Generation of Sets of Synthetic Classifiers for the Evaluation of Abstract-Level Combination Methods
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33122
Generation of Sets of Synthetic Classifiers for the Evaluation of Abstract-Level Combination Methods

Authors: N. Greco, S. Impedovo, R.Modugno, G. Pirlo

Abstract:

This paper presents a new technique for generating sets of synthetic classifiers to evaluate abstract-level combination methods. The sets differ in terms of both recognition rates of the individual classifiers and degree of similarity. For this purpose, each abstract-level classifier is considered as a random variable producing one class label as the output for an input pattern. From the initial set of classifiers, new slightly different sets are generated by applying specific operators, which are defined at the purpose. Finally, the sets of synthetic classifiers have been used to estimate the performance of combination methods for abstract-level classifiers. The experimental results demonstrate the effectiveness of the proposed approach.

Keywords: Abstract-level Classifier, Dempster-Shafer Rule, Multi-expert Systems, Similarity Index, System Evaluation

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1076874

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1495

References:


[1] L. Xu, A. Krzyzak, C. Y-Suen, "Methods of Combining Multiple Classifiers and Their Applications to Handwriting Recognition",IEEE TSMC, Vol.22, N.3,1992, pp. 418-435.
[2] J. Kittler, M. Hatef, R.P.W. Duin and J. Matias, "On combining classifiers", IEEE T-PAMI, vol. 20, no. 3, pp. 226-239, 1998.
[3] E.M.Kleinberg,"Stochastic Discimination",Annals of Math. ematics and Artificial Intelligence, Vol. 1, pp. 207-239, 1990.
[4] S.N. Srihari, "Reliability Analysis of Majority Vote Systems", Information Sciences, Vol. 26, pp. 243-256, 1982.
[5] L.Lam, "Classifier Cotions: Implementations and Theoretical Issues", in Multiple Classifier Systems, J. Kittler an F. Roli (eds.), LNCS, vol. 1857, Springer, 2000, pp. 77-86.
[6] K. Tumer and J. Ghosh, "Analysis of Decision Boundaries in inearly Combined Neural Classifiers", Pattern Recognition, Vol. 29, pp. 341-348, 1996.
[7] H. Zouari, L. Heutte, Y. Lecourtier, A. Alimi, " A New Classifier Simulator for Evaluating Parallel Combination Methods", Proc. ICDAR 2003, Edinburgh, UK, 2003, pp.26-30.
[8] J.R. Parker,"Rank and response combination from confusion matrix data", Information Fusion, Vol. 2, 2001, pp. 113-120.
[9] L.I.Kuncheva and R.K. Kuntchev, "Generating classifier outputs of fixed accuracy and diversity", PRL, Vol. 23, 2002, pp. 593-600.
[10] L. Bovino, G. Dimauro, S.Impedovo, M.G. Lucchese, R. Modugno, G. Pirlo A.Salzo, L. Sarcinella, "On the Combination of Abstract-Level Classifiers", IJDAR, 2003, Vol. 6, pp. 42-54.
[11]G. Dimauro, S. Impedovo, G. Pirlo, A. Salzo, "Multiple Classifiers: a new methodology for the evaluation of the combination processes", Progress in Handwriting Recognition, A.C.Downton and S. Impedovo (eds.), World Scient.,Singapore, pp.329-335, 1995.
[12]V. Di Lecce,G.Dimauro,A.Guerriero,S.Impedovo,G.Pirlo,A. Salzo, "Knowledge-based Methods for Classifier Combination: an Experimental Investigation", Proc.ICIAP-7,Italy,1999, pp.562-565.
[13]S. Impedovo, G. Pirlo, "The Similarity Index", Università degli Studi di Bari, Technical Report TC. 1, 2002.
[14]E. Mandler and J. Schuermann, "Combining the Classification Results of independent classifiers based on the Dempster/Shafer theory of evidence", in Pattern Recognition and Artificial Intelligence, North Holland, Amsterdam, 1988, pp. 381-393.
[15]G. Dimauro, S. Impedovo, G. Pirlo, A. Salzo, "Bankcheck recognition systems: re-engineering the design process". In Progress in Handwriting Recognition, A.C. Downton and S. Impedovo (eds.), World Scientific Publ., 1997, pp. 419-425.