Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5

Search results for: Rikard Söderberg

5 Introducing Fast Robot Roller Hemming Process in Automotive Industry

Authors: Babak Saboori, Behzad Saboori, Johan S. Carlson, Rikard Söderberg

Abstract:

As product life cycle becomes less and less every day, having flexible manufacturing processes for any companies seems more demanding. In the assembling of closures, i.e. opening parts in car body, hemming process is the one which needs more attention. This paper focused on the robot roller hemming process and how to reduce its cycle time by introducing a fast roller hemming process. A robot roller hemming process of a tailgate of Saab 93 SportCombi model is investigated as a case study in this paper. By applying task separation, robot coordination, and robot cell configuration principles in the roller hemming process, three alternatives are proposed, developed, and remarkable reduction in cycle times achieved [1].

Keywords: Cell configuration, cycle time, robot coordination, roller hemming.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4016
4 Geometry Design Supported by Minimizing and Visualizing Collision in Dynamic Packing

Authors: Johan Segeborn, Johan S. Carlson, Robert Bohlin, Rikard Söderberg

Abstract:

This paper presents a method to support dynamic packing in cases when no collision-free path can be found. The method, which is primarily based on path planning and shrinking of geometries, suggests a minimal geometry design change that results in a collision-free assembly path. A supplementing approach to optimize geometry design change with respect to redesign cost is described. Supporting this dynamic packing method, a new method to shrink geometry based on vertex translation, interweaved with retriangulation, is suggested. The shrinking method requires neither tetrahedralization nor calculation of medial axis and it preserves the topology of the geometry, i.e. holes are neither lost nor introduced. The proposed methods are successfully applied on industrial geometries.

Keywords: Dynamic packing, path planning, shrinking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1326
3 An Immersive Motion Capture Environment

Authors: Daniel Kade, Oğuzhan Özcan, Rikard Lindell

Abstract:

Motion capturing technology has been used for quite a while and several research has been done within this area. Nevertheless, we discovered open issues within current motion capturing environments. In this paper we provide a state-of-the-art overview of the addressed research areas and show issues with current motion capturing environments. Observations, interviews and questionnaires have been used to reveal the challenges actors are currently facing in a motion capturing environment. Furthermore, the idea to create a more immersive motion capturing environment to improve the acting performances and motion capturing outcomes as a potential solution is introduced. It is hereby the goal to explain the found open issues and the developed ideas which shall serve for further research as a basis. Moreover, a methodology to address the interaction and systems design issues is proposed. A future outcome could be that motion capture actors are able to perform more naturally, especially if using a non-body-worn solution.

Keywords: Immersive acting environment, Interaction in a mediated environment, Motion capturing, MoCap.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1605
2 A Method for Improving Dental Crown Fit-Increasing the Robustness

Authors: Kero T., Söderberg R., Andersson M., Lindkvist L.

Abstract:

The introduction of mass-customization has enabled new ways to treat patients within medicine. However, the introduction of industrialized treatments has also meant new obstacles. The purpose of this study was to introduce and theoretically test a method for improving dental crown fit. The optimization method allocates support points in order to check the final variation for dental crowns. Three different types of geometries were tested and compared. The three geometries were also divided into three sub-geometries: Current method, Optimized method and Feasible method. The Optimized method, using the whole surface for support points, provided the best results. The results support the objective of the study. It also seems that the support optimization method can dramatically improve the robustness of dental crown treatments.

Keywords: Bio-medicine, Dentistry, Mass-customization, Optimization and Robust design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1561
1 Process Optimization Regarding Geometrical Variation and Sensitivity Involving Dental Drill- and Implant-Guided Surgeries

Authors: T. Kero, R. Söderberg, M. Andersson, L. Lindkvist

Abstract:

Within dental-guided surgery, there has been a lack of analytical methods for optimizing the treatment of the rehabilitation concepts regarding geometrical variation. The purpose of this study is to find the source of the greatest geometrical variation contributor and sensitivity contributor with the help of virtual variation simulation of a dental drill- and implant-guided surgery process using a methodical approach. It is believed that lower geometrical variation will lead to better patient security and higher quality of dental drill- and implant-guided surgeries. It was found that the origin of the greatest contributor to the most variation, and hence where the foci should be set, in order to minimize geometrical variation was in the assembly category (surgery). This was also the category that was the most sensitive for geometrical variation.

Keywords: Variation Simulation, Process Optimization, Guided Surgeries, Dental Prosthesis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1232