processing for enhanced query performance and
scalability, we will use sharding. To improve query
execution and retrieval time, indexing will be applied to
each individual shard.

3) Config Server and Mongos Routers: The MongoDB cluster
will come with a Config Server, which serves as a central
repository for cluster configuration, and Mongos Routers,
which serve as query routers to route application requests
to the proper shards.

B. Datasets Used and Data Collection Methods

1) The COVID-19 data: which contain details on infection
rates, governmental regulations, patterns of movement,
wellbeing indices, and poverty levels, will serve as the
main dataset for this study. The information will come
from trustworthy and reputable sources, including
government databases, health organizations, and research
libraries.

2) Data Collection: Reliable sources of data will be accessed.
At several phases of the data gathering process, data
validation and cleaning will be carried out to guarantee data
quality and accuracy.

C. Data Analysis Methods

1) Query Processing: The proposed model attempts to handle
complicated queries to study relationships between post-
pandemic mobility, well-being, health, and poverty levels.
To improve query speed, efficient query processing
techniques like sharding and indexing will be used.

2) Data Visualization: Techniques for data visualization will
be used to derive insightful conclusions and convey data
well [9]. To help with the understanding and analysis of
COVID-19 data, visual artifacts such as interactive
dashboards, graphs, and charts will be made.

3) Data Quality and Validation: To guarantee accurate and

trustworthy outcomes, some subsets of data will go through
stringent data quality checks and validation. Outliers,
discrepancies, and missing or incorrect data points will all
be found and dealt with throughout this procedure.

D. Evaluation and Conclusion

The proposed model and approach will be judged on how
effectively they can manage vast and complicated datasets,
improve query processing, and offer insightful information on
the relationships between COVID-19, well-being, health, and
poverty levels. The data will be evaluated, and judgments on
how well sharding, indexing, and data analysis techniques work
to enhance database efficiency and scalability will be made.

By proving the effective use of sharding and indexing in
MongoDB for COVID-19 data processing, we want to advance
the field of advanced database topics through our study. The
results will help with evidence-based decision-making and
upcoming pandemic preparedness activities by shedding light
on the effects of governmental actions, post-pandemic health
outcomes, and poverty levels.

IV. RESULTS

Post implementation of indexing and sharding on COVID-19
dataset in MongoDB, our research yielded significant
improvements in performance and query efficiency. These
techniques proved high effective in optimizing query execution.

Query Performance Optimization: Indexing [10] has greatly
improved query performance by reducing time required to
retrieve specific information. Figs. 4 and 5 show that there is
significant difference in the time in milliseconds it took to
execute same query.

Efficient Data Distribution: From Fig. 2 we can see sharding
has effectively divided the data into smaller, manageable
chunks across shards. Not only does this ensures even data
distribution, but it also enhances data retrieval efficiency by
directing queries to specific shards (refer to Fig. 8), thereby
reducing the necessity to scan the entire dataset for each query.

Improved Overall Performance: By enabling sharding on
database and hash-based indexing there is significant
improvement in the overall performance as seen in Fig. 8 for
data retrieval with large and complex datasets like COVID-19.
We can clearly analyse from the results that index has examined
972 records out of 1,27,872 records and fetched 684 records by
directly going into shard A in 4 m/s, compared to 262 m/s it
took to retrieve same results without implementing this
approach.

The retrieved data can be visualised to extract meaningful
insights. In Fig. 9, we can see the same data represented as time
series, allowing us to observe the percentage change across
various categories. The values are dynamic and based on the
query results. By passing the retrieved data directly into these
graphs, we can better understand the changes.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:18, No:8, 2024

450International Scholarly and Scientific Research & Innovation 18(8) 2024 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

8,
 N

o:
8,

 2
02

4
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

13
74

2.
pd

f

Fig. 1 Individual Shard Distribution

Fig. 2 Collective Shard Data Distribution

Fig. 3 Query Filter on Country code Residential and Park percentage Change without Sharding and Indexing

Fig. 4 Residential and Parks percentage change results

Fig. 5 Residential and Parks percentage change results with Sharding and Indexing

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:18, No:8, 2024

451International Scholarly and Scientific Research & Innovation 18(8) 2024 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

8,
 N

o:
8,

 2
02

4
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

13
74

2.
pd

f

Fig. 6 Query Filter on Country code and Date Range

Fig. 7 Records withing Date Range without Sharding and Indexing

Fig. 8 Records withing Date Range with Sharding and Indexing

Fig. 9 Mobility Trends by Category

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:18, No:8, 2024

452International Scholarly and Scientific Research & Innovation 18(8) 2024 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

8,
 N

o:
8,

 2
02

4
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

13
74

2.
pd

f

Fig. 10 Top ’n’ Percentage Change in Retail and Recreation

Fig. 11 Top ’n’ Percentage Change in Retail and Recreation Time Series

Fig. 12 Time series Change “Canada”

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:18, No:8, 2024

453International Scholarly and Scientific Research & Innovation 18(8) 2024 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

8,
 N

o:
8,

 2
02

4
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

13
74

2.
pd

f

Fig. 13 Time Series Change “India”

V. LIMITATIONS

Queries executed on non-indexed key values tend to result in
longer durations as they necessitate full data scans,
consequently consuming more memory and thereby leading to
suboptimal performance. Looking ahead, as data continue to
grow through insertions and updates, index management
becomes increasingly complex, particularly when dealing with
millions or even billions of records. Inadequate updates may
give rise to latency and performance issues. Furthermore, query
execution times tend to rise when data retrieval involves
multiple shards, leading to cross-shard operations. Heavy write
operations can introduce index contention, with multiple
threads and processes vying to update the same index
concurrently. Looking forward, frequent data deletions and
updates may trigger index fragmentation, which can
subsequently undermine system performance. Lastly, in the
future, the occurrence of a shard becoming a hotspot,
experiencing higher loads, while others remain underutilized,
may lead to imbalanced resource utilization within the system.
These considerations underscore the importance of proactive
index management and efficient data handling strategies in
ensuring robust MongoDB performance.

VI. CONCLUSION AND FUTURE WORK

A. Conclusion

In our comprehensive investigation into MongoDB’s
performance, a NoSQL document-based datastore, we placed a
strong emphasis on comparing response times. We examined
the impact of indexing on query execution times by
implementing a series of diverse queries. To gauge performance
accurately, we employed evaluation metrics such as
ExecutionSuccess, executionTime, total keysExamined, and
totalDocsExamined. To facilitate our testing process, we set up
a replica set and a streaming replication cluster for both the
local MongoDB and PostgreSQL servers. Notably, our findings
revealed that with the implementation of indexing and sharding,
we observed substantial speed improvements, particularly when

dealing with larger datasets. This underscores the significant
role that proper database optimization techniques can play in
enhancing MongoDB’s overall efficiency and responsiveness.

B. Future Work

To further enhance speed and optimize data management, we
consider implementing a strategy to update indexes every time
new data are inserted or existing data are updated. Additionally,
for improved data quality assessment and accuracy, we explore
the possibility of hosting MongoDB on the cloud while
integrating it with Data Quality tools like Talend and MongoDB
Compass. This integration can provide valuable insights into
data accuracy and completeness, ultimately leading to better
output results. Furthermore, we leverage MongoDB Atlas to
implement sharding for databases hosted on servers or cloud
infrastructure, ensuring scalability to efficiently manage
expanding data volumes. It is also advisable to explore
alternative deployment methods that utilize configuration files
instead of command-line sets, offering greater deployment
flexibility. Finally, to enhance overall database performance
and reliability, we consider automating instance launch
procedures and improving replication techniques. These
forward-looking objectives can pave the way for more
dependable and efficient data management and processing
solutions, particularly in the realm of large-scale applications.

REFERENCES
[1] Edouard Mathieu, Hannah Ritchie, Lucas Rode´s-Guirao, Cameron

Appel, Charlie Giattino, Joe Hasell, Bobbie Macdonald, Saloni Dattani,
Diana Beltekian, Esteban Ortiz-Ospina and Max Roser (2020)
“Coronavirus Pandemic (COVID-19)”. Published online at
OurWorldInData.org. Retrieved from:
https://ourworldindata.org/coronavirus’ (Online Resource).

[2] Google. “COVID-19 Community Mobility Report.” COVID-19
Community Mobility Report, 2020, www.google.com/covid19/mobility/.

[3] “Database Sharding: Concepts & Examples.” MongoDB, 2022,
www.mongodb.com/features/database-sharding-explained.

[4] R. Chopade and V. Pachghare, “MongoDB Indexing for Performance
Improvement,” Advances in Intelligent Systems and Computing, pp. 529–
539, 2020, doi: https://doi.org/10.1007/978-981-15-0936-0 56.

[5] A. Gomes et al., “An Empirical Performance Comparison between
MySQL and MongoDB on Analytical Queries in the COMEX Database,”

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:18, No:8, 2024

454International Scholarly and Scientific Research & Innovation 18(8) 2024 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

8,
 N

o:
8,

 2
02

4
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

13
74

2.
pd

f

2021 16th Iberian Conference on Information Systems and Technologies
(CISTI), Jun. 2021, doi:
https://doi.org/10.23919/cisti52073.2021.9476623.

[6] J. Antas, R. Rocha Silva, and J. Bernardino, “Assessment of SQL and
NoSQL Systems to Store and Mine COVID-19 Data,” Computers, vol.
11, no. 2, p. 29, Feb. 2022, doi:
https://doi.org/10.3390/computers11020029.

[7] “Login - University of Windsor,”
brightspace.uwindsor.ca.
https://brightspace.uwindsor.ca/content/enforced/139690-COMP8157-4-
R-2023S/csfiles/home dir/courses/COMP81572-R-2022S/COMP8157-2-
R-2022S/COMP8157-1-R-2022S/ADT Project Final Report%20(1).pdf?
&d2lSessionVal=VPAtNyL0RTd65CzrniVjWrKCK&ou=139690
(accessed Jun. 25, 2023).

[8] “Deploy Sharded Cluster Using Ranged Sharding — MongoDB Manual.”
Https://Github.com/Mongodb/Docs/Blob/V3.2/Source/Tutorial/ Deploy-
Sharded-Cluster-Ranged-Sharding.txt,
www.mongodb.com/docs/v3.2/tutorial/deploy-sharded-cluster-ranged-
sharding/. Accessed 31 July 2023.

[9] Fan Zuo. Jingxing Wang, Jingqin Gao, Kaan Ozbay, Xuegang Jeff Ban,
Yubin Shen, Hong Yang, Shri Iyer, “An Interactive Data Visualization
and Analytics Tool to Evaluate Mobility and Sociability Trends During
COVID-19.” https://arxiv.org/pdf/2006.14882.pdf

[10] Indexes — MongoDB Manual,” www.mongodb.com.
https://www.mongodb.com/docs/manual/indexes/

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:18, No:8, 2024

455International Scholarly and Scientific Research & Innovation 18(8) 2024 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

8,
 N

o:
8,

 2
02

4
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

13
74

2.
pd

f

