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Abstract—Sequence-to-sequence (seq2seq) models augmented
with attention mechanisms are increasingly important in automated
customer service. These models, adept at recognizing complex
relationships between input and output sequences, are essential
for optimizing chatbot responses. Central to these mechanisms are
neural attention weights that determine the model’s focus during
sequence generation. Despite their widespread use, there remains
a gap in the comparative analysis of different attention weighting
functions within seq2seq models, particularly in the context of
chatbots utilizing the Customer Support Twitter (CST) dataset. This
study addresses this gap by evaluating four distinct attention-scoring
functions—dot, multiplicative/general, additive, and an extended
multiplicative function with a tanh activation parameter — in neural
generative seq2seq models. Using the CST dataset, these models
were trained and evaluated over 10 epochs with the AdamW
optimizer. Evaluation criteria included validation loss and BLEU
scores implemented under both greedy and beam search strategies
with a beam size of k = 3. Results indicate that the model with the
tanh-augmented multiplicative function significantly outperforms its
counterparts, achieving the lowest validation loss (1.136484) and the
highest BLEU scores (0.438926 under greedy search, 0.443000 under
beam search, k = 3). These findings emphasize the crucial influence
of selecting an appropriate attention-scoring function to enhance the
performance of seq2seq models for chatbots, particularly highlighting
the model integrating tanh activation as a promising approach to
improving chatbot quality in customer support contexts.

Keywords—Attention weight, chatbot, encoder-decoder, neural
generative attention, score function, sequence-to-sequence.

I. INTRODUCTION

IN today’s digital world, customer support plays a

critical role in improving the overall user experience. To

ensure efficient and effective customer support, companies

are increasingly turning to chatbots. These are automated

agents that have proven to be powerful alternative solutions.

Chatbots are designed to handle a large number of customer

inquiries across various industries, reducing human workload

and shortening response time. As customer expectations

for smooth and accurate interactions increase, there is a

constant need to improve the performance and capabilities

of chatbots. One of the common approaches to chatbot

development is based on the seq2seq model, adopted from

machine translation. Seq2seq models, a class of neural network

architectures, increasingly form the core of these chatbot

systems because of their ability to map input sequences (query)

S.M. Suhaili is with the Centre for Pre-Universiti Studies, Universiti
Malaysia Sarawak, Kota Samarahan, Sarawak, Malaysia 94300 (e-mail:
mssinarwati@unimas.my).

N. Salim is with Universiti Teknologi Malaysia, Malaysia.
M.N. Jambli is with Universiti Malaysia Sarawak, Malaysia.

and output sequences (response) - a fundamental requirement

for natural and appropriate response prediction.

Although attention mechanisms within seq2seq models are

successful in several natural language processing (NLP) tasks,

such as machine translation and summarization, including

chatbot, little attention has been paid to the various attention

weights — such as dot, multiplicative/general, additive, and

modified attention weights - which could potentially impact

the quality of response predictions, especially in text chatbot

datasets. With this in mind, this study aims to compare and

evaluate four distinct types of attention weights in the neural

generative seq2seq model: dot, multiplicative/general, additive,

and modified multiplicative (involving a tanh activation

function). The performance evaluation is based on the sparse

categorical loss during training and the BLEU score for

different search strategies using greedy and beam search. The

following is outlined main contributions of this study:

• Training and evaluating generative seq2seq models using

the CST dataset with four different attention weights.

• Comparing the performance of these models using sparse

categorical loss and BLEU scores.

• Identifying the attention weights that perform most

effectively and consistently across different evaluation

metrics.

• Gaining insight into the potential benefits and limitations

of each of the attention weights.

The structure of this paper is outlined as follows: Section

II reviews related work, while Section III presents a detailed

description of the model. Section IV presents the methodology

of our experiments. The results obtained from the experiments

are presented and discussed in Section V. Finally, Section VI

summarizes the research results and provides directions for

future studies.

II. RELATED WORK

Seq2seq models, characterized by an encoder-decoder

(E2D) architecture, have been used extensively in various

natural language processing (NLP) tasks such as chatbots,

machine translation, question answering, text summarization,

image captioning, and sentiment analysis. Since their

introduction as a key technique for neural machine translation

(NMT) [1], seq2seq models have evolved significantly.

Innovations such as Long Short-Term Memory (LSTM) [2]

and Gated Recurrent Units (GRU) [3] have been instrumental

in overcoming the challenges associated with vanishing or
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exploding gradients, thus enhancing the models’ ability to

process and generate more complex text sequences.

Despite the rapid advancements in NLP led by Large

Language Models (LLMs) and transformer architectures,

the application of these cutting-edge models in specific

domains such as chatbot technology needs to be carefully

considered. Although transformers represent a significant leap

in attention-based mechanisms, their optimal applicability

varies across different NLP tasks. Empirical evidence, such as

in [4], suggests that in chatbot applications, seq2seq models

perform better compared to transformer models. This finding

has directed the focus of the current study to seq2seq models

to improve the prediction accuracy of chatbot responses. These

models, while effective, also face challenges, especially when

handling complex and lengthy inputs.

Bidirectional approaches in seq2seq models, which involve

modeling in reverse order, are often utilized to capture

dependencies in utterances more accurately [5] [6]. However,

they reach their limits with fixed-length vectors, leading to

decoding problems for longer sentences [3] and potentially

inaccurate responses due to compression of the input. To

mitigate this issue, studies in [7] and [8] introduce attention

mechanisms by augmenting another layer into the decoder and

acting as an interface between the E2D structure. This layer

enables the decoder to repeatedly read and search relevant

parts of the source sentence, thereby enhancing the accuracy

of predictions. Motivated by the effectiveness of attention

mechanisms in machine translation, numerous studies have

been conducted to investigate the potential of this technique

in the context of chatbots. In [9], attention mechanisms

were incorporated into the E2D architecture to improve the

relevance between question and answer. The authors present

a novel model, Hierarchical Recurrent Attention Network

(HRAN), to improve context-based response generation in

conversational agents. HRAN employs a hierarchical attention

mechanism to capture the variability in the meaning of words

and utterances within a unified framework. The effectiveness

of the model is assessed by both automatic evaluation and

human evaluation. The result shows that HRAN outperforms

existing cutting-edge models for context-based response

generation. Contrasting with HRAN, other studies have

investigated the inclusion of external knowledge sources and

conversational flow to improve the predictive capabilities of

chatbots [10]. Another notable approach is an attention-based

neural E2D architecture that leverages knowledge graph and

corpus joint embedding for task-oriented systems [11].

In the context of attention efficiency, the concept of ’short

attention’ has been introduced to speed up the computations

of the attention mechanism, which is particularly beneficial

for lengthy input and output scenarios [12]. Techniques

such as matrix transformation and convolutional operations

have been shown to increase model efficiency and skillfully

manage longer dialogue sequences. In addition, in [13]

a comparative study was conducted which revealed that

the attention-based bi-directional recurrent neural network

(bi-RNN) model outperformed the baseline approaches in

terms of the BLEU score. The study further demonstrated

that the bi-directional long short-term memory (biLSTM)

model performed better with Glove embeddings, while the

bi-directional gated recurrent unit (biGRU) model performed

better with FastText embeddings. The study also investigated

the impact of complementary deep learning methods, such as

batch size and hidden size of RNN, on different models of

seq2seq architectures based on various word embeddings with

RNN encoder types.

Despite these advancements, there is still a deficiency in

the comparative literature dealing with the different weighting

of attention in chatbot models. The present study attempts

to address this gap by comparing and evaluating the effects

of different attention weights on a chatbot dataset. The

performance evaluation includes both sparse categorical loss

during training and BLEU scores across multiple search

strategies, such as greedy and beam search. This approach

aims to develop a nuanced understanding of how variations

in attention weighting affect chatbot efficiency and response

quality.

III. MODEL DESCRIPTION

In this section, the model architecture implemented in this

study briefly discusses the word representation model, seq2seq

Learning Task Model, and neural attention.

A. Word Representation Model

To enable computers to understand text data, it must be

transformed into a numerical form, a process known as

embedding. This process involves mapping words or phrases

to vectors of real numbers in a multidimensional space.

An embedding layer, which is an essential part of this

process, can be initialized with pre-trained models, FastText

being a notable example. Developed by Facebook, Inc. and

represents a significant advance in the field of prediction-based

word embedding models. It aims to address a key limitation

of conventional word embedding models that overlook the

internal structure of words. In contrast to the conventional

models, FastText, as detailed in [14] and [15], enhances the

Skip-Gram model, proposed in [16]. It represents each word as

a collection of characters n-grams, thereby acknowledging its

morphology. In this model, a word’s vector is computed as the

sum of its n-grams, allowing the model to generate meaningful

vectors even out-of-vocabulary (OOV) words. This feature is

especially beneficial for inflected languages where specific

word forms might not appear in the training set. Moreover,

FastText’s design enables efficient and expedited training

compared to many alternative pre-trained word embedding

models.

B. Seq2seq Model

Initially designed for machine translation, the seq2seq

model facilitates the transformation of input sequences from

one domain (e.g., Malay sentences) into corresponding

output sequences in another domain (e.g., their English

translations). Given its effectiveness, it has garnered the

attention of researchers and has been adapted for tasks

such as caption generation, text summarization, and chatbot
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interactions. In the context of chatbots, a natural language

query generates a corresponding natural language response.

A central approach to the seq2seq implementation is the

encoder-decoder framework. It essentially consists of an

encoder, a context vector, and a decoder. The encoder

captures and compresses the essence of the input into a

fixed-dimensional hidden state. Subsequently, the decoder

uses this state to produce the desired output. While the

foundational architecture uses two RNNs, enhancements can

be achieved using advanced RNN variants such as LSTM/GRU

[1]. In the encoding phase, the input is converted into a

vector representation leveraging an RNN-based encoder to

encapsulate the essential context and details of the input

sequence. Subsequently, a second RNN, functioning as a

decoder, employs this vector to produce the desired output

sequence. A fundamental representation of the seq2seq model

during the training phase is depicted in Fig. 1.

Fig. 1 Fundamental Architecture of Encoder-Decoder during Training,
however, Teacher Forcing is ignored during Inference

From this figure, it can be seen that the process of mapping

the words contained in each input statement or utterance,

denoted by x = {x1,x2,x3, ..., .xn}, (where n is the length of

the statement), into an embedded representation (ϕxn
). The

result of this mapping is then passed to Recurrent Neural

Network (RNN) models, which take the hidden state of the

first encoder as input. The RNNs sequentially generate hidden

representations and output vectors at each time step, taking

a word and the previous state’s hidden state as input and

providing output and an updated hidden state until they reach

the end of the input, which is indicated by a unique token.

However, the encoder’s outputs at each time step are not

considered because they are consolidated in the context vector

(C). This context vector contains information about all input

elements, which facilitates accurate prediction of the response

by the decoder. The calculation of the hidden states and the

context vectors is shown in (1) and (2), respectively.

h̄m = f1(ϕxn
, h̄m−1) (1)

c = f2(
{

h̄0, h̄1, ...h̄M
}
) (2)

where h̄ denotes the hidden state, c denotes the context vector

formed from the hidden states of the encoder, and f1, f2 are

nonlinear functions that may include LSTM as used in this

study.

The context vector serves as the initial hidden state of the

decoder and facilitates the transfer of information from the

encoder. This study addresses the use of bidirectional encoders

where both forward and reverse RNNs are implemented. The

input sequence is processed in both directions and the resulting

forward and backward hidden states are merged before being

passed to the decoder.

During the decoding process, the first timestep, the <SOS>
token is presented along with the context vector as input to

the RNNs. The <SOS> token serves as a starting point for

decoding and facilitates the generation of the first word of

the chatbot response by analyzing the context vector. The

initial output of the RNNs during decoding will likely be

“I”. For the next timestep, “I” is used as input along with

the hidden state from the previous timestep. This process is

repeated and generates the output “am”. The generation of

the output continues until the RNNs encounter a unique token

that is identified as <EOS>. Teacher forcing is one of the

techniques that can also be used to improve the performance of

the model. Teacher forcing is implemented while training the

network, using the actual output of the training data as input

for the next time step, as implemented in this study. Given

the context vector as c and all previously predicted outputs

as {y1,y2,y3, ...yt−1}, the decoder was trained to predict the

subsequent token yt which refers to the maximum likelihood

estimation of yt . The prediction is given by y, the output vector,

and c, the context vector, hence, the p(y) is calculated as in

(3):

p(y) =
T

∏
t=1

p(yt |y1,y2,y3, ...yt−1,xt) (3)

and produces a token with a conditional probability for each

timestep t as in (4):

p(yt |y1,y2,y3, ...yt−1,xt) = ḡ(yt−1,st ,ct) (4)

where ḡ(.) is a softmax function and st is the hidden state of

the decoder at the timestep t which can be computed as in (5)

as follows:

st = f (st−1,yt−1,ct) (5)

C. Neural Attention Mechanism

The vanilla seq2seq model is based on the RNNs mentioned

earlier, which use the temporal dynamics of the input data

to produce sequential output data. However, the relevance

of the output generated at a given timestep and the input

sequence utilized to derive this result remains uncertain.

Furthermore, only the final states (context vector) serve to
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initiate the decoder, ignoring all intermediate states. While this

approach works well for small or medium-length sequences,

capturing extensive sequences within a single vector becomes

increasingly difficult as the sequence length increases. RNNs

analyze tokens sequentially while preserving a state vector that

captures the data of the processed tokens. This sequential data

encoding can lead to uncontrolled information spread. Yet, for

extended sequences, the model may miss details from earlier

tokens at the final state because the gradient vanishing issues,

reducing its efficiency. While LSTMs mitigate the challenges

of vanishing and exploding gradients, they do not remove

them completely. In addition, RNN models may not be able

to handle increasingly complex features and provide reliable

results.

Fig. 2 Attention-based Encoder-Decoder

The introduction of attention processes in [7] and [8]

has alleviated the problem of the vanilla seq2seq model.

An attention process facilitates a model to immediately

determine the state of an earlier part of the sentence and

make conclusions from it. All previous states are accessible to

the attention layer. It can provide more accurate information

about distant relevant tokens by weighing them according

to a learned measure of relevance to the current token, as

depicted in Fig. 2. At each decoding phase, it determines

which elements of the source are most relevant. Rather than

compressing the entire source into a single vector, the encoder

outputs token representations for all source data. Moreover,

the fundamental idea of attention is to use all of the encoder’s

intermediate states, rather than discarding them, to create the

context vectors that the decoder uses to generate the output

sequence by applying attention weighting. The relevant part of

the input is determined by calculating the attention weighting,

which then determines the output.

During the attention mechanism, each word in the input

sequence is assessed for its relevance to every output cell. For

every yt in the output y, it is influenced by the context vector ct
(source context for decoder step t) are used in an information

filter for all encoder’s hidden states h = {h1,h2,h3, ...,hmx} of

the encoder, which can be calculated as in (7)-9):

ct =
mx

∑
i=1

αtihi (6)

Where αti is calculated by

αti =
exp(eti)

∑mx
j=i exp(et j)

(7)

where eti = align(st−1,hi) refers to the variants of the score

function that considers

M1 Dot eti = sT
t h̄i

M2 Multiplicative eti = sT
t Wah̄i

M3 Additive eti = vT
a tanh(Wast + Uah̄i)

M4 ∗Multiplicative eti = tanh(sT
t Wah̄i)

Where αti represents the attention weights determined by

the model while, Wa,Ua and Va, implies additional weight

parameters for the model to learn. The align is an alignment

model for evaluating the relationship between the input of

position i and the output of position t.
Typically, M1, M2, and M3 are the existing scores in the

seq2seq model, as highlighted in several studies [7], [8], [13].

M2, or the multiplicative scoring function, computes attention

weights through a linear interaction between input and output

features. While the linear nature of M2 is effective in many

scenarios, it has its limitations, particularly in the context

of complex natural language processing tasks. This linear

approach may not fully capture the complicated, non-linear

relationships present in language data that are often important

in chatbot applications. In contrast to this study, the tanh
activation is introduced on the existing multiplicative scoring

function. The tanh function can squash the output lying in the

range of -1 and 1. This bounded output can be advantageous

for the model’s performance, as it ensures a normalized and

consistent scale for attention weights, which is crucial for

stable and meaningful comparisons between different parts of

the input sequences. It also solves some of the underlying

limitations of M2 and is necessary for stable and interpretable

attention distributions. This modification slightly attempts

to increase the model’s ability to understand and interpret

complicated language patterns, which is crucial for producing

a more effective chatbot.

IV. METHODOLOGICAL APPROACH

This section provides an overview of the current

methodological approach to research the neural generative

attention weights in the seq2seq model. Before this model

is performed, several preprocessing steps are required to

conduct the current experimental study. The first step begins

with splitting the initial dataset into a training set and

a test set. The whole dataset is split into 75% and

35% for the training and validation/test sets, respectively.

The study uses Kaggle’s ‘Customer Support on Twitter

(CST)’ dataset, comprising 2,811,774 tweets and replies. This

dataset contains 1,537,843 tweets (54.69%) from consumers

and 1,273,931 (45.31%) from customer support agents. Of

particular note, approximately 1.27 million tweets from

consumers in this dataset contained responses from customer

service representatives, providing a rich corpus of real-world
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conversation data for analysis. The selected dataset, which is

characterized by its realistic nature and the manageable size

of the messages, is particularly well suited for the study of

recurrent networks.

Preparing the dataset for the modeling process involves

a series of pre-processing and feature extraction steps.

These pre-processing steps include expanding abbreviations,

removing emojis, emoticons, mentions, URLs, HTML tags,

and special characters, correcting spelling errors normalizing

the text to lowercase, and appending a special token for

words that are not in the vocabulary. In addition, the data are

restructured to integrate tokens and facilitate the processing of

decoder input. During the exploratory data analysis (EDA), the

max length of the sequence was set to 39, which corresponds

to the 95th percentile of the dataset distribution. The data are

then organized to meet the requirements of the E2D model

and the text is tokenized. The uniformity of the sequences is

ensured by padding shorter sequences and truncating longer

sequences to obtain a consistent format.

For feature extraction, a transfer learning approach is

adopted, utilizing FastText pre-trained word embeddings as

mentioned earlier to speed up training and increase model

performance. This approach considers knowledge transfer

between networks trained on different datasets. The result

of this step is incorporated into the neural generative

attention model depending on different scoring functions

(attention weights): dot, multiplicative, additive, and extended

multiplicative by adding act tanh into the function as discussed

in the previous section, which is trained with a training set.

The training of this model to predict the response matches the

ground-truth answers. The training process can be represented

as minimizing the loss function L(θ), where θ denotes the

model parameters. The objective is to find the optimal θ that

minimizes the difference between the predicted response and

the ground truth, which can be defined as:

L(θ) =
1

N

N

∑
i=1

L (yi, ŷi)

where L(θ) is the average loss over the training set, N is

the number of examples in the training set, yi refers to the

target label for i, ŷi is the predicted response for i generated

by the model, and L (yi, ŷi) is the loss for i calculated

using a loss function suitable for the problem at hand such

as sparse-categorical cross-entropy loss for this case. The

optimization process to minimize L(θ) is based on an AdamW

optimizer [17]. This method iteratively updates the parameter

θ based on the gradient of the loss function concerning θ
[18]. These iterations continue until a stopping criterion is

met. e.g., a predefined number of epochs. The final result is

an optimized set of parameter θ that can be used to make

predictions that are very close to ground truth. The lower the

loss value the better during the training process. Finally, we

prepare the validation/test dataset accordingly and make use

of it to evaluate the models. The methodology followed in this

work is depicted in Fig. 3.

This experiment was performed using TensorFlow [19]

and Keras, a Python-based deep neural network package. A

Fig. 3 Illustration of the Methodological Approach

TABLE I
HYPERPARAMETER SETTING

Parameter Setting

Max Length Input 39
Embedding size 300
Batch Size 64
Hidden Unit 480
Learning rate 0.003
Clipvalue 0.5
Optimizer AdamW
Word embedding FastText
Encoder types Bidirectional

Juypyter notebook hosted as open source under the name

Google Colaboratory or Colab Pro+ was used for the models,

with a high specification of memory, 89/50 GB RAM and

GPU via subscription and tested with a batch size of 64.

Moreover, the LSTM hidden size is tested with 480 units

(the LSTM units that our memory space can hold). The four

different types of score functions (dot, multiplicative, additive

and *multiplicative (extended multiplicative)) were compared

with a learning rate of 0.003 for the optimization [20].

The hyperparameter learning rate feeds into the optimization

function. To mitigate the ‘exploding gradient’ issue, a gradient

clipping value of 50.0 is incorporated. This approach ensures

that the gradients do not expand exponentially, thus avoiding

potential overflow or surpassing steep changes in the cost

function. All weights and biases are initialized following the

Xavier Uniform Glorot and Bengio distribution [21]. The

study uses 300-dimensional pre-trained word embeddings for

FastText. Initially, the experiment setting also uses an early

stopping technique to prevent overfitting. However, there are

limitations to training the models as our memory resources

are not occupied by the early stopping technique for training.

The hyperparameters and for training the models are listed in

Table I.

V. RESULT AND DISCUSSION

In this section, the experimental results of the model for

the aforementioned dataset. The experiment evaluated the

performance of the different score functions in the neural

attention mechanism with the pre-trained FastText embedding
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TABLE II
COMPARISON OF DIFFERENT ATTENTION WEIGHTS (SCORE FUNCTIONS)

IN TERMS OF LOSS AND BLEU SCORE

Training Phase Inference Phase

FastText

Model Loss Val
Loss

BLEU

Greedy Search Beam Search, k=3

M1 1.072472 1.138756 0.436507 0.428405
M2 1.071038 1.137435 0.438132 0.430391
M3 1.073800 1.138623 0.438506 0.440251
M4 1.070897 1.136484 0.438926 0.443000

as an input feature to a model. Table II and Figs. 4 and 5

show the performance results of the different scoring functions

on the model using the sparse-categorical entropy loss during

training and the BLEU scores metric in the inference phase.

The result shows that the M4 model which incorporates

a tanh activation function into a multiplicative attention

scoring function, consistently outperforms the other models

across all evaluated metrics. This model achieved the lowest

validation loss of 0.136484 (see Fig. 4), indicating superior

generalizability to unseen data, and also it recorded the highest

BLEU scores under both greedy search (0.438926) and beam

size with size k = 3 (0. 0.443000). These results suggest

that the M4 model generates better response predictions,

highlighting the potential benefits of introducing non-linearity

into the scoring function in the attention process.

While the other models —M1-Dot, M2-Multiplicative, and

M3-Additive- show comparable results, a clear incremental

improvement in BLEU scores is observed as the analysis

progresses from M1-Dot to the M4 model, as shown in Fig. 5.

This progression suggests that increasing the complexity of

the attention-scoring mechanism, e.g., by including non-linear

activation functions, allows the model to learn more nuanced

relationships between input and output sequences, thereby

improving the quality of the generated responses. In addition,

these results also show that the choice of scoring function

is a key factor in the model’s performance. Adding tanh
activation to a multiplicative model (M4) has yielded the best

results highlighting the role of the attention process in chatbot

seq2seq tasks. The tanh function provides non-linearity in

the model and allows the function to squash the output into

the range between -1 and 1, allowing the model to focus

more effectively on relevant information. When the attention

process assigns weights to different parts of the input, the tanh
function ensures that these weights are scaled appropriately.

This potentially allows a clearer distinction between relevant

and irrelevant parts of the input, facilitating more nuanced

attention, which indirectly improves the performance of the

chatbot model. Furthermore, it can be observed from the

results that the improved model significantly outperformed the

base methods, and this improvement is statistically significant

at p < 0.05. This finding justifies the effective performance

of our proposed model, underscoring the role of the attention

process in chatbot seq2seq tasks.

Fig. 4 Validation loss for different attention weights during the training
phase

Fig. 5 BLEU score for different attention weights during the inference phase

VI. CONCLUSION

The study aimed to evaluate and compare

different attention-scoring functions —Dot (M1),

Multiplicative/General (M2), Additive (M3), and Extended

Multiplicative with tanh activation (M4)— in neural generative

seq2seq models, specifically for chatbot applications in a

CST dataset. The results of the experiment show that the

M4 model yields the most promising result for all evaluation

metrics. This model provided the lowest validation loss

(1.136484) and the highest BLEU scores (0.438926 for

greedy search, 0.443000 for beam search with size, k =

3), demonstrating its effectiveness in making appropriate

response predictions in a chatbot application. This result

suggests that introducing a non-linear activation function into

the attention mechanism enables the model to learn more

complex, nuanced relationships between input and output

sequences, thereby providing more appropriate response

predictions in chatbot applications. There is a progressive

improvement in performance with respect to the BLEU

score as the analysis moves from a simple dot product (M1)

to an extended multiplicative model. This highlights the

significant potential of the choice of the scoring function to

influence the improvement of the seq2seq model’s capabilities

in text chatbot datasets. Although this model was trained

for 10 epochs, without an early stopping technique due to

computational limitations, it represents a remarkable advance

in understanding the impact of different attention weights

of seq2seq models, especially in CST datasets. For future

work, it is suggested to extend the training over more

epochs for these models, investigating alternative activation

functions within the attention weights, examining various
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model optimization techniques, and testing these models

across diverse datasets to contribute a more comprehensive

understanding of their capabilities and limitation in different

scenarios.
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