
 

 

 
Abstract—In the present work, the finite element formulation for 

the investigation of the effects of a localized interfacial degeneration 
on the dynamic behavior of the [90˚/0˚] laminated composite plate 
employing the state-space technique is performed. The stiffness of 
the laminate is determined by assembling the stiffnesses of sub-
elements. This includes an introduction of an interface layer adopting 
the virtually zero-thickness formulation to model the interfacial 
degeneration. Also, the kinematically consistent mass matrix and 
proportional damping have been formulated to complete the free 
vibration governing expression. To simulate the interfacial 
degeneration of the laminate, the degenerated areas are defined from 
the center propagating outwards in a localized manner. It is found 
that the natural frequency, damped frequency and damping ratio of 
the plate decreases as the degenerated area of the interface increases. 
On the contrary, the loss factor increases correspondingly.  

 
Keywords—Dynamic finite element, localized interface 

degeneration, proportional damping, state-space modeling.  

I. INTRODUCTION 

N recent years, composite materials has become one of the 
mainly employed materials in advanced engineering, 

primarily as components in civil engineering, aerospace, 
automotive and other structural applications. Usually, they are 
fabricated as laminated structures where two or more laminae 
are bonded by a layer of adhesive material.  

Although laminated composite has almost unlimited 
potential in satisfying the strength requirement, they may 
exhibit several peculiar modes of failure such as matrix 
crazing, delamination, fiber failure and interfacial bond failure 
due to debonding. In reality, it is impossible to have a perfect 
interfacial bond especially during manufacturing process or 
the actual service life of composite laminates. One of the most 
common failures, the delamination, is an interlayer separation 
damage mode, which possibly occurs in the interface of a 
laminated composite. It may result in a reduction of the 
stiffness of material. Therefore, a model of laminated 
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composite with capability of describing the interfacial 
imperfection should be adopted to study such condition. 

The dynamic response such as natural frequency, modal 
damping and loss factor depend in general on the material 
density, elastic constants, damping properties, geometry and 
layers orientations. Therefore, damping has become one of the 
important parameters related to the study of dynamic behavior 
of laminated composite structures. In general, damping can be 
divided into two main types: viscous damping and structural 
damping. Damping usually occurs as a mixture of two 
mechanisms in a composite laminate. One of the mechanisms 
is damping between the fiber and adhesive layer within the 
laminated plies and the other mechanism is damping between 
the plies or between the laminae. The damping properties of 
laminated plate can be affected during the manufacturing 
process of gluing all layers. In relation, the manufacturing 
faults may cause the presence of debonding areas in the glued 
region. The presence of bonding-free areas could reduce the 
natural frequency and hence disturb the damping properties of 
material. Due to high labor and cost demands of experimental 
studies, the predictions of changes in structural dynamic 
properties can be investigated by using the finite element 
method. With the modeling of degeneration of localized 
interfacial in composite laminated plate with an inclusion of 
damping, the accuracy to predict the failure will be improved 
and more realistic. An accurate modeling expression for 
damping is essential in describing better the dynamic response 
of laminated composite structures.  

Thus far, several interface elements for modeling the 
behavior of the interfacial layers of laminated plates have been 
proposed. Sun and Pan [1] proposed a method to characterize 
the mechanical behavior of composite laminate interfaces, 
which is based on the generalized composite laminate theory. 
Bui, Marechal and Nguyen-Dang [2] presented a numerical 
analysis for laminated composite plate with imperfect 
interlaminar interfaces. In relation to damping modeling, 
Rikards et al. [3] applied two methods of damping analysis, 
complex eigenvalues and energy methods, for evaluating the 
dynamic performance of a sandwich structure. Hu and 
Dokainish [4] presented two damping models, the viscoelastic 
damping (VED) and the specific damping capacity (SDC) 
models, to assess the damping behavior of composites. By 
considering the damping and delamination, Oh et al. [5] 
performed a dynamic analysis of laminated composites with 
multiple delaminations according to higher-order cubic zigzag 
theory.  
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Note that aforementioned modeling efforts have been 
centralized on single site interfacial imperfection rather than 
various locations. A discreet imperfection area has been 
possible since the introduction of numerical method such as 
the well-established finite element approach. In utilizing this 
technique, Abo Sabah and Kueh [6] studied the effects of 
localized interface delamination on the behavior of laminated 
composite plates subjected to low velocity impact loading for 
different fiber orientations by means of virtually zero-
thickness interface definition. They found that when the local 
delamination area increases, displacement increases. They also 
found that as top and bottom fiber orientations deviation 
increases, both central deflection and energy absorption 
increase.  

II. NUMERICAL PROCEDURE 

A. Model Description 

The main structure studied here is a rectangular cross-ply 
laminate plate with two composite laminae. The top lamina is 
of 90 degrees fiber direction and the bottom lamina is aligned 
at 0 degree. They are of constant thickness and an interfacial 
layer is considered in between. Each lamina is formed by 
unidirectional E-glass fibers and Epoxy (3501-6) matrix 
material with a volume fraction of 0.4. The laminated 
composite plate is considered to be thin and flat such that the 
shear deformation is neglected.  

The lamina is modeled and discretized by using a 4-node 
rectangular plate finite element. Also, the laminated composite 
plate is considered as a transversely isotropic solid material. 
There are five degrees of freedom at each node, which are 
displacement in x-direction (u), displacement in y-direction 
(v), displacement in z-displacement (w), rotation about y-
direction (øx) and rotation about x-direction (øy). 

Besides, the interfacial layer is considered as an orthotropic 
material with null normal stress in x- and y-directions (σx = 0 
and σy = 0) and in-plane shear stress in x-y plane (τxy = 0). It is 
modeled using a quadrilateral zero-thickness solid element 
with 8 nodes. However, there are only three degrees of 
freedom for each node, which are the displacement in x-
direction (u), displacement in y-direction (v), and displacement 
in z-displacement (w). The stiffness matrix of the lamina and 
interfacial element is computed using a 2 × 2 Gauss 
quadrature rule. 

Proportional damping model is applied to describe the 
damping in this study. Eigenvalue analysis is conducted by 
means of state-space approach since the model is under free 
vibration environment. It is worth noting that a full 
degeneration is considered in a localized manner. From the 
eigenvalue analysis, natural frequency, damped natural 
frequency, loss factor and damping ratio of laminated 
composite plate, with the application of degeneration of 
localized degeneration, are to be determined.  

B. Numerical Model Construction 

The configuration of the [90/0] cross-ply laminated 
composite rectangular plate is shown in Fig. 1. The governing 

equation for the dynamic finite element in terms of the 
eigenvalue problem is  

 
                 0               (1) 

 
where  is the global mass matrix,  is the nodal 
acceleration,  is the global damping matrix,  is the nodal 
velocity,  is the global stiffness matrix, and  is the 
nodal displacement. 

 

 

Fig. 1 The two lamina sub-elements, interface element and the 
arrangement of nodes and the degrees of freedom (DOF) of each 

node in the lamina sub-element 

C. Stiffness Matrix of Elemental Lamina 

The local stiffness matrix of the lamina is developed by 
combining the element strain-displacement matrix with the 
ABD matrix of the lamina shown below. 

 

     
  ddJBDB

BBBBBBBABK

oABD
T
o

iABD
T
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T
iiABD

T
i

]

[           (2)   

                       
where Bi is the in-plane element strain-displacement matrix, 
Bo is the out-of-plane element strain-displacement matrix, 
(A)ABD is the extensional stiffness, (B)ABD is the coupling 
stiffness, and (D)ABD is the bending stiffness of the lamina.  

D.  Stiffness Matrix of Elemental Interface 

The stiffness matrix of the zero-thickness interface element 
is computed by 

 

                    ddJDBB
h

K T 
1                  (3) 

 
where h is the thickness of the interface, B is the combined 
element strain-displacement matrix, D is the elasticity matrix, 

and J  is the determinant of Jacobian matrix. 

 

                               (4) 

 
1 0 0
0 1 0
0 0 1

          (5) 

 
where Gxz and Gyz are the out-of-plane shear modulus, Ez is the 
Young’s Modulus in the z-direction and R is the imperfection 
factor. 
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E. Mass Matrix 

The kinematically consistent mass matrix [M] is defined to 
describe the mass contribution by summing all element mass 
matrices [m]. 

 
 ∑                      (6) 

 
where 

[m]=  dANhN
A

T

            (7)  

 
n is the total number of elements.   and N are the density and 

the combined shape functions, respectively.  

F. Damping Matrix 

The proportional damping, [C], also known as Rayleigh 
damping, is adopted and defined as a linear combination of 
global mass matrix and global stiffness matrix. 

 
    α β                (8) 

 
The coefficients,  and , are computed by considering the 
required levels of proportional damping at two different 
frequencies, which are the first and second modes of free 
vibration 

G. State-Space Form  

The linear equation of motion (1) is solved employing the 
state-space method. For free vibration cases, the governing 
equation becomes an eigenvalue problem shown below. 

 
    0                         (9) 

 
where  is the frequency of the natural vibration in complex 
solution ( ),  is the mode shape vector and 

 
0  

0
0

           (10) 

H. Damping Properties 

In terms of the structural response, the dynamic behavior of 
laminated composite plate is considered. Therefore, two 
important parameters, which are damping ratio, ζ, and loss 
factor, η, are formulated in the followings.  

 

   ζ                     (11) 

    

   η                   (12) 

 
where ω  = natural frequency and ω  = damped frequency 

ω ω ζ 

I. Degeneration Pattern 

To model the degeneration of interface, an area of interface 
degeneration is implemented at the center of the laminate. 
This degeneration region is extended radially throughout the 
interface of the laminated composite plate as shown in Fig. 2. 

J. Validation 

The present model is made similar with the work done by 
Hu and Dokainish [4] for validation purpose. We compare 
their computed natural frequencies and loss factor with those 
from the present study. Material properties used in the 
validation are: E1= 42.62 GPa, E2= 12.50 GPa, G12= 5.71 GPa, 
G21= 2.855 GPa, ν12=0.30, and ρ = 1971.0 kg/m3. It is obvious 
that a good agreement is achieved in the comparison. 

 

 

(a)                  (b) 
 

 

(c)                  (d) 

Fig. 2 The degeneration is initially implemented at the center and 
extended radially throughout the interface of the plate (shaded area 

indicate those degenerated) 
 

TABLE I 
COMPARISON OF NATURAL FREQUENCY AND LOSS FACTOR 

Natural Frequency Loss Factor 

Hu and Dokainish [4] 9.3744 6.75 

Present 10.1535 6.07 

III. RESULTS AND DISCUSSION 

The dynamic performances of the composite plate with 
degeneration from the center that is extending radially 
throughout the interface of the laminated composite plate in 
terms of natural frequency, damped frequency, loss factor and 
damping ratio are shown in Figs. 3 (a)-(d). 

As the degenerated area ratio increases, the natural 
frequency decreases. Therefore, the whole laminate 
accordingly becomes weaker. Similarly, the damped 
frequency follows the same dropping trend and has a large 
reduction when the degenerated area ratio is more than 0.1. 
The loss factor is a good way to express the damping 
characteristics of a material. The higher the loss factor, the 
more damping a material has. From the results, the loss factor 
increases as the degenerated area increases. This implies that 
the occurrence of the degenerated interface in the laminated 
composite plate promotes higher damping. This indicates also 
that a greater imperfection improves the damping behavior of 
a laminated material, owing to higher energy absorption by 
means of friction. Since the damping ratio and natural 
frequencies are dependent to each other, the decrease of 
damping ratio can be seen in Fig. 3 (d).  
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IV. CONCLUSION 

Finite element formulation for a two-layer cross-ply 
laminated composite plate prescribed with an interfacial 
element and a proportional damping was developed. A state-
space approach was employed to investigate the dynamic 
behaviors of the plate. From the study, it is found that the 
natural frequency, damped frequency and damping ratio of the 
plate decrease as the degenerated area of the interface 
increases. However, the loss factor increases when the 
degenerated area of the interface increases, due to greater 
damping provided by higher friction.  

 

 

(a) 
 

 

(b) 
 

 

(c) 
 

 

(d) 

Fig. 3 The change in (a) normalized natural frequency, (b) 
normalized damped frequency, (c) normalized loss factor, and (d) 

normalized damping ratio of cross-ply composite laminated plate due 
to various interfacial degenerated areas 

REFERENCES  
[1] H. Sun and N. Pan. Mechanical Characterization of the Interfaces in 

Laminated Composites. Journal of composite structures, 74, 25–29. 
Elsevier, 2005. 

[2] V. Q. Bui, E. Marechal, H. Nguyen-Dang. Imperfect interlaminar 
interfaces in laminated composites: delamination with the R-curve 
effect. Composites Science and Technology, 60, 2619-2630, 2000. 

[3] R. Rikards, A. Chate and E. Barknov. Finite Element Analysis of 
Damping, The vibrations of Laminated Composites. Computers & 
Structures, 47, 1005 -1015, 1993. 

[4] B. G. Hu and M. A. Dokainish. Damped Vibrations of Laminated 
Composite Plate- Modelling and Finite Element Analysis. Finite 
Element in Analysis and Design, 25, 103-124, 1993. 

[5] J. Oh, M. Cho, J.-S. Kim. Dynamic analysis of composite plate with 
multiple delaminations based on higher-order zigzag theory. 
International Journal of Solids and Structures, 42, 6122–6140, 2005. 

[6] S. H. Abo Sabah and A. B. H. Kueh. Finite Element Modeling of 
Laminated Composite Plates with Locally Delaminated Interface 
Subjected to Impact Loading. The Scientific World Journal, 2014. 

World Academy of Science, Engineering and Technology
International Journal of Mechanical and Mechatronics Engineering

 Vol:8, No:12, 2014 

2016International Scholarly and Scientific Research & Innovation 8(12) 2014 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 M
ec

ha
ni

ca
l a

nd
 M

ec
ha

tr
on

ic
s 

E
ng

in
ee

ri
ng

 V
ol

:8
, N

o:
12

, 2
01

4 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/9
99

99
12

.p
df


