Search results for: thermal stress.
1600 Laser Surface Hardening Considering Coupled Thermoelasticity using an Eulerian Formulations
Authors: Me. Sistaninia, G.H.Farrahi, Ma. Sistaninia
Abstract:
Thermoelastic temperature, displacement, and stress in heat transfer during laser surface hardening are solved in Eulerian formulation. In Eulerian formulations the heat flux is fixed in space and the workpiece is moved through a control volume. In the case of uniform velocity and uniform heat flux distribution, the Eulerian formulations leads to a steady-state problem, while the Lagrangian formulations remains transient. In Eulerian formulations the reduction to a steady-state problem increases the computational efficiency. In this study also an analytical solution is developed for an uncoupled transient heat conduction equation in which a plane slab is heated by a laser beam. The thermal result of the numerical model is compared with the result of this analytical model. Comparing the results shows numerical solution for uncoupled equations are in good agreement with the analytical solution.Keywords: Coupled thermoelasticity, Finite element, Laser surface hardening, Eulerian formulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15651599 Melodic and Temporal Structure of Indonesian Sentences of Sitcom "International Class" Actors: Prosodic Study with Experimental Phonetics Approach
Authors: Tri Sulistyaningtyas, Yani Suryani, Dana Waskita, Linda Handayani Sukaemi, Ferry Fauzi Hermawan
Abstract:
The enthusiasm of foreigners studying the Indonesian language by Foreign Speakers (BIPA) was documented in a sitcom "International Class". Tone and stress when they speak the Indonesian language is unique and different from Indonesian pronunciation. By using the Praat program, this research aims to describe prosodic Indonesian language which is spoken by ‘International Class” actors consisting of Abbas from Nigeria, Lee from Korea, and Kotaro from Japan. Data for the research are taken from the video sitcom "International Class" that aired on Indonesian television. The results of this study revealed that pitch movement that arises when pronouncing Indonesian sentences was up and down gradually, there is also a rise and fall sharply. In terms of stress, respondents tend to contain a lot of stress when pronouncing Indonesian sentences. Meanwhile, in terms of temporal structure, the duration pronouncing Indonesian sentences tends to be longer than that of Indonesian speakers.Keywords: Melodic structure, temporal structure, prosody, experimental phonetics, international class.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9571598 Comparison Study on Characterization of Various Fly Ashes for Heavy Metal Adsorption
Authors: E. Moroydor Derun, N. Tugrul, N. Baran Acarali, A. S. Kipcak, S. Piskin
Abstract:
Fly ash is a waste material of coal firing thermal plants that is released from thermal power plants. It was defined as very fine particles that are drifted upward which are taken up by the flue gases. The emerging amount of fly ash in the world is approximately 600 million tons per year. In our country, it is expected that will be occurred 50 million tons of waste ash per year until 2020. The fly ashes can be evaluated by using as adsorbent material. The purpose of this study is to investigate the possibility of use of various fly ashes (Tuncbilek, Catalagzi, Orhaneli) like lowcost adsorbents for heavy metal adsorption. First of all, fly ashes were characterized. For this purpose; analyses such as XRD, XRF, SEM and FT-IR were performed.
Keywords: Adsorbent, fly ash, heavy metal, waste.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18531597 Statistical Optimization of Medium Components for Biomass Production of Chlorella pyrenoidosa under Autotrophic Conditions and Evaluation of Its Biochemical Composition under Stress Conditions
Authors: N. P. Dhull, K. Gupta, R. Soni, D. K. Rahi, S. K. Soni
Abstract:
The aim of the present work was to statistically design an autotrophic medium for maximum biomass production by Chlorella pyrenoidosa using response surface methodology. After evaluating one factor at a time approach, K2HPO4, KNO3, MgSO4.7H2O and NaHCO3 were preferred over the other components of the fog’s medium as most critical autotrophic medium components. The study showed that the maximum biomass yield was achieved while the concentrations of MgSO4.7H2O, K2HPO4, KNO3 and NaHCO3 were 0.409 g/L, 0.24 g/L, 1.033 g/L, and 3.265 g/L, respectively. The study reported that the biomass productivity of C. pyrenoidosa improved from 0.14 g/L in defined fog’s medium to 1.40 g/L in modified fog’s medium resulting 10 fold increase. The biochemical composition biosynthesis of C. pyrenoidosa was altered using nitrogen limiting stress bringing about 5.23 fold increase in lipid content than control (cell without stress), as analyzed by FTIR integration method.
Keywords: Autotrophic condition, Chlorella pyrenoidosa, FTIR, Response Surface Methodology, Optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24401596 Quantifying the UK’s Future Thermal Electricity Generation Water Use: Regional Analysis
Authors: Daniel Murrant, Andrew Quinn, Lee Chapman
Abstract:
A growing population has led to increasing global water and energy demand. This demand, combined with the effects of climate change and an increasing need to maintain and protect the natural environment, represents a potentially severe threat to many national infrastructure systems. This has resulted in a considerable quantity of published material on the interdependencies that exist between the supply of water and the thermal generation of electricity, often known as the water-energy nexus. Focusing specifically on the UK, there is a growing concern that the future availability of water may at times constrain thermal electricity generation, and therefore hinder the UK in meeting its increasing demand for a secure, and affordable supply of low carbon electricity. To provide further information on the threat the water-energy nexus may pose to the UK’s energy system, this paper models the regional water demand of UK thermal electricity generation in 2030 and 2050. It uses the strategically important Energy Systems Modelling Environment model developed by the Energy Technologies Institute. Unlike previous research, this paper was able to use abstraction and consumption factors specific to UK power stations. It finds that by 2050 the South East, Yorkshire and Humber, the West Midlands and North West regions are those with the greatest freshwater demand and therefore most likely to suffer from a lack of resource. However, it finds that by 2050 it is the East, South West and East Midlands regions with the greatest total water (fresh, estuarine and seawater) demand and the most likely to be constrained by environmental standards.
Keywords: Water-energy nexus, water resources, abstraction, climate change, power station cooling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15491595 Detection of Near Failure Winding due to Deformation in 33/11kV Power Transformer by using Low Voltage Impulse (LVI) Test Method and Validated through Untanking
Authors: R. Samsudin, Yogendra, Hairil Satar, Y.Zaidey
Abstract:
Power transformer consists of components which are under consistent thermal and electrical stresses. The major component which degrades under these stresses is the paper insulation of the power transformer. At site, lightning impulses and cable faults may cause the winding deformation. In addition, the winding may deform due to impact during transportation. A deformed winding will excite more stress to its insulating paper thus will degrade it. Insulation degradation will shorten the life-span of the transformer. Currently there are two methods of detecting the winding deformation which are Sweep Frequency Response Analysis (SFRA) and Low Voltage Impulse Test (LVI). The latter injects current pulses to the winding and capture the admittance plot. In this paper, a transformer which experienced overheating and arcing was identified, and both SFRA and LVI were performed. Next, the transformer was brought to the factory for untanking. The untanking results revealed that the LVI is more accurate than the SFRA method for this case study.Keywords: Winding Deformation, Arcing, Dissolved GasAnalysis, Sweep Frequency Response Analysis, Low VoltageImpulse Method
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28461594 Application of Pearson Parametric Distribution Model in Fatigue Life Reliability Evaluation
Authors: E. A. Azrulhisham, Y. M. Asri, A. W. Dzuraidah, A. H. Hairul Fahmi
Abstract:
The aim of this paper is to introduce a parametric distribution model in fatigue life reliability analysis dealing with variation in material properties. Service loads in terms of responsetime history signal of Belgian pave were replicated on a multi-axial spindle coupled road simulator and stress-life method was used to estimate the fatigue life of automotive stub axle. A PSN curve was obtained by monotonic tension test and two-parameter Weibull distribution function was used to acquire the mean life of the component. A Pearson system was developed to evaluate the fatigue life reliability by considering stress range intercept and slope of the PSN curve as random variables. Considering normal distribution of fatigue strength, it is found that the fatigue life of the stub axle to have the highest reliability between 10000 – 15000 cycles. Taking into account the variation of material properties associated with the size effect, machining and manufacturing conditions, the method described in this study can be effectively applied in determination of probability of failure of mass-produced parts.Keywords: Stub axle, Fatigue life reliability, Stress-life, PSN curve, Weibull distribution, Pearson system
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21401593 Role of Sodium Concentration, Waiting Time and Constituents’ Temperature on the Rheological Behavior of Alkali Activated Slag Concrete
Authors: Muhammet M. Erdem, Erdoğan Özbay, Ibrahim H. Durmuş, Mustafa Erdemir, Murat Bikçe, Müzeyyen Balçıkanlı
Abstract:
In this paper, rheological behavior of alkali activated slag concretes were investigated depending on the sodium concentration (SC), waiting time (WT) after production, and constituents’ temperature (CT) parameters. For this purpose, an experimental program was conducted with four different SCs of 1.85, 3.0, 4.15, and 5.30%, three different WT of 0 (just after production), 15, and 30 minutes and three different CT of 18, 30, and 40 °C. Solid precursors are activated by water glass and sodium hydroxide solutions with silicate modulus (Ms = SiO2/Na2O) of 1. Slag content and (water + activator solution)/slag ratio were kept constant in all mixtures. Yield stress and plastic viscosity values were defined for each mixture by using the ICAR rheometer. Test results were demonstrated that all of the three studied parameters have tremendous effect on the yield stress and plastic viscosity values of the alkali activated slag concretes. Increasing the SC, WT, and CT drastically augmented the rheological parameters. At the 15 and 30 minutes WT after production, most of the alkali activated slag concretes were set instantaneously, and rheological measurements were not performed.Keywords: Alkali activation, slag, rheology, yield stress, plastic viscosity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10821592 Rheological Modeling for Shape-Memory Thermoplastic Polymers
Authors: H. Hosseini, B. V. Berdyshev, I. Iskopintsev
Abstract:
This paper presents a rheological model for producing shape-memory thermoplastic polymers. Shape-memory occurs as a result of internal rearrangement of the structural elements of a polymer. A non-linear viscoelastic model was developed that allows qualitative and quantitative prediction of the stress-strain behavior of shape-memory polymers during heating. This research was done to develop a technique to determine the maximum possible change in size of shape-memory products during heating. The rheological model used in this work was particularly suitable for defining process parameters and constructive parameters of the processing equipment.Keywords: Elastic deformation, heating, shape-memory polymers, stress-strain behavior.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17691591 Development of Tensile Stress-Strain Relationship for High-Strength Steel Fiber Reinforced Concrete
Authors: H. A. Alguhi, W. A. Elsaigh
Abstract:
This paper provides a tensile stress-strain (σ-ε) relationship for High-Strength Steel Fiber Reinforced Concrete (HSFRC). Load-deflection (P-δ) behavior of HSFRC beams tested under four-point flexural load were used with inverse analysis to calculate the tensile σ-ε relationship for various tested concrete grades (70 and 90MPa) containing 60 kg/m3 (0.76 %) of hook-end steel fibers. A first estimate of the tensile (σ-ε) relationship is obtained using RILEM TC 162-TDF and other methods available in literature, frequently used for determining tensile σ-ε relationship of Normal-Strength Concrete (NSC) Non-Linear Finite Element Analysis (NLFEA) package ABAQUS® is used to model the beam’s P-δ behavior. The results have shown that an element-size dependent tensile σ-ε relationship for HSFRC can be successfully generated and adopted for further analyses involving HSFRC structures.Keywords: Tensile stress-strain, flexural response, high strength concrete, steel fibers, non-linear finite element analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21691590 Multiaxial Fatigue Analysis of a High Performance Nickel-Based Superalloy
Authors: P. Selva, B. Lorrain, J. Alexis, A. Seror, A. Longuet, C. Mary, F. Denard
Abstract:
Over the past four decades, the fatigue behavior of nickel-based alloys has been widely studied. However, in recent years, significant advances in the fabrication process leading to grain size reduction have been made in order to improve fatigue properties of aircraft turbine discs. Indeed, a change in particle size affects the initiation mode of fatigue cracks as well as the fatigue life of the material. The present study aims to investigate the fatigue behavior of a newly developed nickel-based superalloy under biaxial-planar loading. Low Cycle Fatigue (LCF) tests are performed at different stress ratios so as to study the influence of the multiaxial stress state on the fatigue life of the material. Full-field displacement and strain measurements as well as crack initiation detection are obtained using Digital Image Correlation (DIC) techniques. The aim of this presentation is first to provide an in-depth description of both the experimental set-up and protocol: the multiaxial testing machine, the specific design of the cruciform specimen and performances of the DIC code are introduced. Second, results for sixteen specimens related to different load ratios are presented. Crack detection, strain amplitude and number of cycles to crack initiation vs. triaxial stress ratio for each loading case are given. Third, from fractographic investigations by scanning electron microscopy it is found that the mechanism of fatigue crack initiation does not depend on the triaxial stress ratio and that most fatigue cracks initiate from subsurface carbides.
Keywords: Cruciform specimen, multiaxial fatigue, Nickelbased superalloy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21931589 A Discretizing Method for Reliability Computation in Complex Stress-strength Models
Authors: Alessandro Barbiero
Abstract:
This paper proposes, implements and evaluates an original discretization method for continuous random variables, in order to estimate the reliability of systems for which stress and strength are defined as complex functions, and whose reliability is not derivable through analytic techniques. This method is compared to other two discretizing approaches appeared in literature, also through a comparative study involving four engineering applications. The results show that the proposal is very efficient in terms of closeness of the estimates to the true (simulated) reliability. In the study we analyzed both a normal and a non-normal distribution for the random variables: this method is theoretically suitable for each parametric family.
Keywords: Approximation, asymmetry, experimental design, interference theory, Monte Carlo simulations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17701588 Phyllantus niruri Protects against Fe2+ and SNP Induced Oxidative Damage in Mitochondrial Enriched Fractions of Rats Brain
Authors: Olusola Olalekan Elekofehinti, Isaac Gbadura Adanlawo, Joao Batista Teixeira Rocha
Abstract:
The potential neuroprotective effect of Phyllantus nuriri against Fe2+ and sodium nitroprusside (SNP) induced oxidative stress in mitochondria of rats brain was evaluated. Cellular viability was assessed by MTT reduction, reactive oxygen species (ROS) generation was measured using the probe 2,7-dichlorofluoresce indiacetate (DCFH-DA). Glutathione content was measured using dithionitrobenzoic acid (DTNB). Fe2+ (10μM) and SNP (5μM) significantly decreased mitochondrial activity, assessed by MTT reduction assay, in a dose-dependent manner, this occurred in parallel with increased glutathione oxidation, ROS production and lipid peroxidation end-products (thiobarbituric acid reactive substances, TBARS). The co-incubation with methanolic extract of Phyllantus nuriri (10-200 μg/ml) reduced the disruption of mitochondrial activity, gluthathione oxidation, ROS production as well as the increase in TBARS levels caused by both Fe2+ and SNP in a dose dependent manner. HPLC analysis of the extract revealed the presence of gallic acid (20.540.01), caffeic acid (7.930.02), rutin (25.310.05), quercetin (31.280.03) and kaemferol (14.360.01). This result suggests that these phytochemicals account for the protective actions of P. niruri against Fe2+ and SNP -induced oxidative stress. Our results show that P. nuriri consist important bioactive molecules in the search for an improved therapy against the deleterious effects of Fe2+, an intrinsic producer of reactive oxygen species (ROS), that leads to neuronal oxidative stress and neurodegeneration.Keywords: Phyllantus niruri, mitochondria, antioxidant, oxidative stress, synaptosome.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17451587 Numerical Study on the Hazards of Gravitational Forces on Cerebral Aneurysms
Authors: Hashem M. Alargha, Mohammad O. Hamdan, Waseem H. Aziz
Abstract:
Aerobatic and military pilots are subjected to high gravitational forces that could cause blackout, physical injuries or death. A CFD simulation using fluid-solid interactions scheme has been conducted to investigate the gravitational effects and hazards inside cerebral aneurysms. Medical data have been used to derive the size and geometry of a simple aneurysm on a T-shaped bifurcation. The results show that gravitational force has no effect on maximum Wall Shear Stress (WSS); hence, it will not cause aneurysm initiation/formation. However, gravitational force cause causes hypertension which could contribute to aneurysm rupture.
Keywords: Aneurysm, CFD, wall shear stress, gravity, fluid dynamics, bifurcation artery.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14071586 Patterned Growth of ZnO Nanowire Arrays on Zinc Foil by Thermal Oxidation
Authors: Farid Jamali Sheini, Dilip S. Joag, Mahendra A. More
Abstract:
A simple approach is demonstrated for growing large scale, nearly vertically aligned ZnO nanowire arrays by thermal oxidation method. To reveal effect of temperature on growth and physical properties of the ZnO nanowires, gold coated zinc substrates were annealed at 300 °C and 400 °C for 4 hours duration in air. Xray diffraction patterns of annealed samples indicated a set of well defined diffraction peaks, indexed to the wurtzite hexagonal phase of ZnO. The scanning electron microscopy studies show formation of ZnO nanowires having length of several microns and average of diameter less than 500 nm. It is found that the areal density of wires is relatively higher, when the annealing is carried out at higher temperature i.e. at 400°C. From the field emission studies, the values of the turn-on and threshold field, required to draw emission current density of 10 μA/cm2 and 100 μA/cm2 are observed to be 1.2 V/μm and 1.7 V/μm for the samples annealed at 300 °C and 2.9 V/μm and 3.7 V/μm for that annealed at 400 °C, respectively. The field emission current stability, investigated over duration of more than 2 hours at the preset value of 1 μA, is found to be fairly good in both cases. The simplicity of the synthesis route coupled with the promising field emission properties offer unprecedented advantage for the use of ZnO field emitters for high current density applications.Keywords: ZnO, Nanowires, Thermal oxidation, FieldEmission.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20591585 Temperature-dependent Structural Perturbation of Tuna Myoglobin
Authors: Yoshihiro Ochiai
Abstract:
To unveil the mechanism of fast autooxidation of fish myoglobins, the effect of temperature on the structural change of tuna myoglobin was investigated. Purified myoglobin was subjected to preincubation at 5, 20, 50 and 40oC. Overall helical structural decay through thermal treatment up to 95oC was monitored by circular dichroism spectrometry, while the structural changes around the heme pocket was measured by ultraviolet/visible absorption spectrophotometry. As a result, no essential structural change of myoglobin was observed under 30oC, roughly equivalent to their body temperature, but the structure was clearly damaged at 40oC. The Soret band absorption hardly differed irrespective of preincubation temperature, suggesting that the structure around the heme pocket was not perturbed even after thermal treatment.Keywords: denaturation, myoglobin, stability, tuna.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19851584 Parametric Characterization of Load Capacity of Infinitely Wide Parabolic Slider Bearing with Couple Stress Fluids
Authors: Oladeinde Mobolaji Humphrey, Akpobi John
Abstract:
A mathematical model for the hydrodynamic lubrication of parabolic slider bearings with couple stress lubricants is presented. A numerical solution for the mathematical model using finite element scheme is obtained using three nodes isoparametric quadratic elements. Stiffness integrals obtained from the weak form of the governing equations were solved using Gauss Quadrature to obtain a finite number of stiffness matrices. The global system of equations was obtained for the bearing and solved using Gauss Seidel iterative scheme. The converged pressure solution was used to obtain the load capacity of the bearing. Parametric studies were carried out and it was shown that the effect of couple stresses and profile parameter are to increase the load carrying capacity of the parabolic slider bearing. Numerical experiments reveal that the magnitude of the profile parameter at which maximum load is obtained increases with decrease in couple stress parameter. The results are presented in graphical form.Keywords: Finite element, numerical, parabolic slider.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20841583 Stress versus Strain Behavior of Geopolymer Cement under Triaxial Stress Conditions in Saline and Normal Water
Authors: Haider M. Giasuddin, Jay G. Sanjayan, P. G. Ranjith
Abstract:
Geopolymer cement was evaluated as wellbore sealing material for carbon dioxide geosequestration application. Curing of cement system in saline water and strength testing in triaxial stress state condition under lateral confinement is relevant to primary cementing in CO2 geosequestration wellbore in saline aquifer. Geopolymer cement was cured in saline water (both at ambient conditions for 28 days and heated (60°C) conditions for 12 hours) and tested for triaxial strength at different levels of lateral confinement. Normal water and few other curing techniques were also studied both for geopolymer and API ‘G’ cement. Results reported were compared to evaluate the suitability of saline water for curing of geopolymer cement. Unconfined compression test results showed higher strength for curing in saline water than normal water. Besides, testing strength under lateral confinement demonstrated the material failure behavior from brittle to plastic.
Keywords: Fly ash, Geopolymer, Geosequestration, Saline water, Strength, Traiaxial test.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24131582 Thermal Performance of an Air Heating Storing System
Authors: Mohammed A. Elhaj, Jamal S. Yassin
Abstract:
Owing to the lack of synchronization between the solar energy availability and the heat demands in a specific application, the energy storing sub-system is necessary to maintain the continuity of thermal process. The present work is dealing with an active solar heating storing system in which an air solar collector is connected to storing unit where this energy is distributed and provided to the heated space in a controlled manner. The solar collector is a box type absorber where the air flows between a number of vanes attached between the collector absorber and the bottom plate. This design can improve the efficiency due to increasing the heat transfer area exposed to the flowing air, as well as the heat conduction through the metal vanes from the top absorbing surface. The storing unit is a packed bed type where the air is coming from the air collector and circulated through the bed in order to add/remove the energy through the charging / discharging processes, respectively. The major advantage of the packed bed storage is its high degree of thermal stratification. Numerical solution of the packed bed energy storage is considered through dividing the bed into a number of equal segments for the bed particles and solved the energy equation for each segment depending on the neighbor ones. The studied design and performance parameters in the developed simulation model including, particle size, void fraction, etc. The final results showed that the collector efficiency was fluctuated between 55%-61% in winter season (January) under the climatic conditions of Misurata in Libya. Maximum temperature of 52ºC is attained at the top of the bed while the lower one is 25ºC at the end of the charging process of hot air into the bed. This distribution can satisfy the required load for the most house heating in Libya.
Keywords: Solar energy, thermal process, performance, collector, packed bed, numerical analysis, simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19981581 Effect of Silt Presence on Shear Strength Parameters of Unsaturated Sandy Soils
Authors: R. Ziaie Moayed, E. Khavaninzadeh, M. Ghorbani Tochaee
Abstract:
Direct shear test is widely used in soil mechanics experiment to determine the shear strength parameters of granular soils. For analysis of soil stability problems such as bearing capacity, slope stability and lateral pressure on soil retaining structures, the shear strength parameters must be known well. In the present study, shear strength parameters are determined in silty-sand mixtures. Direct shear tests are performed on 161 Firoozkooh sand with different silt content at a relative density of 70% in three vertical stress of 100, 150, and 200 kPa. Wet tamping method is used for soil sample preparation, and the results include diagrams of shear stress versus shear deformation and sample height changes against shear deformation. Accordingly, in different silt percent, the shear strength parameters of the soil such as internal friction angle and dilation angle are calculated and compared. According to the results, when the sample contains up to 10% silt, peak shear strength and internal friction angle have an upward trend. However, if the sample contains 10% to 50% of silt a downward trend is seen in peak shear strength and internal friction angle.
Keywords: Shear strength parameters, direct shear test, silty sand, shear stress, shear deformation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7681580 Tribological Behaviour Improvement of Lubricant Using Copper (II) Oxide Nanoparticles as Additive
Authors: M. A. Hassan, M. H. Sakinah, K. Kadirgama, D. Ramasamy, M. M. Noor, M. M. Rahman
Abstract:
Tribological properties that include nanoparticles are an alternative to improve the tribological behaviour of lubricating oil, which has been investigated by many researchers for the past few decades. Various nanostructures can be used as additives for tribological improvement. However, this also depends on the characteristics of the nanoparticles. In this study, tribological investigation was performed to examine the effect of CuO nanoparticles on the tribological behaviour of Syntium 800 SL 10W−30. Three parameters used in the analysis using the wear tester (piston ring) were load, revolutions per minute (rpm), and concentration. The specifications of the nanoparticles, such as size, concentration, hardness, and shape, can affect the tribological behaviour of the lubricant. The friction and wear experiment was conducted using a tribo-tester and the Response Surface Methodology method was used to analyse any improvement of the performance. Therefore, two concentrations of 40 nm nanoparticles were used to conduct the experiments, namely, 0.005 wt % and 0.01 wt % and compared with base oil 0 wt % (control). A water bath sonicator was used to disperse the nanoparticles in base oil, while a tribo-tester was used to measure the coefficient of friction and wear rate. In addition, the thermal properties of the nanolubricant were also measured. The results have shown that the thermal conductivity of the nanolubricant was increased when compared with the base oil. Therefore, the results indicated that CuO nanoparticles had improved the tribological behaviour as well as the thermal properties of the nanolubricant oil.
Keywords: Concentration, improvement, tribological, Copper (II) oxide, nanolubricant.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18921579 A Partially Accelerated Life Test Planning with Competing Risks and Linear Degradation Path under Tampered Failure Rate Model
Authors: Fariba Azizi, Firoozeh Haghighi, Viliam Makis
Abstract:
In this paper, we propose a method to model the relationship between failure time and degradation for a simple step stress test where underlying degradation path is linear and different causes of failure are possible. It is assumed that the intensity function depends only on the degradation value. No assumptions are made about the distribution of the failure times. A simple step-stress test is used to shorten failure time of products and a tampered failure rate (TFR) model is proposed to describe the effect of the changing stress on the intensities. We assume that some of the products that fail during the test have a cause of failure that is only known to belong to a certain subset of all possible failures. This case is known as masking. In the presence of masking, the maximum likelihood estimates (MLEs) of the model parameters are obtained through an expectation-maximization (EM) algorithm by treating the causes of failure as missing values. The effect of incomplete information on the estimation of parameters is studied through a Monte-Carlo simulation. Finally, a real example is analyzed to illustrate the application of the proposed methods.Keywords: Expectation-maximization (EM) algorithm, cause of failure, intensity, linear degradation path, masked data, reliability function.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10731578 Study of Incineration of Acacia Wood Chips for Biomass Power Plant of the Royal Thai Navy in Sattahip, Chonburi Province, Thailand
Authors: Thanapong Suriyea, Teeratas Pornyungyuen, Koonlaya Kanokjaruvijit
Abstract:
This research is aimed to find optimal values of parameters of acacia wood chips combustion in a bubbling fluidized bed for electrification within the area of the Royal Thai Navy in Sattahip, Chonburi province, Thailand. The size of wood chips falls in the range of 25 mm in diameter. The bed temperature is set within the range of 800±10 oC with the air flow rate of 2.1-3.1 m/min corresponding to the air-fuel ratio between 0.71 to 1.03. The resulting thermal efficiency is approximately 95% with a thermal output of 474.76 kWth, which produced the electricity 0.131 kW-hr.
Keywords: Acacia Wood Chips, Biomass, Combustion, Fluidized Bed.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27041577 Theoretical Study of Flexible Edge Seals for Vacuum Glazing
Authors: Farid Arya, Trevor Hyde
Abstract:
The development of vacuum glazing represents a significant advancement in the area of low heat loss glazing systems with the potential to substantially reduce building heating and cooling loads. Vacuum glazing consists of two or more glass panes hermetically sealed together around the edge with a vacuum gap between the panes. To avoid the glass panes from collapsing and touching each other under the influence of atmospheric pressure an array of support pillars is provided between the glass panes. A high level of thermal insulation is achieved by evacuating the spaces between the glass panes to a very low pressure which greatly reduces conduction and convection within the space; therefore heat transfer through this kind of glazing is significantly lower when compared with conventional insulating glazing. However, vacuum glazing is subject to inherent stresses due to atmospheric pressure and temperature differentials which can lead to fracture of the glass panes and failure of the edge seal. A flexible edge seal has been proposed to minimise the impact of these issues. In this paper, vacuum glazing system with rigid and flexible edge seals is theoretically studied and their advantages and disadvantages are discussed.Keywords: Flexible edge seal, stress, support pillar, vacuum glazing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12661576 Theoretical Investigation of Steel Plated Girder Resistance
Authors: J. Kala, J. Melcher, M. Škaloud, Z. Kala
Abstract:
In the paper, the results of sensitivity analysis of the influence of initial imperfections on the web stress state of a thinwalled girder are presented. The results of the study corroborate a very good and effective agreement of experiments with theory. Most input random quantities were found experimentally. The change of sensitivity coefficients in dependence on working load value is analysed. The stress was analysed by means of a geometrically and materially non-linear solution by applying the program ANSYS. This research study offers important background for theoretical studies of stability problems, post-critical effects and limit states of thin-walled steel structures.
Keywords: Buckling, Fatigue, Imperfection, Steel, Sensitivity analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18101575 Calculation of the Thermal Stresses in an Elastoplastic Plate Heated by Local Heat Source
Authors: M. Khaing, A. V. Tkacheva
Abstract:
The work is devoted to solving the problem of temperature stresses, caused by the heating point of the round plate. The plate is made of elastoplastic material, so the Prandtl-Reis model is used. A piecewise-linear condition of the Ishlinsky-Ivlev flow is taken as the loading surface, in which the yield stress depends on the temperature. Piecewise-linear conditions (Treska or Ishlinsky-Ivlev), in contrast to the Mises condition, make it possible to obtain solutions of the equilibrium equation in an analytical form. In the problem under consideration, using the conditions of Tresca, it is impossible to obtain a solution. This is due to the fact that the equation of equilibrium ceases to be satisfied when the two Tresca conditions are fulfilled at once. Using the conditions of plastic flow Ishlinsky-Ivlev allows one to solve the problem. At the same time, there are also no solutions on the edge of the Ishlinsky-Ivlev hexagon in the plane-stressed state. Therefore, the authors of the article propose to jump from the edge to the edge of the mine edge, which gives an opportunity to obtain an analytical solution. At the same time, there is also no solution on the edge of the Ishlinsky-Ivlev hexagon in a plane stressed state; therefore, in this paper, the authors of the article propose to jump from the side to the side of the mine edge, which gives an opportunity to receive an analytical solution. The paper compares solutions of the problem of plate thermal deformation. One of the solutions was obtained under the condition that the elastic moduli (Young's modulus, Poisson's ratio) which depend on temperature. The yield point is assumed to be parabolically temperature dependent. The main results of the comparisons are that the region of irreversible deformation is larger in the calculations obtained for solving the problem with constant elastic moduli. There is no repeated plastic flow in the solution of the problem with elastic moduli depending on temperature. The absolute value of the irreversible deformations is higher for the solution of the problem in which the elastic moduli are constant; there are also insignificant differences in the distribution of the residual stresses.Keywords: Temperature stresses, elasticity, plasticity, Ishlinsky-Ivlev condition, plate, annular heating, elastic moduli.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7281574 Preparation of Protective Coating Film on Metal Alloy
Authors: Rana Th. A. Al-Rubaye
Abstract:
A novel chromium-free protective coating films based on a zeolite coating was growing onto a FeCrAlloy metal using in – situ hydrothermal method. The zeolite film was obtained using in-situ crystallization process that is capable of coating large surfaces with complex shape and in confined spaces has been developed. The zeolite coating offers an advantage of a high mechanical stability and thermal stability. The physicochemical properties were investigated using X-ray diffraction (XRD), Electron Microscopy (SEM), Energy Dispersive X–ray Analysis (EDX) and Thermogravimetric Analysis (TGA). The transition from oxide-on-alloy wires to hydrothermally synthesised uniformly zeolite coated surfaces was followed using SEM and XRD. In addition, the robustness of the prepared coating was confirmed by subjecting these to thermal cycling (ambient to 550oC).Keywords: FeCrAlloy, Zeolite ZSM-5. Zeolite coating.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18421573 Long Term Stability of an Experimental Insulated-Model Salinity-Gradient Solar Pond
Authors: N. W. K. Jayatissa, R. Attalage, Prabath Hewageegana, P. A. A. Perera, M. A. Punyasena
Abstract:
Per capita energy usage in any country is exponentially increasing with their development. As a result, the country’s dependence on the fossil fuels for energy generation is also increasing tremendously creating economic and environmental concerns. Tropical countries receive considerable amount of solar radiation throughout the year, use of solar energy with different energy storage and conversion methodologies is a viable solution to minimize the ever increasing demand for the depleting fossil fuels. Salinity gradient solar pond is one such solar energy application. This paper reports the characteristics and performance of a thermally insulated, experimental salinity-gradient solar pond, built at the premises of the University of Kelaniya, Sri Lanka. Particular stress is given to the behavior of the evolution of the three layer structure exist at the stable state of a salinity gradient solar pond over a long period of time, under different environmental conditions. The operational procedures required to maintain the long term thermal stability are also reported in this article.
Keywords: Salt-gradient, solar pond, solar radiation, renewable energy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16061572 Evaluation of Optimal Residence Time in a Hot Rolled Reheating Furnace
Authors: Dong-Eun Lee
Abstract:
To calculate the temperature distribution of the slab in a hot rolled reheating furnace a mathematical model has been developed by considering the thermal radiation in the furnace and transient conduction in the slab. The furnace is modeled as radiating medium with spatially varying temperature. Radiative heat flux within the furnace including the effect of furnace walls, combustion gases, skid beams and buttons is calculated using the FVM and is applied as the boundary condition of the transient conduction equation of the slab. After determining the slab emissivity by comparison between simulation and experimental work, variation of heating characteristics in the slab is investigated in the case of changing furnace temperature with various time and the slab residence time is optimized with this evaluation.Keywords: Reheating Furnace, Thermal Radiation, ResidenceTime, FVM for Radiation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24971571 Tool Condition Monitoring of Ceramic Inserted Tools in High Speed Machining through Image Processing
Authors: Javier A. Dominguez Caballero, Graeme A. Manson, Matthew B. Marshall
Abstract:
Cutting tools with ceramic inserts are often used in the process of machining many types of superalloy, mainly due to their high strength and thermal resistance. Nevertheless, during the cutting process, the plastic flow wear generated in these inserts enhances and propagates cracks due to high temperature and high mechanical stress. This leads to a very variable failure of the cutting tool. This article explores the relationship between the continuous wear that ceramic SiAlON (solid solutions based on the Si3N4 structure) inserts experience during a high-speed machining process and the evolution of sparks created during the same process. These sparks were analysed through pictures of the cutting process recorded using an SLR camera. Features relating to the intensity and area of the cutting sparks were extracted from the individual pictures using image processing techniques. These features were then related to the ceramic insert’s crater wear area.Keywords: Ceramic cutting tools, high speed machining, image processing, tool condition monitoring, tool wear.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2189