WASET
	%0 Journal Article
	%A Mousa Bani Baker and  Maria Elektorowicz and  Adel Hanna and  Altayeb Qasem
	%D 2012
	%J International Journal of Environmental and Ecological Engineering
	%B World Academy of Science, Engineering and Technology
	%I Open Science Index 72, 2012
	%T The Influence of Biofuels on the Permeability of Sand-Bentonite Liners
	%U https://publications.waset.org/pdf/15430
	%V 72
	%X Liners are made to protect the groundwater table from
the infiltration of leachate which normally carries different kinds of
toxic materials from landfills. Although these liners are engineered to
last for long period of time; unfortunately these liners fail; therefore,
toxic materials pass to groundwater. This paper focuses on the
changes of the hydraulic conductivity of a sand-bentonite liner due to
the infiltration of biofuel and ethanol fuel. Series of laboratory tests
were conducted in 20-cm-high PVC columns. Several compositions
of sand-bentonite liners were tested: 95% sand: 5% bentonite; 90%
sand: 10% bentonite; and 100% sand (passed mesh #40). The
columns were subjected to extreme pressures of 40 kPa, and 100 kPa
to evaluate the transport of alternative fuels (biofuel and ethanol
fuel). For comparative studies, similar tests were carried out using
water. Results showed that hydraulic conductivity increased due to
the infiltration of alternative fuels through the liners. Accordingly,
the increase in the hydraulic conductivity showed significant
dependency on the type of liner mixture and the characteristics of the
liquid. The hydraulic conductivity of a liner (subjected to biofuel
infiltration) consisting of 5% bentonite: 95% sand under pressure of
40 kPa and 100 kPa had increased by one fold. In addition, the
hydraulic conductivity of a liner consisting of 10% bentonite: 90%
sand under pressure of 40 kPa and 100 kPa and infiltrated by biofuel
had increased by three folds. On the other hand, the results obtained
by water infiltration under 40 kPa showed lower hydraulic
conductivities of 1.50×10-5 and 1.37×10-9 cm/s for 5% bentonite:
95% sand, and 10% bentonite: 90% sand, respectively. Similarly,
under 100 kPa, the hydraulic conductivities were 2.30×10-5 and
1.90×10-9 cm/s for 5% bentonite: 95% sand, and 10% bentonite: 90%
sand, respectively.
	%P 804 - 807