Influence of Confined Acoustic Phonons on the Shubnikov – de Haas Magnetoresistance Oscillations in a Doped Semiconductor Superlattice
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33156
Influence of Confined Acoustic Phonons on the Shubnikov – de Haas Magnetoresistance Oscillations in a Doped Semiconductor Superlattice

Authors: Pham Ngoc Thang, Le Thai Hung, Nguyen Quang Bau

Abstract:

The influence of confined acoustic phonons on the Shubnikov – de Haas magnetoresistance oscillations in a doped semiconductor superlattice (DSSL), subjected in a magnetic field, DC electric field, and a laser radiation, has been theoretically studied based on quantum kinetic equation method. The analytical expression for the magnetoresistance in a DSSL has been obtained as a function of external fields, DSSL parameters, and especially the quantum number m characterizing the effect of confined acoustic phonons. When m goes to zero, the results for bulk phonons in a DSSL could be achieved. Numerical calculations are also achieved for the GaAs:Si/GaAs:Be DSSL and compared with other studies. Results show that the Shubnikov – de Haas magnetoresistance oscillations amplitude decrease as the increasing of phonon confinement effect.

Keywords: Shubnikov–de Haas magnetoresistance oscillations, quantum kinetic equation, confined acoustic phonons, laser radiation, doped semiconductor superlattices.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1340346

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1466

References:


[1] Yasuyuki Shimura, Masaki Tsujimoto, Akito Sakai, Bin Zeng, Luis Balicas, Satoru Nakatsuji, “Shubnikov-de Haas Oscillation in the cubic Γ3-based heavy fermion superconductor PrV2Al20”, Journal of Physics: Conference Series 592, 2015, pp. 012026-1-012026-4.
[2] Fei-Xiang Xiang, Menno Veldhorst, Shi-Xue Dou and Xiao-Lin Wang, “Multiple Fermi pockets revealed by Shubnikov-de Haas oscillations in WTe2”, Europhysics Letters: a letters journal exploring the frontiers of physics, 112 (3), 2015, pp. 37009-1-37009-5.
[3] F. B. Mancoff, L. J. Zielinski, and C. M. Marcus, “Shubnikov–de Haas oscillations in a two-dimensional electron gas in a spatially random magnetic field”, Physical review b volume 53, number 12, 1996, pp. 7599-7602.
[4] Naoki Matsumoto, Masaaki Mineharu, Masahiro Matsunaga et al., “Shubnikov–de Haas measurements on a high mobility monolayer graphene flake sandwiched between boron nitride sheets”, Journal of Physics: Condensed Matter, Volume 29, Number 22, 2017.
[5] R. F. Pires, P. Pureur, M. Behar, J. L. Pimentel Jr., J. Schaf, “Magnetism, magnetoresistance, and Shubnikov-de Haas oscillations in Na-implanted highly oriented pyrolitic graphite”, Journal of Applied Physics 111, 2012, pp. 093922-093927.
[6] Orest Pavlosiuk, Dariusz Kaczorowski, Piotr Wiśniewski, “Shubnikovde Haas oscillations, weak antilocalization effect and large linear magnetoresistance in the putative topological superconductor LuPdBi”, Scientific Reports 5, Article number: 9158, 2015, pp. 9518-1-9518-9.
[7] E. M. Epshtein, “Odd magnetoresistance of nonlinear conductors in timedependent electric fields”, Sov. Lett. J. Theor. Phys, Vol. 2, 1976, pp. 234-237.
[8] Epshtein, E. M., “Odd magnetophotoresistance effect in semiconductors”, Sov, Phys. Semicond. (Fiz. Tekh. Poluprovodn.), Vol. 10, 1976, pp.1414 – 1415.
[9] N. Q. Bau, B. D. Hoi, “Investigation of the Hall Effect in Rectangular Quantum Wells with a Perpendicular Magnetic Field in the Presence of a High - frequency Electromagnetic Wave”, International Journal of Modern Physics B, Vol. 28, 145001, 2014, pp.1-14.
[10] N. T. Huong, N. Q. Bau, “The Hall Coefficient and Magnetoresistance in rectangular Quantum wires with infinitely high potential under the influence of a laser radiation”, International Journal of Mathematical, Computational, Physical, Electrical and Computer Engineering Vol:10, No:3, 2016, pp.94-99.
[11] N. Q. Bau, B. D. Hoi, “Influence of a strong electromagnetic wave (laser radiation) on the hall effect in quantum wells with a parabolic potential”, Journal of the Korean Physical Society, 60(1), 2012, pp.59-64.
[12] N. Q. Bau, L. T. Hung and N. D. Nam, “The Nonlinear Absorption Coefficient of a Strong Electromagnetic Wave by Confined Electrons in Quantum Wells under the Influences of Confined Phonons”, J. of Electromagn. Waves and Appl. 24, 2010, pp 1751-1761.
[13] Phong, T. C, L. V. Tung and N. Q. Bau, “Parametric Resonance of Acoustic and Optical Phonons in a Doped Semiconductor Superlattice”, J. Korean Phys. Soc. 53, No. 4, 2008, pp. 1971-1981.
[14] D. Abouelaoualim, “Electron–confined LO-phonon scattering in GaAs-Al0.45Ga0.55As superlattice”, Pramana Journal of physics, Vol 66, 2016, pp.455-465.