Dispersion of a Solute in Peristaltic Motion of a Couple Stress Fluid through a Porous Medium with Slip Condition
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33122
Dispersion of a Solute in Peristaltic Motion of a Couple Stress Fluid through a Porous Medium with Slip Condition

Authors: Habtu Alemayehu, G. Radhakrishnamacharya

Abstract:

The paper presents an analytical solution for dispersion of a solute in the peristaltic motion of a couple stress fluid through a porous medium with slip condition in the presence of both homogeneous and heterogeneous chemical reactions. The average effective dispersion coefficient has been found using Taylor-s limiting condition and long wavelength approximation. The effects of various relevant parameters on the average coefficient of dispersion have been studied. The average effective dispersion coefficient tends to increase with permeability parameter but tends to decrease with homogeneous chemical reaction rate parameter, couple stress parameter, slip parameter and heterogeneous reaction rate parameter.

Keywords: Dispersion, Peristalsis, Couple stress fluid, Porousmedium, Chemical reaction, Slip condition.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1077770

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1566

References:


[1] G. I. Taylor, Dispersion of soluble matter in solvent flowing slowly through a tube, Proc. Roy. Soc. Lond., vol.A 219, pp.186-203, 1953.
[2] G. I. Taylor, The dispersion of matter in turbulent flow through a pipe, Proc. Roy. Soc. Lond., vol.A 223, pp.446-468, 1954a.
[3] G. I. Taylor, Conditions under which dispersion of a solute in a stream of solvent can be used to measure molecular diffusion, Proc. Roy. Soc. Lond., vol.A 225, pp. 473-477, 1954b.
[4] R. Aris, On the dispersion of a solute in a fluid flowing through a tube, Proc. Roy. Soc. Lond., vol.A 235, pp.67-77, 1956.
[5] D. Padma and V. V. Ramana Rao, Effect of Homogeneous and heterogeneous reaction on the dispersion of a solute in laminar flow between two parallel porous plates, Indian Journal of Technology, vol.14, pp.410-412, 1976.
[6] P. S. Gupta and A. S. Gupta, Effect of homogeneous and heterogeneous reactions on the dispersion of a solute in the laminar flow between two plates, Proc. Roy. Soc. Lond., vol.A 330, pp.59-63, 1972.
[7] V. V. Ramana Rao and D. Padma, Homogeneous and heterogeneous reaction on the dispersion of a solute in MHD Couette flow, Curr. Sci., vol.44, pp.803-804, 1975.
[8] V. V. Ramana Rao and D. Padma, Homogeneous and heterogeneous reaction on the dispersion of a solute in MHD Couette flow II, Curr. Sci., vol.46, pp.42-43, 1977.
[9] B. K. N. Dutta, N. C. Roy and A. S. Gupta, Dispersion of a solute in a non-Newtonian fluid with simultaneous chemical reaction, Mathematica- Mechanica fasc., vol.2, pp.78-82, 1974.
[10] V. M. Soundalgekar and P. Chaturani, Effects of couple-stresses on the dispersion of a soluble matter in a pipe flow of blood, Rheologica Acta, vol.19, pp.710-715, 1980.
[11] J. B. Shukla, R. S. Parihar and B. R. P. Rao, Dispersion in non- Newtonian fluids: Effects of chemical reaction, Rheologica Acta, vol.18, pp.740-748, 1979.
[12] Dulal Pal, Effect of chemical reaction on the dispersion of a solute in a porous medium, Applied Mathematical Modeling, vol.23, pp.557-566, 1999.
[13] K. N. Mehta, and M. C. Tiwari, Dispersion in presence of slip and chemical reactions in porous wall tube flow, Def. Sci. J., vol.38, pp.1-11, 1988.
[14] J. C. Misra and S. K. Ghosh, A mathematical model for the study of blood flow through a channel with permeable walls, Acta Mechanica, vol.122, pp.137-153, 1997.
[15] Y. C. Fung, and C. S. Yih, Peristaltic transport, J. Appl. Mech. Trans. ASME, vol.5, pp.669-675, 1968.
[16] A. H. Shapiro, M. Y. Jaffrin and S. L.Weinberg, Peristaltic pumping with with long wavelengths at low Reynold number, J. Fluid Mech., vol.37, pp.799-825, 1969.
[17] J. C. Misra and S. K. Pandey, Peristaltic transport in a tapered tube, Mathl. Comput. Modelling, vol.22, pp.137-151, 1995.
[18] G. Radhakrishnamacharya, Long wavelength approximation to peristaltic motion of a power law fluid, Rheologica Acta, vol.21, pp.30-35, 1982.
[19] J. C. Misra and S. K. Pandey, Peristaltic flow of a multilayered powerlaw fluid through a cylindrical tube, International Journal of Engineering Science, vol.39, pp.387-402, 2001.
[20] A. Ramachandra Rao and Manoranjan Mishra, Peristaltic transport of a power-law fluid in a porous tube, Journal of Non-Newtonian Fluid Mechanics, vol.121, pp.163-174, 2004.
[21] V.K. Stokes, Couple Stress Fluid, Physics in Fluids, vol.9, pp.1709-1715. 1966.
[22] S. Islam and C. Y. Zhou, Exact solutions for two dimensional flows of couple stress fluids, Z. angew. Math. Phys., vol.58, pp.1035-1048, 2007.
[23] L. M. Srivastava, Peristaltic transport of a couple-stress fluid, Rheologica Acta, vol.25, pp.638-641, 1986.
[24] Kh.S. Mekheimer and Y. Abd elmaboud, Peristaltic flow of a couple stress fluid in an annulus: Application of an endoscope, Physica A., vol.387, pp.2403-2415, 2008.
[25] Ayman Mahmoud Sobh, Interaction of Couple Stresses and Slip Flow on Peristaltic Transport in Uniform and Nonuniform Channels, Turkish J. Eng. Env. Sci., vol.32, pp.117-123, 2008.
[26] R. M. Terrill, A note on laminar flow in a porous tube, IMA Journal of Applied mathematics, vol.33, pp.169-174, 1984.
[27] W. Kwang-Hua Chua and J. Fang, Peristaltic transport in a slip flow, Eur. Phys. J. B, vol.16, pp.543-547, 2000.
[28] B. S. Bhatt and N. C. Sacheti, On the analogy in slip flows, Indian Journal of Pure and Applied Mathematics, vol.10, pp.303-306, 1979.
[29] K. Suga, Y. Matsumura, Y. Ashitaka, S. Tominaga and M. Kaneda, Effects of wall permeability on turbulence, Int. J. Heat Fluid Flow, doi:10.1016/ j.ijheatfluidflow.2010.02.023, 2010.
[30] Suvadip Paul, Axial dispersion in pressure perturbed fow through an annular pipe oscillating around its axis, Z. angew. Math. Phys., vol.60, 899-920, 2009.