Search results for: process performance index.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10977

Search results for: process performance index.

10197 Introducing Fast Robot Roller Hemming Process in Automotive Industry

Authors: Babak Saboori, Behzad Saboori, Johan S. Carlson, Rikard Söderberg

Abstract:

As product life cycle becomes less and less every day, having flexible manufacturing processes for any companies seems more demanding. In the assembling of closures, i.e. opening parts in car body, hemming process is the one which needs more attention. This paper focused on the robot roller hemming process and how to reduce its cycle time by introducing a fast roller hemming process. A robot roller hemming process of a tailgate of Saab 93 SportCombi model is investigated as a case study in this paper. By applying task separation, robot coordination, and robot cell configuration principles in the roller hemming process, three alternatives are proposed, developed, and remarkable reduction in cycle times achieved [1].

Keywords: Cell configuration, cycle time, robot coordination, roller hemming.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4075
10196 Modeling and Performance Evaluation of LTE Networks with Different TCP Variants

Authors: Ghassan A. Abed, Mahamod Ismail, Kasmiran Jumari

Abstract:

Long Term Evolution (LTE) is a 4G wireless broadband technology developed by the Third Generation Partnership Project (3GPP) release 8, and it's represent the competitiveness of Universal Mobile Telecommunications System (UMTS) for the next 10 years and beyond. The concepts for LTE systems have been introduced in 3GPP release 8, with objective of high-data-rate, low-latency and packet-optimized radio access technology. In this paper, performance of different TCP variants during LTE network investigated. The performance of TCP over LTE is affected mostly by the links of the wired network and total bandwidth available at the serving base station. This paper describes an NS-2 based simulation analysis of TCP-Vegas, TCP-Tahoe, TCPReno, TCP-Newreno, TCP-SACK, and TCP-FACK, with full modeling of all traffics of LTE system. The Evaluation of the network performance with all TCP variants is mainly based on throughput, average delay and lost packet. The analysis of TCP performance over LTE ensures that all TCP's have a similar throughput and the best performance return to TCP-Vegas than other variants.

Keywords: LTE; EUTRAN; 3GPPP, SAE; TCP Variants; NS-2

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3277
10195 Critical Success Factors Influencing Construction Project Performance for Different Objectives: Procurement Phase

Authors: Samart Homthong, Wutthipong Moungnoi

Abstract:

Critical success factors (CSFs) and the criteria to measure project success have received much attention over the decades and are among the most widely researched topics in the context of project management. However, although there have been extensive studies on the subject by different researchers, to date, there has been little agreement on the CSFs. The aim of this study is to identify the CSFs that influence the performance of construction projects, and determine their relative importance for different objectives across five stages in the project life cycle. A considerable literature review was conducted that resulted in the identification of 179 individual factors. These factors were then grouped into nine major categories. A questionnaire survey was used to collect data from three groups of respondents: client representatives, consultants, and contractors. Out of 164 questionnaires distributed, 93 were returned, yielding a response rate of 56.7%. Using the mean score, relative importance index, and weighted average method, the top 10 critical factors for each category were identified. The agreement of survey respondents on those categorised factors were analysed using Spearman’s rank correlation. A one-way analysis of variance was then performed to determine whether the mean scores among the various groups of respondents were statistically significant. The findings indicate the most CSFs in each category in procurement phase are: proper procurement programming of materials (time), stability in the price of materials (cost), and determining quality in the construction (quality). They are then followed by safety equipment acquisition and maintenance (health and safety), budgeting allowed in a contractual arrangement for implementing environmental management activities (environment), completeness of drawing documents (productivity), accurate measurement and pricing of bill of quantities (risk management), adequate communication among the project team (human resource), and adequate cost control measures (client satisfaction). An understanding of CSFs would help all interested parties in the construction industry to improve project performance. Furthermore, the results of this study would help construction professionals and practitioners take proactive measures for effective project management.

Keywords: Critical success factors, procurement phase, project life cycle, project performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2243
10194 Genetic Algorithm Based Deep Learning Parameters Tuning for Robot Object Recognition and Grasping

Authors: Delowar Hossain, Genci Capi

Abstract:

This paper concerns with the problem of deep learning parameters tuning using a genetic algorithm (GA) in order to improve the performance of deep learning (DL) method. We present a GA based DL method for robot object recognition and grasping. GA is used to optimize the DL parameters in learning procedure in term of the fitness function that is good enough. After finishing the evolution process, we receive the optimal number of DL parameters. To evaluate the performance of our method, we consider the object recognition and robot grasping tasks. Experimental results show that our method is efficient for robot object recognition and grasping.

Keywords: Deep learning, genetic algorithm, object recognition, robot grasping.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2135
10193 Classification of Construction Projects

Authors: M. Safa, A. Sabet, S. MacGillivray, M. Davidson, K. Kaczmarczyk, C. T. Haas, G. E. Gibson, D. Rayside

Abstract:

In order to address construction project requirements and specifications, scholars and practitioners need to establish taxonomy according to a scheme that best fits their need. While existing characterization methods are continuously being improved, new ones are devised to cover project properties which have not been previously addressed. One such method, the Project Definition Rating Index (PDRI), has received limited consideration strictly as a classification scheme. Developed by the Construction Industry Institute (CII) in 1996, the PDRI has been refined over the last two decades as a method for evaluating a project's scope definition completeness during front-end planning (FEP). The main contribution of this study is a review of practical project classification methods, and a discussion of how PDRI can be used to classify projects based on their readiness in the FEP phase. The proposed model has been applied to 59 construction projects in Ontario, and the results are discussed.

Keywords: Project classification, project definition rating index (PDRI), project goals alignment, risk.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5194
10192 Effect of Dietary Supplementation of Different Levels of Black Seed (Nigella Sativa L.) on Growth Performance, Immunological, Hematological and Carcass Parameters of Broiler Chicks

Authors: R. S. Shewita, A. E. Taha

Abstract:

This experiment was conducted to investigate the effect of dietary supplementation of different levels of black seed (Nigella sativa L.) on the performance and immune response of broiler chicks. A total 240 day-old broiler chicks were used and randomly allotted equally into six experimental groups designated as 1, 2, 3, 4, 5 and 6 having black seed at the rate of 0, 2, 4, 6, 8 and 10 g /kg diet respectively. The study was lasted for 42 days. Average body weight, weight gain, relative growth rate, feed conversion, antibody titer against Newcastle disease, phagocytic activity and phagocytic index, some blood parameters(GOT, GPT, Glucose, Cholesterol, Triglyceride, Total protein, Albumen, WBCs, RBCs, Hb and PCV), dressing percentage, weight of different body organs, abdominal fat weight, were determined. It was found that, N. Sativa significantly improved final body weight, total body gain and feed conversion ratio of groups 2 and 3 when compared with the control group. Higher levels of N. Sativa did not improve growth performance of the chicks. Non significant differences were observed for antibody titer against Newcastle virus, WBCs count, serum GOT, glucose level, dressing %, relative liver, spleen, heart and head percentages. Lymphoid organs (Bursa and Thymus) improved significantly with increasing N. Sativa level in all supplemented groups. Serum cholesterol, triglyceride and visible fat % significantly decreased with Nigella sativa supplementation while serum GPT level significantly increased with nigella sativa supplementation.

Keywords: Nigella Sativa, broiler, growth, carcass traits, serum, blood

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3091
10191 Predicting Extrusion Process Parameters Using Neural Networks

Authors: Sachin Man Bajimaya, SangChul Park, Gi-Nam Wang

Abstract:

The objective of this paper is to estimate realistic principal extrusion process parameters by means of artificial neural network. Conventionally, finite element analysis is used to derive process parameters. However, the finite element analysis of the extrusion model does not consider the manufacturing process constraints in its modeling. Therefore, the process parameters obtained through such an analysis remains highly theoretical. Alternatively, process development in industrial extrusion is to a great extent based on trial and error and often involves full-size experiments, which are both expensive and time-consuming. The artificial neural network-based estimation of the extrusion process parameters prior to plant execution helps to make the actual extrusion operation more efficient because more realistic parameters may be obtained. And so, it bridges the gap between simulation and real manufacturing execution system. In this work, a suitable neural network is designed which is trained using an appropriate learning algorithm. The network so trained is used to predict the manufacturing process parameters.

Keywords: Artificial Neural Network (ANN), Indirect Extrusion, Finite Element Analysis, MES.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2368
10190 Treatment of Cutting Oily-Wastewater by Sono Fenton Process: Experimental Approach and Combined Process

Authors: P. Painmanakul, T. Chintateerachai, S. Lertlapwasin, N. Rojvilavan, T. Chalermsinsuwan, N. Chawaloesphonsiya, O. Larpparisudthi

Abstract:

Conventional coagulation, advance oxidation process (AOPs), and the combined process were evaluated and compared for its suitability to treat the stabilized cutting-oil wastewater. The 90% efficiency was obtained from the coagulation at Al2(SO4)3 dosage of 150 mg/L and pH 7. On the other hands, efficiencies of AOPs for 30 minutes oxidation time were 10% for acoustic oxidation, 12% for acoustic oxidation with hydrogen peroxide, 76% for Fenton, and 92% sono-Fenton processes. The highest efficiency for effective oil removal of AOPs required large amount of chemical. Therefore, AOPs were studied as a post-treatment after conventional separation process. The efficiency was considerable as the effluent COD can pass the standard required for industrial wastewater discharge with less chemical and energy consumption.

 

Keywords: Cutting oily-wastewater, Advance oxidation process, Sono-Fenton, Combined process.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3268
10189 Channel Sounding and PAPR Reduction in OFDM for WiMAX Using Software Defined Radio

Authors: B. Siva Kumar Reddy, B. Lakshmi

Abstract:

This paper addresses the reduction of peak to average power ratio (PAPR) for the OFDM in Mobile-WiMAX physical layer (PHY) standard. In the process, the best achievable PAPR of 0 dB is found for the OFDM spectrum using phase modulation technique which avoids the nonlinear distortion. The performance of the WiMAX PHY standard is handled by the software defined radio (SDR) prototype in which GNU Radio and USRP N210 employed as software and hardware platforms respectively. It is also found that BER performance is shown for different coding and different modulation schemes. To empathize wireless propagation in specific environments, a sliding correlator wireless channel sounding system is designed by using SDR testbed.

Keywords: BER, Channel sounding, GNU Radio, OFDM/OFDMA, USRP N210.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3234
10188 Relationship between Gender and Performance with Respect to a Basic Math Skills Quiz in Statistics Courses in Lebanon

Authors: Hiba Naccache

Abstract:

The present research investigated whether gender differences affect performance in a simple math quiz in statistics course. Participants of this study comprised a sample of 567 statistics students in two different universities in Lebanon. Data were collected through a simple math quiz. Analysis of quantitative data indicated that there wasn’t a significant difference in math performance between males and females. The results suggest that improvements in student performance may depend on improved mastery of basic algebra especially for females. The implications of these findings and further recommendations were discussed.

Keywords: Gender, education, math, statistics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2578
10187 GMDH Modeling Based on Polynomial Spline Estimation and Its Applications

Authors: LI qiu-min, TIAN yi-xiang, ZHANG gao-xun

Abstract:

GMDH algorithm can well describe the internal structure of objects. In the process of modeling, automatic screening of model structure and variables ensure the convergence rate.This paper studied a new GMDH model based on polynomial spline  stimation. The polynomial spline function was used to instead of the transfer function of GMDH to characterize the relationship between the input variables and output variables. It has proved that the algorithm has the optimal convergence rate under some conditions. The empirical results show that the algorithm can well forecast Consumer Price Index (CPI).

Keywords: spline, GMDH, nonparametric, bias, forecast.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2135
10186 Automated Process Quality Monitoring with Prediction of Fault Condition Using Measurement Data

Authors: Hyun-Woo Cho

Abstract:

Detection of incipient abnormal events is important to improve safety and reliability of machine operations and reduce losses caused by failures. Improper set-ups or aligning of parts often leads to severe problems in many machines. The construction of prediction models for predicting faulty conditions is quite essential in making decisions on when to perform machine maintenance. This paper presents a multivariate calibration monitoring approach based on the statistical analysis of machine measurement data. The calibration model is used to predict two faulty conditions from historical reference data. This approach utilizes genetic algorithms (GA) based variable selection, and we evaluate the predictive performance of several prediction methods using real data. The results shows that the calibration model based on supervised probabilistic principal component analysis (SPPCA) yielded best performance in this work. By adopting a proper variable selection scheme in calibration models, the prediction performance can be improved by excluding non-informative variables from their model building steps.

Keywords: Prediction, operation monitoring, on-line data, nonlinear statistical methods, empirical model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1658
10185 Factors Affecting Slot Machine Performance in an Electronic Gaming Machine Facility

Authors: Etienne Provencal, David L. St-Pierre

Abstract:

A facility exploiting only electronic gambling machines (EGMs) opened in 2007 in Quebec City, Canada under the name of Salons de Jeux du Québec (SdjQ). This facility is one of the first worldwide to rely on that business model. This paper models the performance of such EGMs. The interest from a managerial point of view is to identify the variables that can be controlled or influenced so that a comprehensive model can help improve the overall performance of the business. The EGM individual performance model contains eight different variables under study (Game Title, Progressive jackpot, Bonus Round, Minimum Coin-in, Maximum Coin-in, Denomination, Slant Top and Position). Using data from Quebec City’s SdjQ, a linear regression analysis explains 90.80% of the EGM performance. Moreover, results show a behavior slightly different than that of a casino. The addition of GameTitle as a factor to predict the EGM performance is one of the main contributions of this paper. The choice of the game (GameTitle) is very important. Games having better position do not have significantly better performance than games located elsewhere on the gaming floor. Progressive jackpots have a positive and significant effect on the individual performance of EGMs. The impact of BonusRound on the dependent variable is significant but negative. The effect of Denomination is significant but weakly negative. As expected, the Language of an EGMS does not impact its individual performance. This paper highlights some possible improvements by indicating which features are performing well. Recommendations are given to increase the performance of the EGMs performance.

Keywords: EGM, linear regression, model prediction, slot operations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1565
10184 Energy Planning Analysis of an Agritourism Complex Based on Energy Demand Simulation: A Case Study of Wuxi Yangshan Agritourism Complex

Authors: Li Zhu, Binghua Wang, Yong Sun

Abstract:

China is experiencing the rural development process, with the agritourism complex becoming one of the significant modes. Therefore, it is imperative to understand the energy performance of agritourism complex. This study focuses on a typical case of the agritourism complex and simulates the energy consumption performance on condition of the regular energy system. It was found that HVAC took 90% of the whole energy demand range. In order to optimize the energy supply structure, the hierarchical analysis was carried out on the level of architecture with three main factors such as construction situation, building types and energy demand types. Finally, the energy planning suggestion of the agritourism complex was put forward and the relevant results were obtained.

Keywords: Agritourism complex, energy planning, energy demand simulation, hierarchical structure model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 898
10183 Size Control of Nanoparticles Using a Microfluidic Device

Authors: Shigenori Togashi, Erika Katayama, Mitsuhiro Matsuzawa

Abstract:

We have developed a microfluidic device system for the continuous producting of nanoparticles, and we have clarified the relationship between the mixing performance of reactors and the particle size. First, we evaluated the mixing performance of reactors by carring out the Villermaux–Dushman reaction and determined the experimental conditions for producing AgCl nanoparticles. Next, we produced AgCl nanoparticles and evaluated the mixing performance and the particle size. We found that as the mixing performance improves the size of produced particles decreases and the particle size distribution becomes sharper. We produced AgCl nanoparticles with a size of 86 nm using the microfluidic device that had the best mixing performance among the three reactors we tested in this study; the coefficient of variation (Cv) of the size distribution of the produced nanoparticles was 26.1%.

Keywords: Microfluidic, Mixing, Nanoparticle, Silver Chloride.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2604
10182 Memory Leak Detection in Distributed System

Authors: Roohi Shabrin S., Devi Prasad B., Prabu D., Pallavi R. S., Revathi P.

Abstract:

Due to memory leaks, often-valuable system memory gets wasted and denied for other processes thereby affecting the computational performance. If an application-s memory usage exceeds virtual memory size, it can leads to system crash. Current memory leak detection techniques for clusters are reactive and display the memory leak information after the execution of the process (they detect memory leak only after it occur). This paper presents a Dynamic Memory Monitoring Agent (DMMA) technique. DMMA framework is a dynamic memory leak detection, that detects the memory leak while application is in execution phase, when memory leak in any process in the cluster is identified by DMMA it gives information to the end users to enable them to take corrective actions and also DMMA submit the affected process to healthy node in the system. Thus provides reliable service to the user. DMMA maintains information about memory consumption of executing processes and based on this information and critical states, DMMA can improve reliability and efficaciousness of cluster computing.

Keywords: Dynamic Memory Monitoring Agent (DMMA), Cluster Computing, Memory Leak, Fault Tolerant Framework, Dynamic Memory Leak Detection (DMLD).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2284
10181 Numerical Simulation of Effect of Various Rib Configurations on Enhancing Heat Transfer of Matrix Cooling Channel

Authors: Seok Min Choi, Minho Bang, Seuong Yun Kim, Hyungmin Lee, Won-Gu Joo, Hyung Hee Cho

Abstract:

The matrix cooling channel was used for gas turbine blade cooling passage. The matrix cooling structure is useful for the structure stability however the cooling performance of internal cooling channel was not enough for cooling. Therefore, we designed the rib configurations in the matrix cooling channel to enhance the cooling performance. The numerical simulation was conducted to analyze cooling performance of rib configured matrix cooling channel. Three different rib configurations were used which are vertical rib, angled rib and c-type rib. Three configurations were adopted in two positions of matrix cooling channel which is one fourth and three fourth of channel. The result shows that downstream rib has much higher cooling performance than upstream rib. Furthermore, the angled rib in the channel has much higher cooling performance than vertical rib. This is because; the angled rib improves the swirl effect of matrix cooling channel more effectively. The friction factor was increased with the installation of rib. However, the thermal performance was increased with the installation of rib in the matrix cooling channel.

Keywords: Matrix cooling, rib, heat transfer, gas turbine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1240
10180 Benchmarking Role in Internal Supply Chain Management of Indian Manufacturing Industries

Authors: Kailash, Rajeev Kumar Saha, Sanjeev Goyal

Abstract:

Due to day by day competition in the market, the implementation of benchmarking practice is necessary for improving existing internal supply chain management performance of manufacturing industries. The continuous benchmarking practice might be helpful to increase the productivity of middle scale medium enterprises (MSMEs) by reducing the idle time during the flow of raw material/products, funds and information. The objective of this research paper is to provide an overview of benchmarking, benchmarking wheel, benchmarking tool and techniques and its importance through literature review of reputed journals. This concept of benchmarking may be fruitful in the process of gap identification and for improving the performance of internal supply chain management of Indian manufacturing industries.

Keywords: Benchmarking, benchmarking cyclic wheel, supply chain management, types of benchmarking, supply chain management.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1316
10179 Normalizing Scientometric Indicators of Individual Publications Using Local Cluster Detection Methods on Citation Networks

Authors: Levente Varga, Dávid Deritei, Mária Ercsey-Ravasz, Răzvan Florian, Zsolt I. Lázár, István Papp, Ferenc Járai-Szabó

Abstract:

One of the major shortcomings of widely used scientometric indicators is that different disciplines cannot be compared with each other. The issue of cross-disciplinary normalization has been long discussed, but even the classification of publications into scientific domains poses problems. Structural properties of citation networks offer new possibilities, however, the large size and constant growth of these networks asks for precaution. Here we present a new tool that in order to perform cross-field normalization of scientometric indicators of individual publications relays on the structural properties of citation networks. Due to the large size of the networks, a systematic procedure for identifying scientific domains based on a local community detection algorithm is proposed. The algorithm is tested with different benchmark and real-world networks. Then, by the use of this algorithm, the mechanism of the scientometric indicator normalization process is shown for a few indicators like the citation number, P-index and a local version of the PageRank indicator. The fat-tail trend of the article indicator distribution enables us to successfully perform the indicator normalization process.

Keywords: Citation networks, scientometric indicator, cross-field normalization, local cluster detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 726
10178 Process Simulation of Ethyl tert-Butyl Ether (ETBE) Production from Naphtha Cracking Wastes

Authors: Pakorn Traiprasertpong, Apichit Svang-Ariyaskul

Abstract:

The production of ethyl tert-butyl ether (ETBE) was simulated through Aspen Plus. The objective of this work was to use the simulation results to be an alternative platform for ETBE production from naphtha cracking wastes for the industry to develop. ETBE is produced from isobutylene which is one of the wastes in naphtha cracking process. The content of isobutylene in the waste is less than 30% weight. The main part of this work was to propose a process to save the environment and to increase the product value by converting a great majority of the wastes into ETBE. Various processes were considered to determine the optimal production of ETBE. The proposed process increased ETBE production yield by 100% from conventional process with the purity of 96% weight. The results showed a great promise for developing this proposed process in an industrial scale.

Keywords: ETBE, process simulation, naphtha cracking, Aspen Plus

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5433
10177 Generation of Sets of Synthetic Classifiers for the Evaluation of Abstract-Level Combination Methods

Authors: N. Greco, S. Impedovo, R.Modugno, G. Pirlo

Abstract:

This paper presents a new technique for generating sets of synthetic classifiers to evaluate abstract-level combination methods. The sets differ in terms of both recognition rates of the individual classifiers and degree of similarity. For this purpose, each abstract-level classifier is considered as a random variable producing one class label as the output for an input pattern. From the initial set of classifiers, new slightly different sets are generated by applying specific operators, which are defined at the purpose. Finally, the sets of synthetic classifiers have been used to estimate the performance of combination methods for abstract-level classifiers. The experimental results demonstrate the effectiveness of the proposed approach.

Keywords: Abstract-level Classifier, Dempster-Shafer Rule, Multi-expert Systems, Similarity Index, System Evaluation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1489
10176 Supply Chain Modeling and Improving Manufacturing Industry in Developing Countries: A Research Agenda

Authors: F.B. Georgise, K. D. Thoben, M. Seifert

Abstract:

This paper presents a research agenda on the SCOR model adaptation. SCOR model is designated to measure supply chain performance and logistics impact across the boundaries of individual organizations. It is at its growing stage of its life cycle and is enjoying the leverage of becoming the industry standard. The SCOR model has been developed and used widely in developed countries context. This research focuses on the SCOR model adaptation for the manufacturing industry in developing countries. With a necessary understanding of the characteristics, difficulties and problems of the manufacturing industry in developing countries- supply chain; consequently, we will try to designs an adapted model with its building blocks: business process model, performance measures and best practices.

Keywords: developing countries, manufacturing industry, SCOR model adaptation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2218
10175 Investigation on Machine Tools Energy Consumptions

Authors: Shiva Abdoli, Daniel T. Semere

Abstract:

Several researches have been conducted to study consumption of energy in cutting process. Most of these researches are focusing to measure the consumption and propose consumption reduction methods. In this work, the relation between the cutting parameters and the consumption is investigated in order to establish a generalized energy consumption model that can be used for process and production planning in real production lines. Using the generalized model, the process planning will be carried out by taking into account the energy as a function of the selected process parameters. Similarly, the generalized model can be used in production planning to select the right operational parameters like batch sizes, routing, buffer size, etc. in a production line. The description and derivation of the model as well as a case study are given in this paper to illustrate the applicability and validity of the model.

Keywords: Process parameters, cutting process, energy efficiency, Material Removal Rate (MRR).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3408
10174 Seasonal Based Pollution Performance of 11kV and 33kV Silicon Composite Insulators

Authors: N. Sumathi, R. Srinivasa Rao

Abstract:

This paper presents the experimental results of 11 kV and 33 kV silicon composite insulators under artificial salt and urea polluted conditions. The tests were carried out under different seasons like summer, winter, and monsoon. The artificial pollution is prepared by properly dissolving the salt and urea in the water. The prepared salt and urea pollutions are sprayed on the insulators and dried up for sufficiently large time. The process is continued until a uniform layer is formed on the surface of insulator. For each insulator rating, four samples were tested. The maximum leakage current and breakdown voltage were measured. From experimental data, performance of test specimen is evaluated by comparing breakdown voltage and leakage current during different seasons when exposed to salt and urea polluted conditions. From these results the performance of the insulators can be predicted when they are installed in industrial, agricultural, and coastal areas. The experimental tests were carried out in the High Voltage laboratory using two stage cascade transformer having the rating of 1000 kVA, 500 kV.

Keywords: Silicon composite insulators, Urea pollution, Leakage current, Breakdown voltage, salt pollution, artificial pollution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1875
10173 Total and Leachable Concentration of Trace Elements in Soil towards Human Health Risk, Related with Coal Mine in Jorong, South Kalimantan, Indonesia

Authors: Arie Pujiwati, Kengo Nakamura, Noriaki Watanabe, Takeshi Komai

Abstract:

Coal mining is well known to cause considerable environmental impacts, including trace element contamination of soil. This study aimed to assess the trace element (As, Cd, Co, Cu, Ni, Pb, Sb, and Zn) contamination of soil in the vicinity of coal mining activities, using the case study of Asam-asam River basin, South Kalimantan, Indonesia, and to assess the human health risk, incorporating total and bioavailable (water-leachable and acid-leachable) concentrations. The results show the enrichment of As and Co in soil, surpassing the background soil value. Contamination was evaluated based on the index of geo-accumulation, Igeo and the pollution index, PI. Igeo values showed that the soil was generally uncontaminated (Igeo ≤ 0), except for elevated As and Co. Mean PI for Ni and Cu indicated slight contamination. Regarding the assessment of health risks, the Hazard Index, HI showed adverse risks (HI > 1) for Ni, Co, and As. Further, Ni and As were found to pose unacceptable carcinogenic risk (risk > 1.10-5). Farming, settlement, and plantation were found to present greater risk than coal mines. These results show that coal mining activity in the study area contaminates the soils by particular elements and may pose potential human health risk in its surrounding area. This study is important for setting appropriate countermeasure actions and improving basic coal mining management in Indonesia.

Keywords: Coal mine, risk, soil, trace elements.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1175
10172 Expert System for Sintering Process Control based on the Information about solid-fuel Flow Composition

Authors: Yendiyarov Sergei, Zobnin Boris, Petrushenko Sergei

Abstract:

Usually, the solid-fuel flow of an iron ore sinter plant consists of different types of the solid-fuels, which differ from each other. Information about the composition of the solid-fuel flow usually comes every 8-24 hours. It can be clearly seen that this information cannot be used to control the sintering process in real time. Due to this, we propose an expert system which uses indirect measurements from the process in order to obtain the composition of the solid-fuel flow by solving an optimization task. Then this information can be used to control the sintering process. The proposed technique can be successfully used to improve sinter quality and reduce the amount of solid-fuel used by the process.

Keywords: sintering process, particle swarm optimization, optimal control, expert system, solid-fuel

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1948
10171 Design of PI Controller Using MRAC Techniques For Couple-Tanks Process

Authors: Boonsrimuang P., Numsomran A., Kangwanrat S.

Abstract:

The typical coupled-tanks process that is TITO plant has the difficulty in controller design because changing of system dynamics and interacting of process. This paper presents design methodology of auto-adjustable PI controller using MRAC technique. The proposed method can adjust the controller parameters in response to changes in plant and disturbance real time by referring to the reference model that specifies properties of the desired control system.

Keywords: PI controller, MRAC, Couple-tanks process

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2683
10170 Neural Network-Based Control Strategies Applied to a Fed-Batch Crystallization Process

Authors: P. Georgieva, S. Feyo de Azevedo

Abstract:

This paper is focused on issues of process modeling and two model based control strategies of a fed-batch sugar crystallization process applying the concept of artificial neural networks (ANNs). The control objective is to force the operation into following optimal supersaturation trajectory. It is achieved by manipulating the feed flow rate of sugar liquor/syrup, considered as the control input. The control task is rather challenging due to the strong nonlinearity of the process dynamics and variations in the crystallization kinetics. Two control alternatives are considered – model predictive control (MPC) and feedback linearizing control (FLC). Adequate ANN process models are first built as part of the controller structures. MPC algorithm outperforms the FLC approach with respect to satisfactory reference tracking and smooth control action. However, the MPC is computationally much more involved since it requires an online numerical optimization, while for the FLC an analytical control solution was determined.

Keywords: artificial neural networks, nonlinear model control, process identification, crystallization process

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1838
10169 Design and Implementation of a Hybrid Fuzzy Controller for a High-Performance Induction

Authors: M. Zerikat, S. Chekroun

Abstract:

This paper proposes an effective algorithm approach to hybrid control systems combining fuzzy logic and conventional control techniques of controlling the speed of induction motor assumed to operate in high-performance drives environment. The introducing of fuzzy logic in the control systems helps to achieve good dynamical response, disturbance rejection and low sensibility to parameter variations and external influences. Some fundamentals of the fuzzy logic control are preliminary illustrated. The developed control algorithm is robust, efficient and simple. It also assures precise trajectory tracking with the prescribed dynamics. Experimental results have shown excellent tracking performance of the proposed control system, and have convincingly demonstrated the validity and the usefulness of the hybrid fuzzy controller in high-performance drives with parameter and load uncertainties. Satisfactory performance was observed for most reference tracks.

Keywords: Fuzzy controller, high-performance, inductionmotor, intelligent control, robustness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2174
10168 Starting Characteristic Analysis of LSPM for Pumping System Considering Demagnetization

Authors: Subrato Saha, Yun-Hyun Cho

Abstract:

This paper presents the design process of a high performance 3-phase 3.7 kW 2-pole line start permanent magnet synchronous motor for pumping system. A method was proposed to study the starting torque characteristics considering line start with high inertia load. A d-q model including cage was built to study the synchronization capability. Time-stepping finite element method analysis was utilized to accurately predict the dynamic and transient performance, efficiency, starting current, speed curve and etc. Considering the load torque of pumps during starting stage, the rotor bar was designed with minimum demagnetization of permanent magnet caused by huge starting current.

Keywords: LSPM, starting analysis, demagnetization, FEA, pumping system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2255