Search results for: Equivalent concrete stress block
1853 Seismic Assessment of Old Existing RC Buildings with Masonry Infill in Madinah as per ASCE
Authors: Tarek M. Alguhane, Ayman H. Khalil, M. N. Fayed, Ayman M. Ismail
Abstract:
An existing RC building in Madinah is seismically evaluated with and without infill wall. Four model systems have been considered i.e. model I (no infill), model IIA (strut infill-update from field test), model IIB (strut infill- ASCE/SEI 41) and model IIC (strut infill-Soft storey- ASCE/SEI 41). Three dimensional pushover analyses have been carried out using SAP2000 software incorporating inelastic material behavior for concrete, steel and infill walls. Infill wall has been modeled as equivalent strut according to suggested equation matching field test measurements and to the ASCE/SEI 41 equation. The effect of building modeling on the performance point as well as capacity and demand spectra due to EQ design spectrum function in Madinah area has been investigated. The response modification factor (R) for the 5 story RC building is evaluated from capacity and demand spectra (ATC-40) for the studied models. The results are summarized and discussed.
Keywords: Infill wall, Pushover Analysis, Response Modification Factor, Seismic Assessment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32601852 Note to the Global GMRES for Solving the Matrix Equation AXB = F
Authors: Fatemeh Panjeh Ali Beik
Abstract:
In the present work, we propose a new projection method for solving the matrix equation AXB = F. For implementing our new method, generalized forms of block Krylov subspace and global Arnoldi process are presented. The new method can be considered as an extended form of the well-known global generalized minimum residual (Gl-GMRES) method for solving multiple linear systems and it will be called as the extended Gl-GMRES (EGl- GMRES). Some new theoretical results have been established for proposed method by employing Schur complement. Finally, some numerical results are given to illustrate the efficiency of our new method.
Keywords: Matrix equation, Iterative method, linear systems, block Krylov subspace method, global generalized minimum residual (Gl-GMRES).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18401851 Semi Empirical Equations for Peak Shear Strength of Rectangular Reinforced Concrete Walls
Authors: Ali Kezmane, Said Boukais, Mohand Hamizi
Abstract:
This paper presents an analytical study on the behavior of reinforced concrete walls with rectangular cross section. Several experiments on such walls have been selected to be studied. Database from various experiments were collected and nominal shear wall strengths have been calculated using formulas, such as those of the ACI (American), NZS (New Zealand), Mexican (NTCC), and Wood and Barda equations. Subsequently, nominal shear wall strengths from the formulas were compared with the ultimate shear wall strengths from the database. These formulas vary substantially in functional form and do not account for all variables that affect the response of walls. There is substantial scatter in the predicted values of ultimate shear strength. Two new semi empirical equations are developed using data from tests of 57 walls for transitions walls and 27 for slender walls with the objective of improving the prediction of peak strength of walls with the most possible accurate.Keywords: Shear strength, reinforced concrete walls, rectangular walls, shear walls, models.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14521850 Effect of Mica Content in Sand on Site Response Analyses
Authors: Volkan Isbuga, Joman M. Mahmood, Ali Firat Cabalar
Abstract:
This study presents the site response analysis of mica-sand mixtures available in certain parts of the world including Izmir, a highly populated city and located in a seismically active region in western part of Turkey. We performed site response analyses by employing SHAKE, an equivalent linear approach, for the micaceous soil deposits consisting of layers with different amount of mica contents and thicknesses. Dynamic behavior of micaceous sands such as shear modulus reduction and damping ratio curves are input for the ground response analyses. Micaceous sands exhibit a unique dynamic response under a scenario earthquake with a magnitude of Mw=6. Results showed that higher amount of mica caused higher spectral accelerations.
Keywords: Micaceous sands, site response, equivalent linear approach, SHAKE.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16861849 Study on Connecting Method of Box Pontoons
Authors: Young-Jun You, Youn-Ju Jeong, Min-Su Park, Du-Ho Lee
Abstract:
Due to a lot of limited conditions, a large box type floating structure is inevitably constructed by connecting many pontoons. When a floating structure is made with concrete, concrete shear key with saw-teeth shape is often used to carry shear force. Match casting for the shear key and precise construction on a sea are very important for making separated two pontoons as one body but those are not easy work and may increase construction time and cost. To solve this problem, one-way shear key is studied in this paper for a connected part where there is some difference between upward and downward shear force. It has only one inclined plane and can resist shear force in one direction. Big shear force is resisted by concrete which forms an inclined plane and small shear force is resisted by steel bar. This system can reduce manufacturing cost of individual pontoon and construction time and cost for constructing a floating structure on a sea. In this paper, the feasibility study about one-way shear key system is performed by comparing with design example.
Keywords: Connection, floating container terminal, pontoon, pre-stressing, shear key.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31111848 Hydrogen Embrittlement in a Coupled Mass Diffusion with Stress near a Blunting Crack Tip for AISI 4135 Pressure Vessel
Authors: H. Dehghan, E. Mahdavi, M. M. Heyhat
Abstract:
In pressure vessels contain hydrogen, the role of hydrogen will be important because of hydrogen cracking problem. It is difficult to predict what is happened in metallurgical field spite of a lot of studies have been searched. The main role in controlling the mass diffusion as driving force is related to stress. In this study, finite element analysis is implemented to estimate material-s behavior associated with hydrogen embrittlement. For this purpose, one model of a pressure vessel is introduced that it has definite boundary and initial conditions. In fact, finite element is employed to solve the sequentially coupled mass diffusion with stress near a crack front in a pressure vessel. Modeling simulation intergrarnular fracture of AISI 4135 steel due to hydrogen is investigated. So, distribution of hydrogen and stress are obtained and they indicate that their maximum amounts occur near the crack front. This phenomenon is happened exactly the region between elastic and plastic field. Therefore, hydrogen is highly mobile and can diffuse through crystal lattice so that this zone is potential to trap high volume of hydrogen. Consequently, crack growth and fast fracture will be happened.Keywords: Stress Intensity Factor, Mass Diffusion, FEM, Pressure Vessel
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30741847 Effect of Hartmann Number on Free Convective Flow in a Square Cavity with Different Positions of Heated Square Block
Authors: Abdul Halim Bhuiyan, M. A. Alim, Md. Nasir Uddin
Abstract:
This paper is concerned with the effect of Hartmann number on the free convective flow in a square cavity with different positions of heated square block. The two-dimensional Physical and mathematical model have been developed, and mathematical model includes the system of governing mass, momentum and energy equations are solved by the finite element method. The calculations have been computed for Prandtl number Pr = 0.71, the Rayleigh number Ra = 1000 and the different values of Hartmann number. The results are illustrated with the streamlines, isotherms, velocity and temperature fields as well as local Nusselt number.
Keywords: Finite element method, free convection, Hartmann number, square cavity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29861846 Effect of Applied Voltage Frequency on Electrical Treeing in 22 kV Cross-linked Polyethylene Insulated Cable
Authors: R. Thiamsri, N. Ruangkajonmathee, A. Oonsivilaiand B. Marungsri
Abstract:
This paper presents the experimental results on effect of applied voltage stress frequency to the occurrence of electrical treeing in 22 kV cross linked polyethylene (XLPE) insulated cable.Hallow disk of XLPE insulating material with thickness 5 mm taken from unused high voltage cable was used as the specimen in this study. Stainless steel needle was inserted gradually into the specimen to give a tip to earth plane electrode separation of 2.50.2 mm at elevated temperature 105-110°C. The specimen was then annealed for 5 minute to minimize any mechanical stress build up around the needle-plane region before it was cooled down to room temperature. Each specimen were subjected to the same applied voltage stress level at 8 kV AC rms, with various frequency, 50, 100, 500, 1000 and 2000 Hz. Initiation time, propagation speed and pattern of electrical treeing were examined in order to study the effect of applied voltage stress frequency. By the experimental results, initial time of visible treeing decreases with increasing in applied voltage frequency. Also, obviously, propagation speed of electrical treeing increases with increasing in applied voltage frequency.Furthermore, two types of electrical treeing, bush-like and branch-like treeing were observed.The experimental results confirmed the effect of voltage stress frequency as well.
Keywords: Voltage stress frequency, cross-linked polyethylene, electrical treeing, treeing propagation, treeing pattern
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26211845 Influence of Hygro-Chemo-Mechanical Degradation on Performance of Concrete Gravity Dam
Authors: Kalyan Kumar Mandal, Damodar Maity
Abstract:
The degradation of concrete due to various hygrochemo- mechanical actions is inevitable for the structures particularly built to store water. Therefore, it is essential to determine the material properties of dam-like structures due to ageing to predict the behavior of such structures after a certain age. The degraded material properties are calculated by introducing isotropic degradation index. The predicted material properties are used to study the behavior of aged dam at different ages. The dam is modeled by finite elements and displacement and is considered as an unknown variable. The parametric study reveals that the displacement is quite larger for comparatively lower design life of the structure because the degradation of elastic properties depends on the design life of the dam. The stresses in dam cam be unexpectedly large at any age with in the design life. The outcomes of the present study indicate the importance of the consideration ageing effect of concrete exposed to water for the safe design of dam throughout its life time.Keywords: Hygro-chemo-mechanical, isotropic degradation, finite element method, Koyna earthquake.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18661844 Analysis of Residual Strain and Stress Distributions in High Speed Milled Specimens using an Indentation Method
Authors: Felipe V. Díaz, Claudio A. Mammana, Armando P. M. Guidobono, Raúl E. Bolmaro
Abstract:
Through a proper analysis of residual strain and stress distributions obtained at the surface of high speed milled specimens of AA 6082–T6 aluminium alloy, the performance of an improved indentation method is evaluated. This method integrates a special device of indentation to a universal measuring machine. The mentioned device allows introducing elongated indents allowing to diminish the absolute error of measurement. It must be noted that the present method offers the great advantage of avoiding both the specific equipment and highly qualified personnel, and their inherent high costs. In this work, the cutting tool geometry and high speed parameters are selected to introduce reduced plastic damage. Through the variation of the depth of cut, the stability of the shapes adopted by the residual strain and stress distributions is evaluated. The results show that the strain and stress distributions remain unchanged, compressive and small. Moreover, these distributions reveal a similar asymmetry when the gradients corresponding to conventional and climb cutting zones are compared.Keywords: Residual strain, residual stress, high speed milling, indentation methods, aluminium alloys.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16241843 Reversible Watermarking for H.264/AVC Videos
Authors: Yih-Chuan Lin, Jung-Hong Li
Abstract:
In this paper, we propose a reversible watermarking scheme based on histogram shifting (HS) to embed watermark bits into the H.264/AVC standard videos by modifying the last nonzero level in the context adaptive variable length coding (CAVLC) domain. The proposed method collects all of the last nonzero coefficients (or called last level coefficient) of 4×4 sub-macro blocks in a macro block and utilizes predictions for the current last level from the neighbor block-s last levels to embed watermark bits. The feature of the proposed method is low computational and has the ability of reversible recovery. The experimental results have demonstrated that our proposed scheme has acceptable degradation on video quality and output bit-rate for most test videos.Keywords: Reversible data hiding, H.264/AVC standard, CAVLC, Histogram shifting
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20311842 An Approach for Modeling CMOS Gates
Authors: Spyridon Nikolaidis
Abstract:
A modeling approach for CMOS gates is presented based on the use of the equivalent inverter. A new model for the inverter has been developed using a simplified transistor current model which incorporates the nanoscale effects for the planar technology. Parametric expressions for the output voltage are provided as well as the values of the output and supply current to be compatible with the CCS technology. The model is parametric according the input signal slew, output load, transistor widths, supply voltage, temperature and process. The transistor widths of the equivalent inverter are determined by HSPICE simulations and parametric expressions are developed for that using a fitting procedure. Results for the NAND gate shows that the proposed approach offers sufficient accuracy with an average error in propagation delay about 5%.
Keywords: CMOS gate modeling, Inverter modeling, transistor current model, timing model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20271841 Dispersion of a Solute in Peristaltic Motion of a Couple Stress Fluid through a Porous Medium with Slip Condition
Authors: Habtu Alemayehu, G. Radhakrishnamacharya
Abstract:
The paper presents an analytical solution for dispersion of a solute in the peristaltic motion of a couple stress fluid through a porous medium with slip condition in the presence of both homogeneous and heterogeneous chemical reactions. The average effective dispersion coefficient has been found using Taylor-s limiting condition and long wavelength approximation. The effects of various relevant parameters on the average coefficient of dispersion have been studied. The average effective dispersion coefficient tends to increase with permeability parameter but tends to decrease with homogeneous chemical reaction rate parameter, couple stress parameter, slip parameter and heterogeneous reaction rate parameter.Keywords: Dispersion, Peristalsis, Couple stress fluid, Porousmedium, Chemical reaction, Slip condition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15611840 Study of Debonding of Composite Material from a Deforming Concrete Beam Using Infrared Thermography
Authors: Igor Shardakov, Anton Bykov, Alexey Shestakov, Irina Glot
Abstract:
This article focuses on the cycle of experimental studies of the formation of cracks and debondings in the concrete reinforced with carbon fiber. This research was carried out in Perm National Research Polytechnic University. A series of CFRP-strengthened RC beams was tested to investigate the influence of preload and crack repairing factors on CFRP debonding. IRT was applied to detect the early stage of IC debonding during the laboratory bending tests. It was found that for the beams strengthened under load after crack injecting, СFRP debonding strain is 4-65% lower than for the preliminary strengthened beams. The beams strengthened under the load had a relative area of debonding of 2 times higher than preliminary strengthened beams. The СFRP debonding strain is weakly dependent on the strength of the concrete substrate. For beams with a transverse wrapping anchorage in support sections FRP debonding is not a failure mode.
Keywords: FRP, RC beams, strengthening, IC debonding, infrared thermography, quality control, non-destructive testing methods.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13311839 Modeling Parametric Vibration of Multistage Gear Systems as a Tool for Design Optimization
Authors: James Kuria, John Kihiu
Abstract:
This work presents a numerical model developed to simulate the dynamics and vibrations of a multistage tractor gearbox. The effect of time varying mesh stiffness, time varying frictional torque on the gear teeth, lateral and torsional flexibility of the shafts and flexibility of the bearings were included in the model. The model was developed by using the Lagrangian method, and it was applied to study the effect of three design variables on the vibration and stress levels on the gears. The first design variable, module, had little effect on the vibration levels but a higher module resulted to higher bending stress levels. The second design variable, pressure angle, had little effect on the vibration levels, but had a strong effect on the stress levels on the pinion of a high reduction ratio gear pair. A pressure angle of 25o resulted to lower stress levels for a pinion with 14 teeth than a pressure angle of 20o. The third design variable, contact ratio, had a very strong effect on both the vibration levels and bending stress levels. Increasing the contact ratio to 2.0 reduced both the vibration levels and bending stress levels significantly. For the gear train design used in this study, a module of 2.5 and contact ratio of 2.0 for the various meshes was found to yield the best combination of low vibration levels and low bending stresses. The model can therefore be used as a tool for obtaining the optimum gear design parameters for a given multistage spur gear train.Keywords: bending stress levels, frictional torque, gear designparameters, mesh stiffness, multistage gear train, vibration levels.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25681838 Steady State Creep Behavior of Functionally Graded Thick Cylinder
Authors: Tejeet Singh, Harmanjit Singh
Abstract:
Creep behavior of thick-walled functionally graded cylinder consisting of AlSiC and subjected to internal pressure and high temperature has been analyzed. The functional relationship between strain rate with stress can be described by the well known threshold stress based creep law with a stress exponent of five. The effect of imposing non-linear particle gradient on the distribution of creep stresses in the thick-walled functionally graded composite cylinder has been investigated. The study revealed that for the assumed non-linear particle distribution, the radial stress decreases throughout the cylinder, whereas the tangential, axial and effective stresses have averaging effect. The strain rates in the functionally graded composite cylinder could be reduced to significant extent by employing non-linear gradient in the distribution of reinforcement.
Keywords: Functionally Graded Material, Pressure, Steady State Creep, Thick-Cylinder.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19751837 Modelling and Enhancing Engineering Drawing and Design Table Design by Analyzing Stress and Advanced Deformation Analysis Using Finite Element Method
Authors: Nitesh Pandey, Manish Kumar, Amit Kumar Srivastava, Pankaj Gupta
Abstract:
The research presents an extensive analysis of the Engineering Drawing and Design (EDD) table's design and development, accentuating its convertible utility and ergonomic design principles. Through the amalgamation of advanced design methodologies with simulation tools, this paper explores and compares the structural integrity of the EDD table, considering both linear and nonlinear stress behaviors. The study evaluates stress distribution and deformation patterns using the Finite Element Method (FEM) in Autodesk Fusion 360 CAD/CAM software. These analyses are critical to maximizing the durability and performance of the table. Stress situations are modeled using mathematical equations, which provide an accurate depiction of real-world operational conditions. The research highlights the EDD table as an innovative solution tailored to the diverse needs of modern workspaces, providing a balance of practical functionality and ergonomic design while demonstrating cost-effectiveness and time efficiency in the design process.
Keywords: Parametric modelling, Finite element method, FEM, Autodesk Fusion 360, stress analysis, CAD/CAM, computer aided design, computer-aided manufacturing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 331836 Numerical Simulation of Turbulent Flow around Two Cam Shaped Cylinders in Tandem Arrangement
Authors: Arash Mir Abdolah Lavasani, Meghdad Ebrahimi Sabet
Abstract:
In this paper, the 2-D unsteady viscous flow around two cam shaped cylinders in tandem arrangement is numerically simulated in order to study the characteristics of the flow in turbulent regimes. The investigation covers the effects of high subcritical and supercritical Reynolds numbers and L/D ratio on total drag coefficient. The equivalent diameter of cylinders is 27.6 mm The space between center to center of two cam shaped cylinders is define as longitudinal pitch ratio and it varies in range of 1.5< L/D<6. Reynolds number base on equivalent circular cylinder varies in range of 27×103< Re <166×103 Results show that drag coefficient of both cylinders depends on pitch ratio. However, drag coefficient of downstream cylinder is more dependent on the pitch ratio.
Keywords: Cam shaped, tandem, numerical, drag coefficient, turbulent.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21821835 Motion Prediction and Motion Vector Cost Reduction during Fast Block Motion Estimation in MCTF
Authors: Karunakar A K, Manohara Pai M M
Abstract:
In 3D-wavelet video coding framework temporal filtering is done along the trajectory of motion using Motion Compensated Temporal Filtering (MCTF). Hence computationally efficient motion estimation technique is the need of MCTF. In this paper a predictive technique is proposed in order to reduce the computational complexity of the MCTF framework, by exploiting the high correlation among the frames in a Group Of Picture (GOP). The proposed technique applies coarse and fine searches of any fast block based motion estimation, only to the first pair of frames in a GOP. The generated motion vectors are supplied to the next consecutive frames, even to subsequent temporal levels and only fine search is carried out around those predicted motion vectors. Hence coarse search is skipped for all the motion estimation in a GOP except for the first pair of frames. The technique has been tested for different fast block based motion estimation algorithms over different standard test sequences using MC-EZBC, a state-of-the-art scalable video coder. The simulation result reveals substantial reduction (i.e. 20.75% to 38.24%) in the number of search points during motion estimation, without compromising the quality of the reconstructed video compared to non-predictive techniques. Since the motion vectors of all the pair of frames in a GOP except the first pair will have value ±1 around the motion vectors of the previous pair of frames, the number of bits required for motion vectors is also reduced by 50%.Keywords: Motion Compensated Temporal Filtering, predictivemotion estimation, lifted wavelet transform, motion vector
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16191834 Development of Wave-Dissipating Block Installation Simulation for Inexperienced Worker Training
Authors: Hao Min Chuah, Tatsuya Yamazaki, Ryosui Iwasawa, Tatsumi Suto
Abstract:
In recent years, with the advancement of digital technology, the movement to introduce so-called ICT (Information and Communication Technology), such as computer technology and network technology, to civil engineering construction sites and construction sites is accelerating. As part of this movement, attempts are being made in various situations to reproduce actual sites inside computers and use them for designing and construction planning, as well as for training inexperienced engineers. The installation of wave-dissipating blocks on coasts, etc., is a type of work that has been carried out by skilled workers based on their years of experience and is one of the tasks that is difficult for inexperienced workers to carry out on site. Wave-dissipating blocks are structures that are designed to protect coasts, beaches, and so on from erosion by reducing the energy of ocean waves. Wave-dissipating blocks usually weigh more than 1 t and are installed by being suspended by a crane, so it would be time-consuming and costly for inexperienced workers to train on-site. In this paper, therefore, a block installation simulator is developed based on Unity 3D, a game development engine. The simulator computes porosity. Porosity is defined as the ratio of the total volume of the wave breaker blocks inside the structure to the final shape of the ideal structure. Using the evaluation of porosity, the simulator can determine how well the user is able to install the blocks. The voxelization technique is used to calculate the porosity of the structure, simplifying the calculations. Other techniques, such as raycasting and box overlapping, are employed for accurate simulation. In the near future, the simulator will install an automatic block installation algorithm based on combinatorial optimization solutions and compare the user-demonstrated block installation and the appropriate installation solved by the algorithm.
Keywords: 3D simulator, porosity, user interface, voxelization, wave-dissipating blocks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 691833 Effect of Drought Stress and Selenium Spraying on Superoxide Dismotase Activity of Winter Rapeseed (Brassica napus L.) Cultivars
Authors: A.R. Pazoki, A. H. Shirani Rad, D. Habibi, F. Paknejad, S. Kobraee, N. Hadayat
Abstract:
In the other to Study of drought stress and Selenium spraying effect on superoxide dismotase (SOD) activity of rapeseed (Brassica napus L.) cultivars in Shahr-e-Rey region, an experiment carried out in Split factorial design in the basis of randomized complete blocks with 4 replications in 2006. Irrigation in two levels: Normal irrigation and irrigation with drought stress when the soil electrical conductivity reached to 60 as main factor and rapeseed cultivars in 3 levels Zarfam, Okapi, Opera and selenium spraying at the beginning of flowering stage in 3 levels: 0, 16 and 21 g/ha as sub factor. The results showed that the simple and interaction effect of irrigation, selenium and cultivars on SOD activity had significant difference. In this case Zarfam cultivar with 2010 u.mg-1 protein and Opera with 1454 u.mg-1 protein produced maximum and minimum amounts of SOD activitiy. Interaction effect of irrigation and variety showed that, normal irrigation in Opera with 1115 u.mg-1 protein and drought stress in Zarfam with 2784 u.mg-1 protein conducted to and minimum and maximum amounts of SOD activity. Interaction effect of irrigation, cultivar and selenium on SOD indicated that drought stress condition and 21 gr/ha selenium spraying in Zarfam variety with 3146 u.mg-1 protein gained to highest activities of SOD.Keywords: Drought stress, Rapeseed, Selenium, Superoxide dismutase.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19671832 The Risk Assessment of Cancer Risk during Normal Operation of Tehran Research Reactor Due to Radioactive Gas Emission
Authors: B. Salmasian, A. Rabiee, T. Yousefzadeh
Abstract:
In this research, the risk assessment of radiation hazard for the Research Nuclear Reactor has been studied. In the current study, the MCNPx computational code has been used and coupled with a developed program using MATLAB software to evaluate Total Effective Dose Equivalent (TEDE) and cancer risk according to the BEIR equations for various human organs. In this study, the risk assessment of cancer has been calculated for ten years after exposure, in each of body organs of different ages and sexes. Also, the risk assessment of cancer has been calculated in each of body organs of different ages and sexes due to exposure after the retirement of the reactor staff. According to obtained results, a conservative whole-body dose rate, during a year, is 0.261 Sv and the probability the cancer risk for women is more than men and for children is more than adults. It has been shown that thyroid cancer was more possible than others.
Keywords: MCNPx code, BEIR equation, equivalent dose, risk analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7261831 Nonlinear Modeling and Analysis of AAC infilled Sandwich Panels for out of Plane Loads
Authors: Al-Kashif M., Abdel-Mooty M., Fahmy E., Abou Zeid M., Haroun M.
Abstract:
Sandwich panels are widely used in the construction industry for their ease of assembly, light weight and efficient thermal performance. They are composed of two RC thin outer layers separated by an insulating inner layer. In this research the inner insulating layer is made of lightweight Autoclaved Aerated Concrete (AAC) blocks which has good thermal insulation properties and yet possess reasonable mechanical strength. The shear strength of the AAC infill is relied upon to replace the traditionally used insulating foam and to provide the shear capacity of the panel. A comprehensive experimental program was conducted on full scale sandwich panels subjected to bending. In this paper, detailed numerical modeling of the tested sandwich panels is reported. Nonlinear 3-D finite element modeling of the composite action of the sandwich panel is developed using ANSYS. Solid elements with different crashing and cracking capabilities and different constitutive laws were selected for the concrete and the AAC. Contact interface elements are used in this research to adequately model the shear transfer at the interface between the different layers. The numerical results showed good correlation with the experimental ones indicating the adequacy of the model in estimating the loading capacity of panels.Keywords: Autoclaved Aerated Concrete, Concrete Sandwich Panels, Finite Element Modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30791830 Classification of Buckling Behavior on Uniaxial Compression using A5052-O Sheets
Authors: S. Onoda, S. Yoshihara, B. J. MacDonald, Y. Okude
Abstract:
Aluminum alloy sheets have several advantages such as the lightweight, high-specific strength and recycling efficiency. Therefore, aluminum alloy sheets in sheet forming have been used in various areas as automotive components and so forth. During the process of sheet forming, wrinkling which is caused by compression stress might occur and the formability of sheets was affected by occurrence of wrinkling. A few studies of uniaxial compressive test by using square tubes, pipes and sheets were carried out to clarify the each wrinkling behavior. However, on uniaxial compressive test, deformation behavior of the sheets hasn-t be cleared. Then, it is necessary to clarify the relationship between the buckling behavior and the forming conditions. In this study, the effect of dimension of the sheet in the buckling behavior on compression test of aluminum alloy sheet was cleared by experiment and FEA. As the results, the buckling deformation was classified by three modes in terms of the distribution of equivalent plastic strain.Keywords: Sheet forming, Compression test, Aluminum alloy sheet, Buckling behavior
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18141829 Combined Analysis of Sudoku Square Designs with Same Treatments
Authors: A. Danbaba
Abstract:
Several experiments are conducted at different environments such as locations or periods (seasons) with identical treatments to each experiment purposely to study the interaction between the treatments and environments or between the treatments and periods (seasons). The commonly used designs of experiments for this purpose are randomized block design, Latin square design, balanced incomplete block design, Youden design, and one or more factor designs. The interest is to carry out a combined analysis of the data from these multi-environment experiments, instead of analyzing each experiment separately. This paper proposed combined analysis of experiments conducted via Sudoku square design of odd order with same experimental treatments.Keywords: Sudoku designs, combined analysis, multi-environment experiments, common treatments.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15391828 Prevalence, Associated Factors, and Help-Seeking Behavior of Psychological Distress among International Students at the National University of Malaysia
Authors: Khadiga Kahwa, Aniza Ismail
Abstract:
Depression, anxiety, and stress are associated with decreased role functioning, productivity, and quality of life. International students are more prone to psychological distress as they face many stressors while studying abroad. The objectives of the study were to determine the prevalence and associated factors of depression, anxiety, and stress among international students, their help-seeking behavior, and their awareness of the available on-campus mental support services. A cross-sectional study with a purposive sampling method was performed on 280 international students at Universiti Kebangsaan Malaysia (UKM) between the age of 18 and 35 years. The Depression Anxiety Stress Scale-21 (DASS-21) questionnaire was used anonymously to assess the mental health of students. Socio-demographic, help-seeking behavior, and awareness data were obtained. Independent sample t-test, one-way ANOVA test, and multiple linear regression were used to explore associated factors. The overall prevalence of depression, anxiety, and stress among international students were 58.9%, 71.8%, and 53.9%, respectively. Age was significantly associated with depression and anxiety. Ethnicity showed a significant association with depression and stress. No other factors were found to be significantly associated with psychological distress. Only 9.6% of the international students had sought help from on-campus mental support services. Students who were aware of the presence of such services were only 21.4% of the participants. In conclusion, this study addressed the gap in the literature on the mental health of international students and provided data that could be used in intervention programs to improve the mental health of the increasing number of international students in Malaysia.
Keywords: Anxiety, depression, stress, help-seeking behavior, students.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7251827 Development of a Bacterial Resistant Concrete for Use in Low Cost Kitchen Floors
Authors: S. S. Mahlangu, R. K. K. Mbaya, D. D. Delport, H. Van. Zyl
Abstract:
The degrading effect due to bacterial growth on the structural integrity of concrete floor surfaces is predictable; this consequently cause development of surface micro cracks in which organisms penetrate through resulting in surface spalling. Hence, the need to develop mix design meeting the requirement of floor surfaces exposed to aggressive agent to improve certain material properties with good workability, extended lifespan and low cost is essential. In this work, tests were performed to examine the microbial activity on kitchen floor surfaces and the effect of adding admixtures. The biochemical test shows the existence of microorganisms (E.coli, Streptococcus) on newly casted structure. Of up to 6% porosity was reduced and improvement on structural integrity was observed upon adding mineral admixtures from the concrete mortar. The SEM result after 84 days of curing specimens, shows that chemical admixtures have significant role to enable retard bacterial penetration and good quality structure is achieved.
Keywords: Admixture, organisms, porosity and strength.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27121826 Variation of Quality of Roller-Compacted Concrete Based on Consistency
Authors: C. Chhorn, S. H. Han, S. W. Lee
Abstract:
Roller-compacted concrete (RCC) has been used for decades in many pavement applications due to its economic cost and high construction speed. However, due to the lack of deep researches and experiences, this material has not been widely employed. An RCC mixture with appropriate consistency can induce high compacted density, while high density can induce good aggregate interlock and high strength. Consistency of RCC is mainly known to define its constructability. However, it was not well specified how this property may affect other properties of a constructed RCC pavement (RCCP). This study suggested the possibility of an ideal range of consistency that may provide adequate quality of RCCP. In this research, five sections of RCCP consisted of both 13 mm and 19 mm aggregate sections were investigated. The effects of consistency on compacted depth, strength, international roughness index (IRI), skid resistance are examined. From this study, a new range of consistency is suggested for RCCP application.
Keywords: Compacted depth, consistency, international roughness index, pavement, roller-compacted concrete, skid resistance, strength.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11241825 Applications of Cascade Correlation Neural Networks for Cipher System Identification
Authors: B. Chandra, P. Paul Varghese
Abstract:
Crypto System Identification is one of the challenging tasks in Crypt analysis. The paper discusses the possibility of employing Neural Networks for identification of Cipher Systems from cipher texts. Cascade Correlation Neural Network and Back Propagation Network have been employed for identification of Cipher Systems. Very large collection of cipher texts were generated using a Block Cipher (Enhanced RC6) and a Stream Cipher (SEAL). Promising results were obtained in terms of accuracy using both the Neural Network models but it was observed that the Cascade Correlation Neural Network Model performed better compared to Back Propagation Network.
Keywords: Back Propagation Neural Networks, CascadeCorrelation Neural Network, Crypto systems, Block Cipher, StreamCipher.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24441824 Sensitivity and Reliability Analysis of Masonry Infilled Frames
Authors: Avadhoot Bhosale, Robin Davis P., Pradip Sarkar
Abstract:
The seismic performance of buildings with irregular distribution of mass, stiffness and strength along the height may be significantly different from that of regular buildings with masonry infill. Masonry infilled reinforced concrete (RC) frames are very common structural forms used for multi-storey building construction. These structures are found to perform better in past earthquakes owing to additional strength, stiffness and energy dissipation in the infill walls. The seismic performance of a building depends on the variation of material, structural and geometrical properties. The sensitivity of these properties affects the seismic response of the building. The main objective of the sensitivity analysis is to found out the most sensitive parameter that affects the response of the building. This paper presents a sensitivity analysis by considering 5% and 95% probability value of random variable in the infills characteristics, trying to obtain a reasonable range of results representing a wide number of possible situations that can be met in practice by using pushover analysis. The results show that the strength-related variation values of concrete and masonry, with the exception of tensile strength of the concrete, have shown a significant effect on the structural performance and that this effect increases with the progress of damage condition for the concrete. The seismic risk assessments of the selected frames are expressed in terms of reliability index.Keywords: Fragility curve, sensitivity analysis, reliability index, RC frames.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1205