**Commenced**in January 2007

**Frequency:**Monthly

**Edition:**International

**Paper Count:**32146

##### A Two-Phase Flow Interface Tracking Algorithm Using a Fully Coupled Pressure-Based Finite Volume Method

**Authors:**
Shidvash Vakilipour,
Scott Ormiston,
Masoud Mohammadi,
Rouzbeh Riazi,
Kimia Amiri,
Sahar Barati

**Abstract:**

**Keywords:**
Coupled solver,
gravitational force,
interface tracking,
Reynolds number to Froude number,
two-phase flow.

**Digital Object Identifier (DOI):**
doi.org/10.5281/zenodo.1131880

**References:**

[1] J. Weisman, “Two-phase flow patterns,” in Handbook of Fluids in Motion, N. P. Cheremisinoff and R. Gupta, Ed. Ann Arbor Science Publication, 1983, pp. 409-425.

[2] J. H. Ferziger and M. Peric, Computational methods for fluid dynamics. Springer Science & Business Media, 2012.

[3] J. M. Floryan and H. Rasmussen, “Numerical methods for viscous flows with moving boundaries,” Appl. Mech. Rev., vol. 42, no. 12, pp. 323-341, 1989.

[4] F. H. Harlow and J. E. Welch, “Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface,” Phys. Fluids, vol. 8, no. 12, p. 2182, 1965.

[5] C. W. Hirt and B. D. Nichols, “Volume of fluid (VOF) method for the dynamics of free boundaries,” J. Comput. Phys. vol. 39, no. 1, pp. 201-225, 1981.

[6] J. U. Brackbill, D. B. Kothe, and C. Zemach, “A Continuum Method for Modeling Surface Tension,” J. Comput. Phys., vol. 100, no. 2, pp. 335-354, 1992.

[7] S. Chen, D. B. Johnson, P. E. Raad, and D. Fadda, “The surface marker and micro cell method,” Int. J. Numer. Meth. Fl., vol. 25, no. 7, pp. 749-778, 1997.

[8] M. Sussman, P. Smereka, and S. Osher, “A Level Set Approach for Computing Solutions to Incompressible Two-Phase Flows,” J. Comput. Phys., vol. 114, no. 1, pp. 146-159, 1994.

[9] S. Osher and R. P. Fedkiw, “Level Set Methods,” J. Comput. Phys., vol. 169, no. 2, pp. 463-502, 2001.

[10] J. A. Sethian, “Evolution, Implementation, and Application of Level Set and Fast Marching Methods for Advancing Fronts,” J. Comput. Phys., vol. 169, no. 2, pp. 503-555, 2001.

[11] G. D. Raithby, W. X. Xu, and G. D. Stubley, “Prediction of incompressible free surface with an element-based finite volume method,” J. Comput. Fl. Dyn., vol. 4, no. 3, pp. 353-371, 1995.

[12] Demirdzic and M. Peric, “Finite volume method for prediction of fluid flow in arbitrarily shaped domains with moving boundaries,” Int. J. Numer. Meth. Fl., vol. 10, no. 7, pp. 771-790, 1990.

[13] E. S. Oran and J. P. Boris, Numerical Simulation of Reactive Flow, Elsevier, New York, 1987.

[14] P. J. Shopov, P. D. Minev, I. B. Bazhekov, and Z. D. Zapryanov, “Interaction of a Deformable Bubble with a Rigid Wall at Moderate Reynolds Numbers,” J. Fluid Mech., vol. 219, pp. 241-271, 1990.

[15] J. Feng, H. H. Hu, and D. D. Joseph, “Direct Simulation of Initial Value Problems for the Motion of Solid Bodies in a Newtonian Fluid, Part 1. Sedimentation,” J. Fluid Mech., vol. 261, pp. 95-134, 1994.

[16] J. Feng, H. H. Hu, and D. D. Joseph, “Direct Simulation of Initial Value Problems for the Motion of Solid Bodies in a Newtonian Fluid, Part 2. Couette and Poiseuille Flows,” J. Fluid Mech., vol. 277, pp. 271-301, 1995.

[17] H. H. Hu, “Direct Simulation of Flows of Solid-Liquid Mixtures,” Int. J. Multiphase Flow, vol. 22, no. 2, pp. 335-352, 1996.

[18] J. Fukai, Y. Shiiba, T. Yamamoto, O. Miyatake, D. Poulikakos, C. M. Megaridis, and Z. Zhao, “Wetting Effects on the Spreading of a Liquid Droplet Colliding with a Flat Surface: Experiment and Modeling,” Phys. Fluids, vol. 7, no. 2, pp. 236-247, 1995.

[19] J. Glimm, J. W. Grove, X. L. Li, W. Oh, and D. H. Sharp, “A critical analysis of Rayleigh-Taylor growth rates,” J. Comput. Phys., vol. 169, no. 2, pp. 652-677, 2001.

[20] S. O. Unverdi and G. Tryggvason, “A Front-Tracking Method for Viscous, Incompressible, Multi-Fluid Flows,” J. Comput. Phys., vol. 100, no. 1, pp. 25-37, 1992.

[21] G. Tryggvason, B. Bunner, A. Esmaeeli, D. Juric, N. Al-Rawahi, W. Tauber, J. Han, S. Nas, and Y-J. Jan, “A front-tracking method for the computations of multiphase flow,” J. Comput. Phys., vol. 169, no. 2, pp. 708-759, 2001.

[22] F. Hassaninejadafarahani and S. Ormiston, “Numerical Analysis of Laminar Reflux Condensation from Gas-Vapour Mixtures in Vertical Parallel Plate Channels,” World Academy of Science, Engineering and Technology, Int. J. Mech., Aer., Ind., Mech. and Manuf. Eng., vol. 9, no. 5, pp. 778-785, 2015.

[23] M. A. Islam, A. Miyara, T. Nosoko, and T. Setoguchi, “Numerical investigation of kinetic energy and surface energy of wavy falling liquid film,” J. Therm. Sci., vol. 16, no. 3, 237-242, 2007.

[24] R. W. Fox and T. A. McDonald, Introduction to fluid mechanics, John Wiley, 1994.

[25] Demirdzic and M. Peric, “Space conservation law in finite volume calculations of fluid flow,” Int. J. Numer. Meth. Fl., vol. 8, no. 9, pp. 1037-1050, 1988.

[26] C. M. Rhie and W. L. Chow, “Numerical Study of the Turbulent Flow Past an Airfoil with Trailing Edge Separation,” AIAA Journal, vol. 21, no. 11, pp. 1525–1532, 1983.

[27] S. Vakilipour and S. J. Ormiston, “A coupled pressure-based co-located finite-volume solution method for natural-convection flows,” Numer. Heat Tr., B-Fund., vol. 61, no. 2, pp. 91-115, 2012.

[28] S. Muzaferija and M. Peric, “Computation of free-surface flows using the finite-volume method and moving grids,” Numer. Heat Transfer, vol. 32, no. 4, pp. 369-384, 1997.

[29] T. E. Tezduyar, S. Aliabadi, M. Behr, A. Johnson, V. Kalro, and M. Litke, “Flow simulation and high performance computing,” Comput. Mech., vol. 18, no. 6, pp. 397–412, 1996.