Visual Analytics in K 12 Education - Emerging Dimensions of Complexity
Authors: Linnea Stenliden
Abstract:
The aim of this paper is to understand emerging learning conditions, when a visual analytics is implemented and used in K 12 (education). To date, little attention has been paid to the role visual analytics (digital media and technology that highlight visual data communication in order to support analytical tasks) can play in education, and to the extent to which these tools can process actionable data for young students. This study was conducted in three public K 12 schools, in four social science classes with students aged 10 to 13 years, over a period of two to four weeks at each school. Empirical data were generated using video observations and analyzed with help of metaphors within Actor-network theory (ANT). The learning conditions are found to be distinguished by broad complexity, characterized by four dimensions. These emerge from the actors’ deeply intertwined relations in the activities. The paper argues in relation to the found dimensions that novel approaches to teaching and learning could benefit students’ knowledge building as they work with visual analytics, analyzing visualized data.
Keywords: Analytical reasoning, complexity, data use, problem space, visual analytics, visual storytelling, translation.
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1100440
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1697References:
[1] Hilbert, M.; López, P. The world’s technological capacity to store, communicate, and compute information. Science 2011, 1 April, 60-65.
[2] Chakravarty, R. Information literacy in the knowledge society empowering learners for a better tomorrow. In Trends and strategic issues for libraries in global information society, Chandigarh, India, 18- 19 March 2008. Eds. Mahajan, P., Vohra, R., & Chakravarty, R. Patiala: Twenty First Century Publications: 2008, pp 303.
[3] Manyika, J.; Chui, M.; Brown, B.; Bughin, J.; Dobbs, R.; Roxburgh, C.; Hung Byers, A. Big data: the next frontier for innovation, competition, and productivity. 2011, May.
[4] Ludvigsen, S. R. What counts as knowledge: learning to use categories in computer environments. Learning, Media and Technology2012, 37, 40-52.
[5] Tomaszewski, B. Producing geo-historical context from implicit sources: a geovisual analytics approach. Cartographic Journal 2008, 45, 165.
[6] Keim, D.; Andrienko, G.; Fekete, J.; Görg, C.; Kohlhammer, J.; Melançon, G. Visual analytics: definition, process, and challenges; information visualization - human-centered issues and perspectives. (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); 2008; Vol. 4950 LNCS, pp 154-175.
[7] Tomaszewski, B. M.; Robinson, A. C.; Weaver, C.; Stryker, M.; Maceachren, A. M. In Geovisual analytics and crisis management; proceedings of the 4th international ISCRAM Conference, May 13-16, 2007, pp 173-179.
[8] Ongstad, S. In Fag i endring. om didaktisering av kunnskap; Ongstad, S., Ed.; Fag og didaktikk i laererutdanning. Kunnskap i grenseland; Universitetsforlaget, 2006; pp 19-57.
[9] Andrienko, G,; Andrienko, N.; Demsar, U.; Dransch, D.; Dykes, J.; Fabrikant, S. R.; Jern, M.; Kraak, M. H.; Schumann, H.; Tominski, C. Space, time and visual analytics. International Journal of Geographical Information Science, Special Issue: Geospatial Visual Analytics: Focus on Time Special Issue of the ICA Commission on GeoVisualization.2010, Volume 24.
[10] Fenwick, T. J.; Edwards, R. Actor-network theory in education. Routledge: London; New York, 2010.
[11] Halverson, R.; Shapiro, R. B. Technologies for education and technologies for learners: how information technologies are (and should be) changing schools. (WCER Working Paper No. 2012-6). Retrieved from University of Wisconsin–Madison, Wisconsin Center for Education Research website 2012.
[12] Gagné, R. M. The Conditions of learning and theory of instruction.CBS College Publishing. New York, 1985; Vol. New York: CBS College Publishing.
[13] Latour, B. Artefaktens återkomst, ett möte mellan organisationsteori och tingens sociologi. Nerenius & Santérus: Stockholm, 1998.
[14] Reynolds, R.; Vinterek, M. Globalization and classroom practice: insights on learning about the world in Swedish and Australian schools. Nordidactica, 2013, pp. 104-130.
[15] Kjällander, S. Designs for learning in an extended digital environment case studies of social interaction in the social science classroom. Stockholm: Department of Education, Stockholm University, 2011.
[16] Nicholson, J.; Ridgway, J.; Mccusker, S. Enhancing Statistical Literacy – Multivariate Thinking in Precollege. Statistical institute: Proc. 58th world statistical congress. Dublin. (Session STS008), 2011.
[17] Stenliden, L.; Jern, M. Visual Storytelling – Knowledge and Understanding. Education. Journal of Systemics, Cybernetics and Informatics 2012, 10, 7-13.
[18] Spanget Christensen, T. Interdisciplinarity and self-reflection in civic education. Nordidactica 2013, 201-226.
[19] Gärdén, C. Verktyg för lärande: Informationssökning och informationsanvändning i kommunal vuxenutbildning, Borås: Valfrid. Diss. Göteborgs universitet, 2010.
[20] Francke, H.; Gärdén, C. In Forskning om informationskompetens i skolsammanhang; Limberg, L., Lundh, A. H., Eds.; Skolbibliotekets roller i förändrade landskap; BTJ Förlag.: Lind, 2013; .
[21] Alexandersson, M.; Limberg, L. Constructing meaning through information artefacts. The New Review of Information Behaviour Research 2003, 4, pp.17-30.
[22] Kress, G. R. Multimodality a social semiotic approach to contemporary communication; Routledge: London, 2010.
[23] Auletta, K., Ed. Googled. The end of the world as we know it. Virgin Books: London, 2009.
[24] Alexandersson, M.; Limberg, L.; Lantz-Andersson, A.; Kylemark, M. Textflytt och sökslump - informationssökning via skolbibliotek. Stockholm: Myndigheten för skolutveckling: 2007;
[25] Limberg, L.; Alexandersson, M.; Lantz-Andersson, A., Eds.to be lost and to be a loser through the web. Handbook of research on digital information technologies: innovations, methods, and ethical issues. 2008, pp. 249-263.
[26] Lundh, A.; Limberg, L. Information practices in elementary school. libri, 58(2), pp. 63-135. 2008.
[27] Limberg, L. Experiencing information seeking and learning research on patterns of variation; Wilson, T., Maceviciute, E., Eds. Introducing information management an information research reader; 2005; pp. 68- 80.
[28] Alexandersson, M.; Limberg, L. Conditions for information use and learning in swedish schools: a synthesis of research. HumanIT, 2012, 11, pp.131-154.
[29] Sandahl, J. Att ta sig an världen, lärare diskuterar innehåll och mål i samhällskunskapsämnet. Karlstad: Karlstad University Press, 2011.
[30] Latour, B. Reassembling the social an introduction to actor-networktheory, Oxford University Press: Oxford, 2005.
[31] Pinch, T. J.; Bijker, W. The social construction of facts and artifacts or how the sociology of science and the sociology of technology might benefit each other; Wiebe, E., Bijker, Thomas, P., Hughes, Trevor, J. and Pinch, T. J., Eds.; In The social construction of technological systems, new directions in the sociology and history of technology, MIT Press: Cambridge, Mass., 1987; pp. 17-50.
[32] Lantz-Andersson, A. Framing in educational practices, learning activity, digital technology and the logic of situated action. Göteborg: Acta Universitatis Gothoburgensis, 2009.
[33] Latour, B. We have never been modern. Harvard Univ. Press: Cambridge, Mass., 1993.
[34] Gill, T. G.; Hicks, R. C. Task complexity and informing science: a synthesis. Informing Science Journal, 2006, 9.
[35] Patton, M. Q. Qualitative research & evaluation methods.SAGE: London, 2004.
[36] Ho, Q.; Lundblad, P.; Åström, T.; Jern, M. A Web-enabled visualization toolkit for geovisual analytics visualisation and data analysis; 2011; Information Visualization 11(1), pp. 22-42.
[37] Lundblad, P. Applied geovisual analytics and storytelling. 2013, 59. linköping, the department of science and technology, Linköping University.
[38] Lundblad, P.; Stenliden, L. VISE - Visual storytelling in school, courseresources. http://ncomva.se/vise/(Accessed 09/30, 2013).
[39] Heath, C.; Hindmarsh, J.; Luff, P. Video in qualitative research analysing social interaction in everyday life.SAGE: Los Angeles, 2010.
[40] Jordan, B.; Henderson, A. Interaction Analyses: Fondations and Practics. 1995, 4, pp. 39-103.
[41] TechSmith Corporation.Camtasia Studio. 12 October, 2010. Retrieved 19 June 2011.
[42] Callon, M.; Law, J.; Rip, A. Mapping the dynamics of science and technology, sociology of science in the real world. London: Macmillan 1986.
[43] Stafford, B.; Terpak, F. Revealing technologies - magical domains; Devices of wonder: from the world in a box to images on a screen; Getty Research Institute, Los Angeles, 2001; pp. 1-109.
[44] Wood, R. E. Task complexity: definition of the construct. Organ. Behav. Hum. Decis. Process. 1986, 37, pp.60-82.
[45] Campbell, D. J. Task complexity: a review and analysis. Academy of Management Review 1988, 13, pp. 40-52.
[46] Sandahl, J. Being Engaged and knowledgeable: social science thinking concepts and students’ civic engagement in teaching on globalisation. Nordidactica.2013, pp. 158-179.
[47] Hmelo-Silver, C. E. Creating a learning space in problem-based learning. Interdisciplinary Journal of Problem-based Learning, 2013, 7.