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Abstract—The objective of this paper is to estimate realistic 

principal extrusion process parameters by means of artificial neural 
network. Conventionally, finite element analysis is used to derive 
process parameters. However, the finite element analysis of the 
extrusion model does not consider the manufacturing process 
constraints in its modeling. Therefore, the process parameters 
obtained through such an analysis remains highly theoretical. 
Alternatively, process development in industrial extrusion is to a 
great extent based on trial and error and often involves full-size 
experiments, which are both expensive and time-consuming. The 
artificial neural network-based estimation of the extrusion process 
parameters prior to plant execution helps to make the actual extrusion 
operation more efficient because more realistic parameters may be 
obtained. And so, it bridges the gap between simulation and real 
manufacturing execution system. In this work, a suitable neural 
network is designed which is trained using an appropriate learning 
algorithm. The network so trained is used to predict the 
manufacturing process parameters. 
 

Keywords—Artificial Neural Network (ANN), Indirect 
Extrusion, Finite Element Analysis, MES. 
 

I.  INTRODUCTION 
NE of the greatest challenges in the design of an actual 
extrusion operation is to obtain realistic manufacturing 

process parameters prior to plant execution. However, the 
conventional finite element analysis does not consider the 
manufacturing process constraints in its modeling and hence, 
the process parameters obtained through such an analysis is 
more theoretical and not realistic enough. This is one of the 
chief reasons why simulations are not widely accepted by 
industries for the determination of process parameters for their 
manufacturing execution systems. Moreover, very less amount 
of work has been done to bridge the gap between simulation 
and reality. Therefore, a new approach to obtain more realistic 
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of work has been done to bridge the gap between simulation 
and reality. Therefore, a new approach to obtain more realistic 
process parameters following the finite 
element analysis is the need of manufacturing industries. This 
research tries to bridge this gap between the Finite Element 
Simulation and the results required by manufacturing 
execution systems (MES). To do so, artificial neural network 
is used as a middleware between the results of finite element 
analysis and the manufacturing execution system to map the 
FEA results to realistic process variables. 

Linear programming and other numerical methods have 
been used to tackle this problem of estimation of realistic 
extrusion process parameters. However, due to the inherent 
time consuming nature of such methods, quick and rapid 
problem solving as desired by industries have not been 
achievable. Also, these mathematical models, when presented 
with a new set of data, do not yield desired results. 
Additionally, today, the process development in industrial 
extrusion is to a great extent based on trial and error and often 
involves full-size experiments, which are both expensive and 
time-consuming. The use of ANN will reduce the calculation 
times and it is aimed at eradicating the full-size experiments 
that have to be carried out prior to actual production processes. 

In this work, a suitable neural network is designed which is 
trained using the Levenberg-Marquardt learning algorithm. 
The network so trained is used to predict the process 
parameters for new finite element analysis derivatives. Finally, 
the performance efficiency of the network in achieving desired 
process parameters is studied. 
 

II.  BACKGROUND 
Sivaprasad, Venugopal, Davies and Prasad [3] have 

identified the optimum process parameters using finite 
element simulation. They discuss the use of processing map 
with the output of the finite element analysis to design the 
process. Tibbetts and Ting-Yung [4] have used optimization 
technique for a direct extrusion machine. Their work is related 
to product optimization with focus on surface quality and 
micro-structural uniformity of product. They have presented a 
model which is derived directly from the mathematical 
description of the physical phenomena present. Hansson, in 
her Ph.D. thesis [5], has used finite elements method for the 
simulation of stainless steel tube extrusion.  
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Most other extrusion process simulations have been done 
for food industries like by Lertsiriyothin and Kumtib [6], and 
plastic or polymer manufacturing units such as by Salazar [7].  

The finite element models provide the needed information 
for theoretical analysis but cannot be applied directly to the 
manufacturing execution system because the results are not 
realistic enough. Bajimaya et. al. [8] has tried to obtain 
realistic parameters by making use of manufacturing process 
dynamics in the simulation of an extrusion plant. Following 
the completion of finite element analysis, ANN based 
estimation of process parameters yields a direct solution for 
the real process in that realistic process parameters can be 
recognized directly and quickly. The ANN based estimation of 
extrusion process parameters dealt with in this research is thus 
found to be new and novel in the area of bridging the gap 
between theoretical derivations from simulations to realistic 
measurements that may be applied to a manufacturing 
execution system. 
 

III.  INDIRECT EXTRUSION PROCESS 
Extrusion is a plastic deformation process in which a block 

of metal, called the billet, is forced to flow by compression 
through the die opening of a smaller cross-sectional area than 
that of the original billet [4] as shown in Fig. 1. In indirect 
extrusion process, the die at the front end of the hollow stem 
moves relative to the container, but there is no relative 
displacement between the billet and the container as depicted 
in Fig. 1. Therefore, this process is characterized by the 
absence of friction between the billet surface and the 
container, and there is no displacement of the billet center 
relative to the peripheral regions.  

Extrusion can be cold or hot. In this paper, we consider the 
hot extrusion process. In hot extrusion, the billet is preheated 
to a certain temperature to facilitate plastic deformation. 

 

 
Fig. 1 Indirect extrusion mechanism 

 
The properties of the extruded aluminum shapes are 

affected greatly by the way in which the metal flows during 
extrusion. The metal flow is influenced by several factors 
which are as follows: 

a. the temperature of billet, θpreheat 
b. the temperature of container 
c. the extrusion pressure, PT(ER) 
d. velocity of extrusion, Vextrusion 
e. the size of billet (length and diameter) 
f. the extrusion ratio, ER 

For a particular extrusion process, the size of billet and the 
extrusion ratio are constant. Extrusion ratio (ER) is the ratio of 
container bore area to the total cross-sectional area of 

extrusion. Therefore, the main factors affecting an extrusion 
process include the extrusion temperature, the extrusion 
pressure and the velocity of extrusion. These three variables, 
which make the principal extrusion process parameters, are 
obtained through empirical calculations such as the popular 
Avitzur method [12]. These empirical calculations make use 
of the outputs of finite element analysis that consist of flow 
stress, strain, strain rate and shear stress to obtain the process 
parameters. However, these empirical methods do not give 
appropriate results for all ranges of inputs. Thus, the industry 
lacks a method that offers them a solution to a wide variety of 
inputs. 
 

IV.  INTERDEPENDENCE BETWEEN EXTRUSION VARIABLES 

During the operation of an extrusion plant, while extrusion 
is taking place, billets will be waiting for their turn to get 
loaded to the container for extrusion. In hot extrusion, the 
billets are preheated. It should be assured that the next billet in 
queue is heated to the required preheat temperature (θpreheat) 
during the time (τwait) it waits in the queue. For efficient heat 
usage, τwait would be approximately equal to the sum of the 
time taken by the current billet to be extruded (τextrusion) and the 
time taken for the change of die (τdieChange). Therefore, 
considering the time taken to preheat to be τpreheat, 

 
τpreheat = τwait = τextrusion + τdieChange 

 
Temperature is one of the most important parameters in 

extrusion. The flow stress (σ) is reduced if the temperature is 
increased and deformation is therefore, easier, but at the same 
time, the maximum extrusion speed is reduced because 
localized temperature can lead to incipient melting 
temperature.  

The response of a metal to extrusion processes can be 
influenced by the speed of deformation. Increasing the ram 
speed produces an increase in the extrusion pressure. The 
temperature developed in extrusion increases with increasing 
ram speed. 

Thus, it is important to determine the optimal values of the 
principal extrusion variables for a specified extrusion ratio 
(ER) such that, while on the one hand, the aluminum billet 
does not reach its solidus point ie, it’s melting temperature, 
and on the other hand, efficient extrusion is assured.  

 
Fig. 2 Interdependence between extrusion variables 

 
Determination of ram speed (Vextrusion) is another important 

thing for a particular extrusion ratio. The ram speed affects the 
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extrusion time (τextrusion). The preheat time (τpreheat), in turn, is 
related to the extrusion time. The extrusion time is used to 
decide the amount of heat (QT) that a waiting aluminum billet 
should be given to reach the preheat temperature (θpreheat) 
during the period of its waiting time (τwait). 

The actual pressure exerted on the ram is the total pressure 
required for a particular extrusion ratio (ER) given by: 

PT(ER) = PD + PF + PR 

where, PD is the pressure required for the plastic deformation 
of the material. PF is the pressure required to overcome the 
surface friction at the container wall friction, dead metal zone 
friction, and die bearing friction. PR is the pressure required to 
overcome redundant or internal deformation work. 

Each of the above may be represented in functional form as: 
PD = f (flow stress σ, strain ε)  
where, the flow stress σ = g (strain ε, strain rate, temperature 
of material T).  
Here, strain ε = ln(AC/AE) where, AC = area of container and 
AE = area of extrusion 
PF = φ(billet diameter D, length of billet L) 
PR = ψ (flow stress σ) 

The extrusion pressure, PT(ER), is thus dependent upon the 
size of the billet, the extrusion ratio, the temperatures of billet 
and container, flow stress and the strain rate of aluminum of 
which the first two remain constant for a particular extrusion 
process.  

These variables that affect the extrusion process are 
functionally related to each other. Attempts have been made to 
equate them to each other but these attempts have failed to 
incorporate all the variables as such since there exists a non-
linear functional relationship between them. In particular, the 
relationships between the stress, strain, strain rate and the 
shear stress obtained from the finite element analysis to the 
extrusion temperature, pressure and velocity required by the 
manufacturing execution system have been found to be non-
linear. Hence, in this work, an effort has been made to map 
them to each other by means of artificial neural network. 
 

IV. METHODOLOGY 
The mapping of finite element analysis (FEA) outputs to the 

realistic extrusion process parameters is a function 
approximation problem. Additionally, there is a non-linear 
functional relationship between the FEA outputs and the 
extrusion process parameters. This makes artificial neural 
network based mapping most suitable for the solution of such 
problems because neural networks are best suited for function 
approximation problems where the inputs and outputs are 
related through non-linear functions. In this research, MatLab 
is used to design a suitable neural network. A feed-forward 
neural network with back propagation is used. The network 
consists of two layers. The first layer, which is the hidden 
layer, is triggered using the sigmoidal activation function 
whereas the second layer, which is the output layer, is 
triggered using the linear activation function as shown in Fig. 
3. A network of two layers, where the first layer is sigmoid 
and the second layer is linear, can be trained to approximate 
any function.  
 

 
 

Fig. 3 A two-layer feed forward network 
 

The network is trained using a suitable supervised learning 
algorithm, in this case, the Levenberg-Marquardt algorithm. In 
the case of supervised learning, the network is presented with 
both the input data and the target data called the training set. 
The network is adjusted based on comparison of the output 
and target values until the outputs match the targets as shown 
below in Fig. 4. In other words, the learning rule is used to 
adjust the weights and biases of the network in order to move 
the network outputs closer to the targets.  

 

 
 

Fig. 4 Input-Output Comparison 
 

The trained network is then used to predict the process 
parameters for the production of new products following their 
finite element analysis. These parameters are then sent to 
virtual commissioning for the validation of process 
parameters. The complete architecture for the implementation 
is shown in Fig. 5. 

 

 
Fig. 5 The implementation architecture 

 
V.  IMPLEMENTATION 

To carry out the implementation, a suitable neural network 
was designed. The network has two layers. The first is a 
hidden layer that has sigmoidal activation function and the 

World Academy of Science, Engineering and Technology
International Journal of Mechanical and Mechatronics Engineering

 Vol:1, No:11, 2007 

646International Scholarly and Scientific Research & Innovation 1(11) 2007 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 M
ec

ha
ni

ca
l a

nd
 M

ec
ha

tr
on

ic
s 

E
ng

in
ee

ri
ng

 V
ol

:1
, N

o:
11

, 2
00

7 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/5
74

2.
pd

f



second is an output layer that has linear activation function. 
The hidden layer is designed to have sixteen nodes whereas 
the output layer has three nodes, one each for the extrusion 
pressure, temperature and velocity. The network is presented 
with inputs and targets and trained using the Levenberg-
Marquardt supervised back-propagation learning algorithm. 
The inputs include stress, strain, strain rate and the shear 
stress. The targets include extrusion pressure, temperature and 
velocity. The training curve using this algorithm is shown in 
Fig. 6. 

 

 
 

Fig. 6 The training curve 
 

The available data is divided into two subsets; a training set, 
to construct the neural network model, and an independent 
validation set to estimate model performance in the deployed 
environment. However, dividing the data into only two subsets 
may lead to model overfitting. As a result, and as discussed 
later, crossvalidation is used as the stopping criterion in this 
study and, consequently, the database is randomly divided into 
three sets: training, testing, and validation. In total, 80% of the 
data are used for training and 20% are used for validation. The 
training data are further divided into 70% for the training set 
and 30% for the testing set. 

The way the data are divided can have a significant impact 
on the results obtained. Like all empirical models, ANNs are 
unable to extrapolate beyond the range of their training data. 
Consequently, in order to develop the best possible model, 
given the available data, all patterns that are contained in the 
data need to be included in the training set. Similarly, since the 
test set is used to determine when to stop training, it needs to 
be representative of the training set and should therefore also 
contain all of the patterns that are present in the available data. 
If all the available patterns are used to calibrate the model, 
then the most challenging evaluation of the generalization 
ability of the model is if all of the patterns are also part of the 
validation set. Consequently, it is essential that the data used 
for training, testing, and validation represent the same 
population. In order to achieve this in the present study, 
several random combinations of the training, testing, and 
validation sets are tried until three statistically consistent data 
sets are obtained. The statistical parameters considered include 
the mean, standard deviation, minimum, maximum, and range. 
Despite trying numerous random combinations of training, 
testing, and validation sets, there are still some slight 
inconsistencies in the statistical parameters for the training, 

testing, and validation sets that are most closely matched 
(Table I). This can be attributed to the fact that the data 
contain singular, rare events that cannot be replicated in all 
three data sets. However, on the whole, the statistics are in 
good agreement and all three data sets may be considered to 
represent the same population.  

The performance goal was 1. The actual performance 
reached was 0.981281. This goal was reached in 87 number of 
epochs. 

After the network was trained, it was used for the prediction 
of realistic extrusion process parameters. The graphs 
comparing outputs (the predicted data) and targets (the actual 
data) for the extrusion pressure, extrusion temperature and 
velocity of extrusion are shown in Figs. 7, 8 and 9 
respectively.  
 

 
 

Fig. 7 Graph showing outputs versus targets for extrusion pressure 
 
 

 
 

Fig. 8 Graph showing outputs versus targets for extrusion 
temperature 

 
 

Fig. 9 Graph showing outputs versus targets for velocity of extrusion 
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The sum of mean square error (MSE) and the sum of mean 
absolute deviation (MAD) were used to evaluate the 
performance of the network. The MSE is defined as the 
difference between the actual observations and the response 
predicted by the model and is used to determine whether the 
model does not fit the data. As can be seen from Table I, the 
MSE and MAD are within the limits of acceptable error. This 
proves the feasibility of the use of neural network for the 
prediction of extrusion process parameters within acceptable 
limits. 

 
TABLE I 

PERFORMANCE EVALUATION 
 Ac. Error MSE  MAD 

Pressure 1 0.915 0.892 
Temperature 10 6.223 6.541 

Velocity 10 7.466 7.339 
 

VI. CONCLUSION 
Finite element simulations have been widely used to derive 

the extrusion process parameters. However, such simulation 
studies have been limited to academic research only. This is 
because finite element simulation results are highly theoretical 
as they do not consider the constraints encountered in a real 
manufacturing process. In this research, a middleware made 
from artificial neural network is used to bridge this gap 
between finite element simulation and real manufacturing 
execution system. And so, this research aids in the 
determination of more realistic process parameters that may be 
used by a real manufacturing system. 

Also, it has been found that the outputs of the finite element 
analysis and the real extrusion process parameters are related 
through a non-linear function. The mapping of the finite 
element outputs to real process parameters is thus a function 
approximation problem. Artificial neural networks are best 
suited to solve such industrial problems. This research proves 
and paves a new avenue in the determination of realistic 
extrusion process parameters by the use of artificial neural 
network. This method, in the future, may be further applied to 
other manufacturing processes as well. 
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