Search results for: pressure loss
1390 The Influence of Biofuels on the Permeability of Sand-Bentonite Liners
Authors: Mousa Bani Baker, Maria Elektorowicz, Adel Hanna, Altayeb Qasem
Abstract:
Liners are made to protect the groundwater table from the infiltration of leachate which normally carries different kinds of toxic materials from landfills. Although these liners are engineered to last for long period of time; unfortunately these liners fail; therefore, toxic materials pass to groundwater. This paper focuses on the changes of the hydraulic conductivity of a sand-bentonite liner due to the infiltration of biofuel and ethanol fuel. Series of laboratory tests were conducted in 20-cm-high PVC columns. Several compositions of sand-bentonite liners were tested: 95% sand: 5% bentonite; 90% sand: 10% bentonite; and 100% sand (passed mesh #40). The columns were subjected to extreme pressures of 40 kPa, and 100 kPa to evaluate the transport of alternative fuels (biofuel and ethanol fuel). For comparative studies, similar tests were carried out using water. Results showed that hydraulic conductivity increased due to the infiltration of alternative fuels through the liners. Accordingly, the increase in the hydraulic conductivity showed significant dependency on the type of liner mixture and the characteristics of the liquid. The hydraulic conductivity of a liner (subjected to biofuel infiltration) consisting of 5% bentonite: 95% sand under pressure of 40 kPa and 100 kPa had increased by one fold. In addition, the hydraulic conductivity of a liner consisting of 10% bentonite: 90% sand under pressure of 40 kPa and 100 kPa and infiltrated by biofuel had increased by three folds. On the other hand, the results obtained by water infiltration under 40 kPa showed lower hydraulic conductivities of 1.50×10-5 and 1.37×10-9 cm/s for 5% bentonite: 95% sand, and 10% bentonite: 90% sand, respectively. Similarly, under 100 kPa, the hydraulic conductivities were 2.30×10-5 and 1.90×10-9 cm/s for 5% bentonite: 95% sand, and 10% bentonite: 90% sand, respectively.Keywords: Biofuel, Ethanol; Hydraulic conductivity Landfill, Leakage, Liner failure, Liner performance Fine-grained soils, Particle size, Sand-bentonite.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20061389 Effect of Three Drying Methods on Antioxidant Efficiency and Vitamin C Content of Moringa oleifera Leaf Extract
Authors: Kenia Martínez, Geniel Talavera, Juan Alonso
Abstract:
Moringa oleifera is a plant containing many nutrients that are mostly concentrated within the leaves. Commonly, the separation process of these nutrients involves solid-liquid extraction followed by evaporation and drying to obtain a concentrated extract, which is rich in proteins, vitamins, carbohydrates, and other essential nutrients that can be used in the food industry. In this work, three drying methods were used, which involved very different temperature and pressure conditions, to evaluate the effect of each method on the vitamin C content and the antioxidant efficiency of the extracts. Solid-liquid extractions of Moringa leaf (LE) were carried out by employing an ethanol solution (35% v/v) at 50 °C for 2 hours. The resulting extracts were then dried i) in a convective oven (CO) at 100 °C and at an atmospheric pressure of 750 mbar for 8 hours, ii) in a vacuum evaporator (VE) at 50 °C and at 300 mbar for 2 hours, and iii) in a freeze-drier (FD) at -40 °C and at 0.050 mbar for 36 hours. The antioxidant capacity (EC50, mg solids/g DPPH) of the dry solids was calculated by the free radical inhibition method employing DPPH˙ at 517 nm, resulting in a value of 2902.5 ± 14.8 for LE, 3433.1 ± 85.2 for FD, 3980.1 ± 37.2 for VE, and 8123.5 ± 263.3 for CO. The calculated antioxidant efficiency (AE, g DPPH/(mg solids·min)) was 2.920 × 10-5 for LE, 2.884 × 10-5 for FD, 2.512 × 10-5 for VE, and 1.009 × 10-5 for CO. Further, the content of vitamin C (mg/L) determined by HPLC was 59.0 ± 0.3 for LE, 49.7 ± 0.6 for FD, 45.0 ± 0.4 for VE, and 23.6 ± 0.7 for CO. The results indicate that the convective drying preserves vitamin C and antioxidant efficiency to 40% and 34% of the initial value, respectively, while vacuum drying to 76% and 86%, and freeze-drying to 84% and 98%, respectively.
Keywords: Antioxidant efficiency, convective drying, freeze-drying, Moringa oleifera, vacuum drying, vitamin C content.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17961388 Laboratory Evaluation of Asphalt Concrete Prepared with Over Burnt Brick Aggregate Treated by Zycosoil
Authors: D. Sarkar, M. Pal, A. K. Sarkar
Abstract:
Asphaltic concrete for pavement construction in India are produced by using crushed stone, gravels etc. as aggregate. In north-Eastern region of India, there is a scarcity of stone aggregate. Therefore the road engineers are always in search of an optional material as aggregate which can replace the regularly used material. The purpose of this work was to evaluate the utilization of substandard or marginal aggregates in flexible pavement construction. The investigation was undertaken to evaluate the effects of using lower quality aggregates such as over burnt brick aggregate on the preparation of asphalt concrete for flexible pavements. The scope of this work included a review of available literature and existing data, a laboratory evaluation organized to determine the effects of marginal aggregates and potential techniques to upgrade these substandard materials, and a laboratory evaluation of these upgraded marginal aggregate asphalt mixtures. Over burnt brick aggregates are water susceptible and can leads to moisture damage. Moisture damage is the progressive loss of functionality of the material owing to loss of the adhesion bond between the asphalt binder and the aggregate surface. Hence zycosoil as an anti striping additive were evaluated in this study. This study summarizes the results of the laboratory evaluation carried out to investigate the properties of asphalt concrete prepared with zycosoil modified over burnt brick aggregate. Marshall specimen were prepared with stone aggregate, zycosoil modified stone aggregate, over burnt brick aggregate and zycosoil modified over burnt brick aggregate. Results show that addition of zycosoil with stone aggregate increased stability by 6% and addition of zycosoil with over burnt brick aggregate increased stability by 30%.
Keywords: Asphalt Concrete, Over Burnt Brick Aggregate, Marshall Stability, Zycosoil.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28801387 An In-depth Experimental Study of Wax Deposition in Pipelines
Authors: M. L. Arias, J. D’Adamo, M. N. Novosad, P. A. Raffo, H. P. Burbridge, G. O. Artana
Abstract:
Shale oils are highly paraffinic and, consequently, can create wax deposits that foul pipelines during transportation. Several factors must be considered when designing pipelines or treatment programs that prevent wax deposition: including chemical species in crude oils, flowrates, pipes diameters and temperature. This paper describes the wax deposition study carried out within the framework of YPF Tecnolgía S.A. (Y-TEC) flow assurance projects, as part of the process to achieve a better understanding on wax deposition issues. Laboratory experiments were performed on a medium size, 1 inch diameter, wax deposition loop of 15 meters long equipped with a solid detector system, online microscope to visualize crystals, temperature, and pressure sensors along the loop pipe. A baseline test was performed with diesel with no added paraffin or additive content. Tests were undertaken with different temperatures of circulating and cooling fluid at different flow conditions. Then, a solution formed with a paraffin incorporated to the diesel was considered. Tests varying flowrate and cooling rate were again run. Viscosity, density, WAT (Wax Appearance Temperature) with DSC (Differential Scanning Calorimetry), pour point and cold finger measurements were carried out to determine physical properties of the working fluids. The results obtained in the loop were analyzed through momentum balance and heat transfer models. To determine possible paraffin deposition scenarios temperature and pressure loop output signals were studied. They were compared with WAT static laboratory methods.
Keywords: Paraffin deposition, wax, oil pipelines, experimental pipe loop.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1591386 Influence of Loudness Compression on Hearing with Bone Anchored Hearing Implants
Authors: Anja Kurz, Marc Flynn, Tobias Good, Marco Caversaccio, Martin Kompis
Abstract:
Bone Anchored Hearing Implants (BAHI) are routinely used in patients with conductive or mixed hearing loss, e.g. if conventional air conduction hearing aids cannot be used. New sound processors and new fitting software now allow the adjustment of parameters such as loudness compression ratios or maximum power output separately. Today it is unclear, how the choice of these parameters influences aided speech understanding in BAHI users. In this prospective experimental study, the effect of varying the compression ratio and lowering the maximum power output in a BAHI were investigated. Twelve experienced adult subjects with a mixed hearing loss participated in this study. Four different compression ratios (1.0; 1.3; 1.6; 2.0) were tested along with two different maximum power output settings, resulting in a total of eight different programs. Each participant tested each program during two weeks. A blinded Latin square design was used to minimize bias. For each of the eight programs, speech understanding in quiet and in noise was assessed. For speech in quiet, the Freiburg number test and the Freiburg monosyllabic word test at 50, 65, and 80 dB SPL were used. For speech in noise, the Oldenburg sentence test was administered. Speech understanding in quiet and in noise was improved significantly in the aided condition in any program, when compared to the unaided condition. However, no significant differences were found between any of the eight programs. In contrast, on a subjective level there was a significant preference for medium compression ratios of 1.3 to 1.6 and higher maximum power output.
Keywords: Bone Anchored Hearing Implant, Compression, Maximum Power Output, Speech understanding.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20651385 Maximum Water Hammer Sensitivity Analysis
Authors: Jalil Emadi, Abbas Solemani
Abstract:
Pressure waves and Water Hammer occur in a pumping system when valves are closed or opened suddenly or in the case of sudden failure of pumps. Determination of maximum water hammer is considered one of the most important technical and economical items of which engineers and designers of pumping stations and conveyance pipelines should take care. Hammer Software is a recent application used to simulate water hammer. The present study focuses on determining significance of each input parameter of the application relative to the maximum amount of water hammer estimated by the software. The study determines estimated maximum water hammer variations due to variations of input parameters including water temperature, pipe type, thickness and diameter, electromotor rpm and power, and moment of inertia of electromotor and pump. In our study, Kuhrang Pumping Station was modeled using WaterGEMS Software. The pumping station is characterized by total discharge of 200 liters per second, dynamic height of 194 meters and 1.5 kilometers of steel conveyance pipeline and transports water to Cheshme Morvarid for farmland irrigation. The model was run in steady hydraulic condition and transferred to Hammer Software. Then, the model was run in several unsteady hydraulic conditions and sensitivity of maximum water hammer to each input parameter was calculated. It is shown that parameters to which maximum water hammer is most sensitive are moment of inertia of pump and electromotor, diameter, type and thickness of pipe and water temperature, respectively.Keywords: Pressure Wave, Water Hammer, Sensitivity Analysis, Hammer Software, Kuhrang, Cheshme Morvarid
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32741384 The Impact of Surface Roughness and PTFE/TiF3/FeF3 Additives in Plain ZDDP Oil on the Friction and Wear Behavior Using Thermal and Tribological Analysis under Extreme Pressure Condition
Authors: Gabi N. Nehme, Saeed Ghalambor
Abstract:
The use of titanium fluoride and iron fluoride (TiF3/FeF3) catalysts in combination with polutetrafluoroethylene (PTFE) in plain zinc- dialkyldithiophosphate (ZDDP) oil is important for the study of engine tribocomponents and is increasingly a strategy to improve the formation of tribofilm and provide low friction and excellent wear protection in reduced phosphorus plain ZDDP oil. The influence of surface roughness and the concentration of TiF3/FeF3/PTFE were investigated using bearing steel samples dipped in lubricant solution at 100°C for two different heating time durations. This paper addresses the effects of water drop contact angle using different surface; finishes after treating them with different lubricant combination. The calculated water drop contact angles were analyzed using Design of Experiment software (DOE) and it was determined that a 0.05 μm Ra surface roughness would provide an excellent TiF3/FeF3/PTFE coating for antiwear resistance as reflected in the Scanning electron microscopy (SEM) images and the tribological testing under extreme pressure conditions. Both friction and wear performance depend greatly on the PTFE/and catalysts in plain ZDDP oil with 0.05 % phosphorous and on the surface finish of bearing steel. The friction and wear reducing effects, which was observed in the tribological tests, indicated a better micro lubrication effect of the 0.05 μm Ra surface roughness treated at 100°C for 24 hours when compared to the 0.1 μm Ra surface roughness with the same treatment.
Keywords: Scanning Electron Microscopy (SEM), ZDDP, catalysts, PTFE, friction, wear.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16271383 Enhancing Hand Efficiency of Smart Glass Cleaning Robot through Generative Design Module
Authors: Pankaj Gupta, Amit Kumar Srivastava, Nitesh Pandey
Abstract:
This article explores the domain of generative design in order to enhance the development of robot designs for innovative and efficient maintenance approaches for tall buildings. This study aims to optimize the design of robotic hands by focusing on minimizing mass and volume while ensuring they can withstand the specified pressure with equal strength. The research procedure is structured and systematic. The purpose of optimization is to enhance the efficiency of the robot and reduce the manufacturing expenses. The project seeks to investigate the application of generative design in order to optimize products. Autodesk Fusion 360 offers the capability to immediately apply the generative design functionality to the solid model. The effort involved creating a solid model of the Smart Glass Cleaning Robot and optimizing one of its components, the Hand, using generative techniques. The article has thoroughly examined the designs, outcomes, and procedure. These loads serve as a benchmark for creating designs that can endure the necessary level of pressure and preserve their structural integrity. The efficacy of the generative design process is contingent upon the selection of materials, as different materials possess distinct physical attributes. The study utilizes five different materials, namely Steel, Stainless Steel, Titanium, Aluminum, and CFRP (Carbon Fiber Reinforced Polymer), in order to investigate a range of design possibilities.
Keywords: Generative design, mass and volume optimization, material strength analysis, generative design, smart glass cleaning robot.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1991382 Evaluation of Chromium Fortified Parboiled Rice Coated with Herbal Extracts: Cooking Quality and Sensory Properties
Authors: Wisnu Adi Yulianto, Agus Slamet, Sri Luwihana, Septian Albar Dwi Suprayogi
Abstract:
Parboiled rice was developed to produce rice, which has a low glycemic index for diabetics. However, diabetics also have a chromium (Cr) deficiency. Thus, it is important to fortify rice with Cr to increase the Cr content. Moreover, parboiled rice becomes rancid easily and has a musty odor, rendering the rice unfavorable. Natural herbs such as pandan leaves (Pandanus amaryllifolius Roxb.), bay leaves (Syzygium polyanthum [Wigh] Walp) and cinnamon bark powder (Cinnamomon cassia) are commonly added to food as aroma enhancers. Previous research has shown that these herbs could improve insulin sensitivity. The purpose of this study was to evaluate the effect of herbal extract coatings on the cooking quality and the preference level of chromium fortified - parboiled rice (CFPR). The rice grain variety used for this experiment was Ciherang and the fortificant was CrCl3. The three herbal extracts used for coating the CFPR were cinnamon, pandan and bay leaf, with concentration variations of 3%, 6%, and 9% (w/w) for each of the extracts. The samples were analyzed for their alkali spreading value, cooking time, elongation, water uptake ratio, solid loss, colour and lightness; and their sensory properties were determined by means of an organoleptic test. The research showed that coating the CFPR with pandan and cinnamon extracts at a concentration of 3% each produced a preferred CFPR. When coated with those herbal extracts the CFPR had the following cooking quality properties: alkali spreading value 5 (intermediate gelatinization temperature), cooking time, 26-27 min, color value, 14.95-15.00, lightness, 42.30 – 44.06, elongation, 1.53 – 1.54, water uptake ratio , 4.05-4.06, and solid loss, 0.09/100 g – 0.13 g/100 g.Keywords: Bay leaves, chromium, cinnamon, pandan leaves, parboiled rice.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19801381 Numerical Investigation of Developing Mixed Convection in Isothermal Circular and Annular Sector Ducts
Authors: Ayad A. Abdalla, Elhadi I. Elhadi, Hisham A. Elfergani
Abstract:
Developing mixed convection in circular and annular sector ducts is investigated numerically for steady laminar flow of an incompressible Newtonian fluid with Pr = 0.7 and a wide range of Grashof number (0 £ Gr £ 107). Investigation is limited to the case of heating in circular and annular sector ducts with apex angle of 2ϕ = π/4 for the thermal boundary condition of uniform wall temperature axially and peripherally. A numerical, finite control volume approach based on the SIMPLER algorithm is employed to solve the 3D governing equations. Numerical analysis is conducted using marching technique in the axial direction with axial conduction, axial mass diffusion, and viscous dissipation within the fluid are assumed negligible. The results include developing secondary flow patterns, developing temperature and axial velocity fields, local Nusselt number, local friction factor, and local apparent friction factor. Comparisons are made with the literature and satisfactory agreement is obtained. It is found that free convection enhances the local heat transfer in some cases by up to 2.5 times from predictions which account for forced convection only and the enhancement increases as Grashof number increases. Duct geometry and Grashof number strongly influence the heat transfer and pressure drop characteristics.
Keywords: Mixed convection, annular and circular sector ducts, heat transfer enhancement, pressure drop.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5461380 Substitution of Phosphate with Liquid Smoke as a Binder on the Quality of Chicken Nugget
Authors: E. Abustam, M. Yusuf, M. I. Said
Abstract:
One of functional properties of the meat is decrease of water holding capacity (WHC) during rigor mortis. At the time of pre-rigor, WHC is higher than post-rigor. The decline of WHC has implication to the other functional properties such as decreased cooking lost and yields resulting in lower elasticity and compactness of processed meat product. In many cases, the addition of phosphate in the meat will increase the functional properties of the meat such as WHC. Furthermore, liquid smoke has also been known in increasing the WHC of fresh meat. For food safety reasons, liquid smoke in the present study was used as a substitute to phosphate in production of chicken nuggets. This study aimed to know the effect of substitution of phosphate with liquid smoke on the quality of nuggets made from post-rigor chicken thigh and breast. The study was arranged using completely randomized design of factorial pattern 2x3 with three replications. Factor 1 was thigh and breast parts of the chicken, and factor 2 was different levels of liquid smoke in substitution to phosphate (0%, 50%, and 100%). The thigh and breast post-rigor broiler aged 40 days were used as the main raw materials in making nuggets. Auxiliary materials instead of meat were phosphate, liquid smoke at concentration of 10%, tapioca flour, salt, eggs and ice. Variables measured were flexibility, shear force value, cooking loss, elasticity level, and preferences. The results of this study showed that the substitution of phosphate with 100% liquid smoke resulting high quality nuggets. Likewise, the breast part of the meat showed higher quality nuggets than thigh part. This is indicated by high elasticity, low shear force value, low cooking loss, and a high level of preference of the nuggets. It can be concluded that liquid smoke can be used as a binder in making nuggets of chicken post-rigor.
Keywords: Liquid smoke, nugget quality, phosphate, post-rigor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11001379 Predictions and Comparisons of Thermohydrodynamic State for Single and Three Pads Gas Foil Bearings Operating at Steady-State Based on Multi-Physics Coupling Computer-Aided Engineering Simulations
Authors: Tai Yuan Yu, Pei-Jen Wang
Abstract:
Oil-free turbomachinery is considered one of the critical technologies for future green power generation systems as rotor machinery systems. Oil-free technology allows clean, compact, and maintenance-free working, and gas foil bearings (GFBs) are important for the technology. Since the first applications in the auxiliary power units and air cycle machines in the 1970s, obvious improvement has been created to the computational models for dynamic rotor behavior. However, many technical issues are still poorly understood or remain unsolved, and some of those are thermal management and the pattern of how pressure will be distributed in bearing clearance. This paper presents a three-dimensional (3D) fluid-structure interaction model of single pad foil bearings and three pad foil bearings to predict bearing working behavior that researchers could compare characteristics of those. The coupling analysis model involves dynamic working characteristics applied to all the gas film and mechanical structures. Therefore, the elastic deformation of foil structure and the hydrodynamic pressure of gas film can both be calculated by a finite element method program. As a result, the temperature distribution pattern could also be iteratively solved by coupling analysis. In conclusion, the working fluid state in a gas film of various pad forms of bearings working characteristic at constant rotational speed for both can be solved for comparisons with the experimental results.
Keywords: Fluid structure interaction multi-physics simulations, gas foil bearing, oil-free, transient thermohydrodynamic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4561378 Applications of AUSM+ Scheme on Subsonic, Supersonic and Hypersonic Flows Fields
Authors: Muhammad Yamin Younis, Muhammad Amjad Sohail, Tawfiqur Rahman, Zaka Muhammad, Saifur Rahman Bakaul
Abstract:
The performance of Advection Upstream Splitting Method AUSM schemes are evaluated against experimental flow fields at different Mach numbers and results are compared with experimental data of subsonic, supersonic and hypersonic flow fields. The turbulent model used here is SST model by Menter. The numerical predictions include lift coefficient, drag coefficient and pitching moment coefficient at different mach numbers and angle of attacks. This work describes a computational study undertaken to compute the Aerodynamic characteristics of different air vehicles configurations using a structured Navier-Stokes computational technique. The CFD code bases on the idea of upwind scheme for the convective (convective-moving) fluxes. CFD results for GLC305 airfoil and cone cylinder tail fined missile calculated on above mentioned turbulence model are compared with the available data. Wide ranges of Mach number from subsonic to hypersonic speeds are simulated and results are compared. When the computation is done by using viscous turbulence model the above mentioned coefficients have a very good agreement with the experimental values. AUSM scheme is very efficient in the regions of very high pressure gradients like shock waves and discontinuities. The AUSM versions simulate the all types of flows from lower subsonic to hypersonic flow without oscillations.Keywords: Subsonic, supersonic, Hypersonic, AUSM+, Drag Coefficient, lift Coefficient, Pitching moment coefficient, pressure Coefficient, turbulent flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32421377 Reducing Defects through Organizational Learning within a Housing Association Environment
Authors: T. Hopkin, S. Lu, P. Rogers, M. Sexton
Abstract:
Housing Associations (HAs) contribute circa 20% of the UK’s housing supply. HAs are however under increasing pressure as a result of funding cuts and rent reductions. Due to the increased pressure, a number of processes are currently being reviewed by HAs, especially how they manage and learn from defects. Learning from defects is considered a useful approach to achieving defect reduction within the UK housebuilding industry. This paper contributes to our understanding of how HAs learn from defects by undertaking an initial round table discussion with key HA stakeholders as part of an ongoing collaborative research project with the National House Building Council (NHBC) to better understand how house builders and HAs learn from defects to reduce their prevalence. The initial discussion shows that defect information runs through a number of groups, both internal and external of a HA during both the defects management process and organizational learning (OL) process. Furthermore, HAs are reliant on capturing and recording defect data as the foundation for the OL process. During the OL process defect data analysis is the primary enabler to recognizing a need for a change to organizational routines. When a need for change has been recognized, new options are typically pursued to design out defects via updates to a HAs Employer’s Requirements. Proposed solutions are selected by a review board and committed to organizational routine. After implementing a change, both structured and unstructured feedback is sought to establish the change’s success. The findings from the HA discussion demonstrates that OL can achieve defect reduction within the house building sector in the UK. The paper concludes by outlining a potential ‘learning from defects model’ for the housebuilding industry as well as describing future work.
Keywords: Defects, new homes, housing associations, organizational learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18951376 Respirator System For Total Liquid Ventilation
Authors: Miguel A. Gómez , Enrique Hilario , Francisco J. Alvarez , Elena Gastiasoro , Antonia Alvarez, Juan L. Larrabe
Abstract:
Total liquid ventilation can support gas exchange in animal models of lung injury. Clinical application awaits further technical improvements and performance verification. Our aim was to develop a liquid ventilator, able to deliver accurate tidal volumes, and a computerized system for measuring lung mechanics. The computer-assisted, piston-driven respirator controlled ventilatory parameters that were displayed and modified on a real-time basis. Pressure and temperature transducers along with a lineal displacement controller provided the necessary signals to calculate lung mechanics. Ten newborn lambs (<6 days old) with respiratory failure induced by lung lavage, were monitored using the system. Electromechanical, hydraulic and data acquisition/analysis components of the ventilator were developed and tested in animals with respiratory failure. All pulmonary signals were collected synchronized in time, displayed in real-time, and archived on digital media. The total mean error (due to transducers, A/D conversion, amplifiers, etc.) was less than 5% compared to calibrated signals. Improvements in gas exchange and lung mechanics were observed during liquid ventilation, without impairment of cardiovascular profiles. The total liquid ventilator maintained accurate control of tidal volumes and the sequencing of inspiration/expiration. The computerized system demonstrated its ability to monitor in vivo lung mechanics, providing valuable data for early decision-making.
Keywords: immature lamb, perfluorocarbon, pressure-limited, total liquid ventilation, ventilator; volume-controlled
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15321375 Efficacy of Biofeedback-Assisted Pelvic Floor Muscle Training on Postoperative Stress Urinary Incontinence
Authors: Asmaa M. El-Bandrawy, Afaf M. Botla, Ghada E. El-Refaye, Hassan O. Ghareeb
Abstract:
Background: Urinary incontinence is a common problem among adults. Its incidence increases with age and it is more frequent in women. Pelvic floor muscle training (PFMT) is the first-line therapy in the treatment of pelvic floor dysfunction (PFD) either alone or combined with biofeedback-assisted PFMT. The aim of the work: The purpose of this study is to evaluate the efficacy of biofeedback-assisted PFMT in postoperative stress urinary incontinence. Settings and Design: A single blind controlled trial design was. Methods and Material: This study was carried out in 30 volunteer patients diagnosed as severe degree of stress urinary incontinence and they were admitted to surgical treatment. They were divided randomly into two equal groups: (Group A) consisted of 15 patients who had been treated with post-operative biofeedback-assisted PFMT and home exercise program (Group B) consisted of 15 patients who had been treated with home exercise program only. Assessment of all patients in both groups (A) and (B) was carried out before and after the treatment program by measuring intra-vaginal pressure in addition to the visual analog scale. Results: At the end of the treatment program, there was a highly statistically significant difference between group (A) and group (B) in the intra-vaginal pressure and the visual analog scale favoring the group (A). Conclusion: biofeedback-assisted PFMT is an effective method for the symptomatic relief of post-operative female stress urinary incontinence.
Keywords: Stress urinary incontinence, pelvic floor muscles, pelvic floor exercises, biofeedback.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14181374 Predictions of Dynamic Behaviors for Gas Foil Bearings Operating at Steady-State Based on Multi-Physics Coupling Computer Aided Engineering Simulations
Authors: Tai Yuan Yu, Pei-Jen Wang
Abstract:
A simulation scheme of rotational motions for predictions of bump-type gas foil bearings operating at steady-state is proposed. The scheme is based on multi-physics coupling computer aided engineering packages modularized with computational fluid dynamic model and structure elasticity model to numerically solve the dynamic equation of motions of a hydrodynamic loaded shaft supported by an elastic bump foil. The bump foil is assumed to be modelled as infinite number of Hookean springs mounted on stiff wall. Hence, the top foil stiffness is constant on the periphery of the bearing housing. The hydrodynamic pressure generated by the air film lubrication transfers to the top foil and induces elastic deformation needed to be solved by a finite element method program, whereas the pressure profile applied on the top foil must be solved by a finite element method program based on Reynolds Equation in lubrication theory. As a result, the equation of motions for the bearing shaft are iteratively solved via coupling of the two finite element method programs simultaneously. In conclusion, the two-dimensional center trajectory of the shaft plus the deformation map on top foil at constant rotational speed are calculated for comparisons with the experimental results.
Keywords: Computational fluid dynamics, fluid structure interaction multi-physics simulations, gas foil bearing, load capacity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5851373 Evaluating Generative Neural Attention Weights-Based Chatbot on Customer Support Twitter Dataset
Authors: Sinarwati Mohamad Suhaili, Naomie Salim, Mohamad Nazim Jambli
Abstract:
Sequence-to-sequence (seq2seq) models augmented with attention mechanisms are increasingly important in automated customer service. These models, adept at recognizing complex relationships between input and output sequences, are essential for optimizing chatbot responses. Central to these mechanisms are neural attention weights that determine the model’s focus during sequence generation. Despite their widespread use, there remains a gap in the comparative analysis of different attention weighting functions within seq2seq models, particularly in the context of chatbots utilizing the Customer Support Twitter (CST) dataset. This study addresses this gap by evaluating four distinct attention-scoring functions—dot, multiplicative/general, additive, and an extended multiplicative function with a tanh activation parameter — in neural generative seq2seq models. Using the CST dataset, these models were trained and evaluated over 10 epochs with the AdamW optimizer. Evaluation criteria included validation loss and BLEU scores implemented under both greedy and beam search strategies with a beam size of k = 3. Results indicate that the model with the tanh-augmented multiplicative function significantly outperforms its counterparts, achieving the lowest validation loss (1.136484) and the highest BLEU scores (0.438926 under greedy search, 0.443000 under beam search, k = 3). These findings emphasize the crucial influence of selecting an appropriate attention-scoring function to enhance the performance of seq2seq models for chatbots, particularly highlighting the model integrating tanh activation as a promising approach to improving chatbot quality in customer support contexts.
Keywords: Attention weight, chatbot, encoder-decoder, neural generative attention, score function, sequence-to-sequence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 881372 Understanding Grip Choice and Comfort Whilst Hoovering
Authors: S.R.Kamat, A.Yoxall, C.Craig , M.J.Carré, J.Rowson
Abstract:
The hand is one of the essential parts of the body for carrying out Activities of Daily Living (ADLs). Individuals use their hands and fingers in everyday activities in the both the workplace and home. Hand-intensive tasks require diverse and sometimes extreme levels of exertion, depending on the action, movement or manipulation involved. The authors have undertaken several studies looking at grip choice and comfort. It is hoped that in providing improved understanding of discomfort during ADLs this will aid in the design of consumer products. Previous work by the authors outlined a methodology for calculating pain frequency and pain level for a range of tasks. From an online survey undertaken by the authors with regards manipulating objects during everyday tasks, tasks involving gripping were seen to produce the highest levels of pain and discomfort. Questioning of the participants showed that cleaning tasks were seen to be ADL's that produced the highest levels of discomfort, with women feeling higher levels of discomfort than men. This paper looks at the methodology for calculating pain frequency and pain level with particular regards to gripping activities. This methodology shows that activities such as mopping, sweeping and hoovering shows the highest numbers of pain frequency and pain level at 3112.5 frequency per month while the pain level per person doing this action was 0.78.The study then uses thin-film force sensors to analyze the force distribution in the hand whilst hoovering and compares this for differing grip styles and genders. Women were seen to have more of their hand under a higher pressure than men when undertaking hoovering. This suggests that women may feel greater discomfort than men since their hand is at a higher pressure more of the time.Keywords: hovering, grip, pain
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14731371 Analytical Solution for Compressible Gas Flow Inside a Two-Dimensional Poiseuille Flow in Microchannels with Constant Heat Flux Including the Creeping Effect
Authors: Amir Reza Ghahremani, Salman SafariMohsenabad, Mohammad Behshad Shafii
Abstract:
To achieve reliable solutions, today-s numerical and experimental activities need developing more accurate methods and utilizing expensive facilities, respectfully in microchannels. The analytical study can be considered as an alternative approach to alleviate the preceding difficulties. Among the analytical solutions, those with high robustness and low complexities are certainly more attractive. The perturbation theory has been used by many researchers to analyze microflows. In present work, a compressible microflow with constant heat flux boundary condition is analyzed. The flow is assumed to be fully developed and steady. The Mach and Reynolds numbers are also assumed to be very small. For this case, the creeping phenomenon may have some effect on the velocity profile. To achieve robustness solution it is assumed that the flow is quasi-isothermal. In this study, the creeping term which appears in the slip boundary condition is formulated by different mathematical formulas. The difference between this work and the previous ones is that the creeping term is taken into account and presented in non-dimensionalized form. The results obtained from perturbation theory are presented based on four non-dimensionalized parameters including the Reynolds, Mach, Prandtl and Brinkman numbers. The axial velocity, normal velocity and pressure profiles are obtained. Solutions for velocities and pressure for two cases with different Br numbers are compared with each other and the results show that the effect of creeping phenomenon on the velocity profile becomes more important when Br number is less than O(ε).Keywords: Creeping Effect, Microflow, Slip, Perturbation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24691370 Water Management Scheme: Panacea to Development Using Nigeria’s University of Ibadan Water Supply Scheme as a Case Study
Authors: Sunday Olufemi Adesogan
Abstract:
The supply of potable water at least is a very important index in national development. Water tariffs depend on the treatment cost which carries the highest percentage of the total operation cost in any water supply scheme. In order to keep water tariffs as low as possible, treatment costs have to be minimized. The University of Ibadan, Nigeria, water supply scheme consists of a treatment plant with three distribution stations (Amina way, Kurumi and Lander) and two raw water supply sources (Awba dam and Eleyele dam). An operational study of the scheme was carried out to ascertain the efficiency of the supply of potable water on the campus to justify the need for water supply schemes in tertiary institutions. The study involved regular collection, processing and analysis of periodic operational data. Data collected include supply reading (water production on daily basis) and consumers metered reading for a period of 22 months (October 2013 - July 2015), and also collected, were the operating hours of both plants and human beings. Applying the required mathematical equations, total loss was determined for the distribution system, which was translated into monetary terms. Adequacies of the operational functions were also determined. The study revealed that water supply scheme is justified in tertiary institutions. It was also found that approximately 10.7 million Nigerian naira (N) is lost to leakages during the 22-month study period; the system’s storage capacity is no longer adequate, especially for peak water production. The capacity of the system as a whole is insufficient for the present university population and that the existing water supply system is not being operated in an optimal manner especially due to personnel, power and system ageing constraints.
Keywords: Operational, efficiency, production, supply, water treatment plant, water loss.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7211369 Numerical Analysis of Pressure Admission Angle to Vane Angle Ratios on Performance of a Vaned Type Novel Air Turbine
Authors: B.R. Singh, O. Singh
Abstract:
Worldwide conventional resources of fossil fuel are depleting very fast due to large scale increase in use of transport vehicles every year, therefore consumption rate of oil in transport sector alone has gone very high. In view of this, the major thrust has now been laid upon the search of alternative energy source and also for cost effective energy conversion system. The air converted into compressed form by non conventional or conventional methods can be utilized as potential working fluid for producing shaft work in the air turbine and thus offering the capability of being a zero pollution energy source. This paper deals with the mathematical modeling and performance evaluation of a small capacity compressed air driven vaned type novel air turbine. Effect of expansion action and steady flow work in the air turbine at high admission air pressure of 6 bar, for varying injection to vane angles ratios 0.2-1.6, at the interval of 0.2 and at different vane angles such as 30o, 45o, 51.4o, 60o, 72o, 90o, and 120o for 12, 8, 7, 6, 5, 4 and 3 vanes respectively at speed of rotation 2500 rpm, has been quantified and analyzed here. Study shows that the expansion power has major contribution to total power, whereas the contribution of flow work output has been found varying only up to 19.4%. It is also concluded that for variation of injection to vane angle ratios from 0.2 to 1.2, the optimal power output is seen at vane angle 90o (4 vanes) and for 1.4 to 1.6 ratios, the optimal total power is observed at vane angle 72o (5 vanes). Thus in the vaned type novel air turbine the optimum shaft power output is developed when rotor contains 4-5 vanes for almost all situations of injection to vane angle ratios from 0.2 to 1.6.
Keywords: zero pollution, compressed air, air turbine, vaneangle, injection to vane angle ratios
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17071368 CFD Study of Subcooled Boiling Flow at Elevated Pressure Using a Mechanistic Wall Heat Partitioning Model
Authors: Machimontorn Promtong, Sherman C. P. Cheung, Guan H. Yeoh, Sara Vahaji, Jiyuan Tu
Abstract:
The wide range of industrial applications involved with boiling flows promotes the necessity of establishing fundamental knowledge in boiling flow phenomena. For this purpose, a number of experimental and numerical researches have been performed to elucidate the underlying physics of this flow. In this paper, the improved wall boiling models, implemented on ANSYS CFX 14.5, were introduced to study subcooled boiling flow at elevated pressure. At the heated wall boundary, the Fractal model, Force balance approach and Mechanistic frequency model are given for predicting the nucleation site density, bubble departure diameter, and bubble departure frequency. The presented wall heat flux partitioning closures were modified to consider the influence of bubble sliding along the wall before the lift-off, which usually happens in the flow boiling. The simulation was performed based on the Two-fluid model, where the standard k-ω SST model was selected for turbulence modelling. Existing experimental data at around 5 bars were chosen to evaluate the accuracy of the presented mechanistic approach. The void fraction and Interfacial Area Concentration (IAC) are in good agreement with the experimental data. However, the predicted bubble velocity and Sauter Mean Diameter (SMD) are over-predicted. This over-prediction may be caused by consideration of only dispersed and spherical bubbles in the simulations. In the future work, the important physical mechanisms of bubbles, such as merging and shrinking during sliding on the heated wall will be incorporated into this mechanistic model to enhance its capability for a wider range of flow prediction.
Keywords: CFD, mechanistic model, subcooled boiling flow, two-fluid model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12691367 Ni Metallization on SiGe Nanowire
Authors: Y. Li, K. Buddharaju, X. P. Wang
Abstract:
The mechanism of nickel (Ni) metallization in silicon-germanium (Si0.5Ge0.5) alloy nanowire (NW) was studied. Transmission electron microscope imaging with in-situ annealing was conducted at temperatures of 200oC to 600°C. During rapid formation of Ni germanosilicide, loss of material from from the SiGe NW occurred which led to the formation of a thin Ni germanosilicide filament and eventual void. Energy dispersive X-ray spectroscopy analysis along the SiGe NW before and after annealing determined that Ge atoms tend to out-diffuse from the Ni germanosilicide towards the Ni source in the course of annealing. A model for the Ni germanosilicide formation in SiGe NW is proposed to explain this observation.
Keywords: SiGe, nanowires, germanosilicide.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17801366 Industrial Compressor Anti-Surge Computer Control
Authors: Ventzas Dimitrios, Petropoulos George
Abstract:
The paper presents a compressor anti-surge control system, that results in maximizing compressor throughput with pressure standard deviation reduction, increased safety margin between design point and surge limit line and avoiding possible machine surge. Alternative control strategies are presented.Keywords: Anti-surge, control, compressor, PID control, safety, fault tolerance, start-up, ESD.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 89641365 Homogenization of Cocoa Beans Fermentation to Upgrade Quality Using an Original Improved Fermenter
Authors: Aka S. Koffi, N’Goran Yao, Philippe Bastide, Denis Bruneau, Diby Kadjo
Abstract:
Cocoa beans (Theobroma cocoa L.) are the main components for chocolate manufacturing. The beans must be correctly fermented at first. Traditional process to perform the first fermentation (lactic fermentation) often consists in confining cacao beans using banana leaves or a fermentation basket, both of them leading to a poor product thermal insulation and to an inability to mix the product. Box fermenter reduces this loss by using a wood with large thickness (e>3cm), but mixing to homogenize the product is still hard to perform. Automatic fermenters are not rentable for most of producers. Heat (T>45°C) and acidity produced during the fermentation by microbiology activity of yeasts and bacteria are enabling the emergence of potential flavor and taste of future chocolate. In this study, a cylindro-rotative fermenter (FCR-V1) has been built and coconut fibers were used in its structure to confine heat. An axis of rotation (360°) has been integrated to facilitate the turning and homogenization of beans in the fermenter. This axis permits to put fermenter in a vertical position during the anaerobic alcoholic phase of fermentation, and horizontally during acetic phase to take advantage of the mid height filling. For circulation of air flow during turning in acetic phase, two woven rattan with grid have been made, one for the top and second for the bottom of the fermenter. In order to reduce air flow during acetic phase, two airtight covers are put on each grid cover. The efficiency of the turning by this kind of rotation, coupled with homogenization of the temperature, caused by the horizontal position in the acetic phase of the fermenter, contribute to having a good proportion of well-fermented beans (83.23%). In addition, beans’pH values ranged between 4.5 and 5.5. These values are ideal for enzymatic activity in the production of the aromatic compounds inside beans. The regularity of mass loss during all fermentation makes it possible to predict the drying surface corresponding to the amount being fermented.
Keywords: Cocoa fermentation, fermenter, microbial activity, temperature, turning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13511364 Electronic System Design for Respiratory Signal Processing
Authors: C. Matiz C., N. Olarte L., A. Rubiano F.
Abstract:
This paper presents the design related to the electronic system design of the respiratory signal, including phases for processing, followed by the transmission and reception of this signal and finally display. The processing of this signal is added to the ECG and temperature sign, put up last year. Under this scheme is proposed that in future also be conditioned blood pressure signal under the same final printed circuit and worked.Keywords: Conditioning, Respiratory Signal, Storage, Teleconsultation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23541363 A Two-Phase Flow Interface Tracking Algorithm Using a Fully Coupled Pressure-Based Finite Volume Method
Authors: Shidvash Vakilipour, Scott Ormiston, Masoud Mohammadi, Rouzbeh Riazi, Kimia Amiri, Sahar Barati
Abstract:
Two-phase and multi-phase flows are common flow types in fluid mechanics engineering. Among the basic and applied problems of these flow types, two-phase parallel flow is the one that two immiscible fluids flow in the vicinity of each other. In this type of flow, fluid properties (e.g. density, viscosity, and temperature) are different at the two sides of the interface of the two fluids. The most challenging part of the numerical simulation of two-phase flow is to determine the location of interface accurately. In the present work, a coupled interface tracking algorithm is developed based on Arbitrary Lagrangian-Eulerian (ALE) approach using a cell-centered, pressure-based, coupled solver. To validate this algorithm, an analytical solution for fully developed two-phase flow in presence of gravity is derived, and then, the results of the numerical simulation of this flow are compared with analytical solution at various flow conditions. The results of the simulations show good accuracy of the algorithm despite using a nearly coarse and uniform grid. Temporal variations of interface profile toward the steady-state solution show that a greater difference between fluids properties (especially dynamic viscosity) will result in larger traveling waves. Gravity effect studies also show that favorable gravity will result in a reduction of heavier fluid thickness and adverse gravity leads to increasing it with respect to the zero gravity condition. However, the magnitude of variation in favorable gravity is much more than adverse gravity.Keywords: Coupled solver, gravitational force, interface tracking, Reynolds number to Froude number, two-phase flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10121362 Heuristic Optimization Techniques for Network Reconfiguration in Distribution System
Authors: A. Charlangsut, N. Rugthaicharoencheep, S. Auchariyamet
Abstract:
Network reconfiguration is an operation to modify the network topology. The implementation of network reconfiguration has many advantages such as loss minimization, increasing system security and others. In this paper, two topics about the network reconfiguration in distribution system are briefly described. The first topic summarizes its impacts while the second explains some heuristic optimization techniques for solving the network reconfiguration problem.Keywords: Network Reconfiguration, Optimization Techniques, Distribution System
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27551361 Relationship between Gully Development and Characteristics of Drainage Area in Semi-Arid Region, NW Iran
Authors: Ali Reza Vaezi, Ouldouz Bakhshi Rad
Abstract:
Gully erosion is a widespread and often dramatic form of soil erosion caused by water during and immediately after heavy rainfall. It occurs when flowing surface water is channelled across unprotected land and washes away the soil along the drainage lines. The formation of gully is influenced by various factors, including climate, drainage surface area, slope gradient, vegetation cover, land use, and soil properties. It is a very important problem in semi-arid regions, where soils have lower organic matter and are weakly aggregated. Intensive agriculture and tillage along the slope can accelerate soil erosion by water in the region. There is little information on the development of gully erosion in agricultural rainfed areas. Therefore, this study was carried out to investigate the relationship between gully erosion and morphometric characteristics of the drainage area and the effects of soil properties and soil management factors (land use and tillage method) on gully development. A field study was done in a 900 km2 agricultural area in Hshtroud township located in the south of East Azerbaijan province, NW Iran. Toward this, 222 gullies created in rainfed lands were found in the area. Some properties of gullies, consisting of length, width, depth, height difference, cross section area, and volume, were determined. Drainage areas for each or some gullies were determined, and their boundaries were drawn. Additionally, the surface area of each drainage, land use, tillage direction, and soil properties that may affect gully formation were determined. The soil erodibility factor (K) defined in the Universal Soil Loss Equation (USLE) was estimated based on five soil properties (silt and very fine sand, coarse sand, organic matter, soil structure code, and soil permeability). Gully development in each drainage area was quantified using its volume and soil loss. The dependency of gully development on drainage area characteristics (surface area, land use, tillage direction, and soil properties) was determined using correlation matrix analysis. Based on the results, gully length was the most important morphometric characteristic indicating the development of gully erosion in the lands. Gully development in the area was related to slope gradient (r = -0.26), surface area (r = 0.71), the area of rainfed lands (r = 0.23), and the area of rainfed tilled along the slope (r = 0.24). Nevertheless, its correlation with the area of pasture and soil erodibility factor (K) was not significant. Among the characteristics of drainage area, surface area is the major factor controlling gully volume in the agricultural land. No significant correlation was found between gully erosion and soil erodibility factor (K) estimated by the USLE. It seems the estimated soil erodibility cannot describe the susceptibility of the study soils to the gully erosion process. In these soils, aggregate stability and soil permeability are the two soil physical properties that affect the actual soil erodibility and in consequence, these soil properties can control gully erosion in the rainfed lands.
Keywords: Agricultural area, gully properties, soil structure, USLE, Universal Soil Loss Equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 95