Search results for: thrust coefficient.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1023

Search results for: thrust coefficient.

363 Entropy Generation Analyze Due to the Steady Natural Convection of Newtonian Fluid in a Square Enclosure

Authors: T. T. Naas, Y. Lasbet, C. Kezrane

Abstract:

The thermal control in many systems is widely accomplished applying mixed convection process due to its low cost, reliability and easy maintenance. Typical applications include the aircraft electronic equipment, rotating-disc heat exchangers, turbo machinery, and nuclear reactors, etc. Natural convection in an inclined square enclosure heated via wall heater has been studied numerically. Finite volume method is used for solving momentum and energy equations in the form of stream function–vorticity. The right and left walls are kept at a constant temperature, while the other parts are adiabatic. The range of the inclination angle covers a whole revolution. The method is validated for a vertical cavity. A general power law dependence of the Nusselt number with respect to the Rayleigh number with the coefficient and exponent as functions of the inclination angle is presented. For a fixed Rayleigh number, the inclination angle increases or decreases is found.

Keywords: Inclined enclosure, natural convection in enclosure, Nusselt number.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2228
362 A Comparison of Real Valued Transforms for Image Compression

Authors: Shivali D. Kulkarni, Ameya K. Naik, Nitin S. Nagori

Abstract:

In this paper we present simulation results for the application of a bandwidth efficient algorithm (mapping algorithm) to an image transmission system. This system considers three different real valued transforms to generate energy compact coefficients. First results are presented for gray scale and color image transmission in the absence of noise. It is seen that the system performs its best when discrete cosine transform is used. Also the performance of the system is dominated more by the size of the transform block rather than the number of coefficients transmitted or the number of bits used to represent each coefficient. Similar results are obtained in the presence of additive white Gaussian noise. The varying values of the bit error rate have very little or no impact on the performance of the algorithm. Optimum results are obtained for the system considering 8x8 transform block and by transmitting 15 coefficients from each block using 8 bits.

Keywords: Additive white Gaussian noise channel, mapping algorithm, peak signal to noise ratio, transform encoding.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1499
361 Optimization and Kinetic Study of Gaharu Oil Extraction

Authors: Muhammad Hazwan H., Azlina M.F., Hasfalina C.M., Zurina Z.A., Hishamuddin J

Abstract:

Gaharu that produced by Aquilaria spp. is classified as one of the most valuable forest products traded internationally as it is very resinous, fragrant and highly valuable heartwood. Gaharu has been widely used in aromatheraphy, medicine, perfume and religious practices. This work aimed to determine the factors affecting solid liquid extraction of gaharu oil using hexane as solvent under experimental condition. The kinetics of extraction was assumed and verified based on a second-order mechanism. The effect of three main factors, which were temperature, reaction time and solvent to solid ratio were investigated to achieve maximum oil yield. The optimum condition were found at temperature 65°C, 9 hours reaction time and solvent to solid ratio of 12:1 with 14.5% oil yield. The kinetics experimental data agrees and well fitted with the second order extraction model. The initial extraction rate (h) was 0.0115 gmL-1min-1; the extraction capacity (Cs) was 1.282gmL-1; the second order extraction constant (k) was 0.007 mLg-1min-1 and coefficient of determination, R2 was 0.945.

Keywords: Gaharu, solid liquid extraction, optimization, kinetics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3264
360 Vibration Control of Two Adjacent Structures Using a Non-Linear Damping System

Authors: Soltani Amir, Wang Xuan

Abstract:

The advantage of using non-linear passive damping  system in vibration control of two adjacent structures is investigated  under their base excitation. The base excitation is El Centro  earthquake record acceleration. The damping system is considered as  an optimum and effective non-linear viscous damper that is  connected between two adjacent structures. A MATLAB program is  developed to produce the stiffness and damping matrices and to  determine a time history analysis of the dynamic motion of the  system. One structure is assumed to be flexible while the other has a  rule as laterally supporting structure with rigid frames. The response  of the structure has been calculated and the non-linear damping  coefficient is determined using optimum LQR algorithm in an  optimum vibration control system. The non-linear parameter of  damping system is estimated and it has shown a significant advantage  of application of this system device for vibration control of two  adjacent tall building.

Keywords: Structural Control, Active and passive damping, Vibration control, Seismic isolation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2408
359 Aspen Plus Simulation of Saponification of Ethyl Acetate in the Presence of Sodium Hydroxide in a Plug Flow Reactor

Authors: U. P. L. Wijayarathne, K. C. Wasalathilake

Abstract:

This work presents the modelling and simulation of saponification of ethyl acetate in the presence of sodium hydroxide in a plug flow reactor using Aspen Plus simulation software. Plug flow reactors are widely used in the industry due to the non-mixing property. The use of plug flow reactors becomes significant when there is a need for continuous large scale reaction or fast reaction. Plug flow reactors have a high volumetric unit conversion as the occurrence for side reactions is minimum. In this research Aspen Plus V8.0 has been successfully used to simulate the plug flow reactor. In order to simulate the process as accurately as possible HYSYS Peng- Robinson EOS package was used as the property method. The results obtained from the simulation were verified by the experiment carried out in the EDIBON plug flow reactor module. The correlation coefficient (r2) was 0.98 and it proved that simulation results satisfactorily fit for the experimental model. The developed model can be used as a guide for understanding the reaction kinetics of a plug flow reactor.

Keywords: Aspen Plus, Modelling, Plug Flow Reactor, Simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9395
358 Numerical Simulation of Heat Transfer in Primary Surface with Corrugations Recuperators

Authors: Liu Xuedong, Liu Hanpeng, Zhou Ling

Abstract:

Study fluid flow and heat transfer characteristics of microchannel in a primary Cross-corrugated(CC) surface recuperators with corrugations and without corrugations, using CFD method. The pitch-over-height ratios P/H of Cross-corrugated (CC) surface is from 1.5 to 4.0, included angles β=75º. The study was performed using CFD software FLUENT to create unit model and simulate fluid temperature, velocity, heat transfer coefficient and other parameters. The results from these simulations were compared to experimental data. It is concluded that, when the Reynolds number is constant, if increase P/H, j/f will decrease, also the decreasing trend will become weak. Under the condition of P/H=2.2, if increase the inlet velocity j/f will decrease; in addition, the heat transfer performance in surface with corrugation will increase 10% compared to that without corrugation. The study results can provide the basis to optimize the design, select the type of heat transfer surface, the scale structure, and heat-transfer surface arrangement for recuperators.

Keywords: Cross-corrugated surface, Primary surface, Numerical simulation, Heat transfer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2250
357 Flow Properties of Commercial Infant Formula Powders

Authors: Maja Benkovic, Ingrid Bauman

Abstract:

The objective of this work was to investigate flow properties of powdered infant formula samples. Samples were purchased at a local pharmacy and differed in composition. Lactose free infant formula, gluten free infant formula and infant formulas containing dietary fibers and probiotics were tested and compared with a regular infant formula sample which did not contain any of these supplements. Particle size and bulk density were determined and their influence on flow properties was discussed. There were no significant differences in bulk densities of the samples, therefore the connection between flow properties and bulk density could not be determined. Lactose free infant formula showed flow properties different to standard supplement-free sample. Gluten free infant formula with addition of probiotic microorganisms and dietary fiber had the narrowest particle size distribution range and exhibited the best flow properties. All the other samples exhibited the same tendency of decreasing compaction coefficient with increasing flow speed, which means they all become freer flowing with higher flow speeds.

Keywords: flow properties, infant formula, powderedmaterial

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3105
356 Investigating Determinants of Medical User Expectations from Hospital Information System

Authors: G. Gürsel, K. H. Gülkesen, N. Zayim, A. Arifoğlu, O. Saka

Abstract:

User satisfaction is one of the most used success indicators in the research of information system (IS). Literature shows user expectations have great influence on user satisfaction. Both expectation and satisfaction of users are important for Hospital Information Systems (HIS). Education, IS experience, age, attitude towards change, business title, sex and working unit of the hospital, are examined as the potential determinant of the medical users’ expectations. Data about medical user expectations are collected by the “Expectation Questionnaire” developed for this study. Expectation data are used for calculating the Expectation Meeting Ratio (EMR) with the evaluation framework also developed for this study. The internal consistencies of the answers to the questionnaire are measured by Cronbach´s Alpha coefficient. The multivariate analysis of medical user’s EMRs of HIS is performed by forward stepwise binary logistic regression analysis. Education and business title is appeared to be the determinants of expectations from HIS.

Keywords: Evaluation, Fuzzy Logic, Hospital Information System, User Expectation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1946
355 Dry Sliding Wear Behavior of Epoxy-Rubber Dust Composites

Authors: Antaryami Mishra

Abstract:

Composite pins of rubber dust collected from tyre retreading centres of trucks, cars and buses etc.and epoxy with weight percentages of 10. 15, and 20 % of rubber (weight fractions of 9, 13 and 17 % respectively) have been prepared in house with the help of a split wooden mould. The pins were tested in a pin-on-disc wear monitor to determine the co-efficient of friction and weight losses with varying speeds, loads and time. The wear volume and wear rates have also been found out for all these three specimens.. It is observed that all the specimens have exhibited very low coefficient of friction and low wear rates under dry sliding condition. Out of the above three samples tested, the specimen with 10 % rubber dust by weight has shown lowest wear rates. However a peculiar result i.e decreasing trend has been obtained with 20% reinforcement of rubber in epoxy while rubbed against steel at varying speeds. This might have occurred due to high surface finish of the disc and formation of a thin transfer layer from the composite

Keywords: epoxy, rubber dust, composites, weight fractions, pin-on-disc wear tests, wear volume and wear rate calculations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2148
354 Error Analysis of Nonconventional Electrical Moisture-meter under Simplified Conditions

Authors: Kamil Ďurana, Robert Černý

Abstract:

An electrical apparatus for measuring moisture content was developed by our laboratory and uses dependence of electrical properties on water content in studied material. Error analysis of the apparatus was run by measuring different volumes of water in a simplified specimen, i.e. hollow plexiglass block, in order to avoid as many side-effects as possible. Obtained data were processed using both basic and advanced statistics and results were compared with each other. The influence of water content on accuracy of measured data was studied as well as the influence of variation of apparatus' proper arrangement or factual methodics of its usage. The overall coefficient of variation was 4%. There was no trend found in results of error dependence on water content. Comparison with current surveys led to a conclusion, that the studied apparatus can be used for indirect measurement of water content in porous materials, with expectable error and under known conditions. Factual experiments with porous materials are not involved, but are currently under investigation.

Keywords: device, capacitance method, error analysis, moisture meter

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1389
353 Physio-mechanical Properties of Aluminium Metal Matrix Composites Reinforced with Al2O3 and SiC

Authors: D. Sujan, Z. Oo, M. E. Rahman, M. A. Maleque, C. K. Tan

Abstract:

Particulate reinforced metal matrix composites (MMCs) are potential materials for various applications due to their advantageous of physical and mechanical properties. This paper presents a study on the performance of stir cast Al2O3 SiC reinforced metal matrix composite materials. The results indicate that the composite materials exhibit improved physical and mechanical properties, such as, low coefficient of thermal expansion, high ultimate tensile strength, high impact strength, and hardness. It has been found that with the increase of weight percentage of reinforcement particles in the aluminium metal matrix, the new material exhibits lower wear rate against abrasive wearing. Being extremely lighter than the conventional gray cast iron material, the Al-Al2O3 and Al-SiC composites could be potential green materials for applications in the automobile industry, for instance, in making car disc brake rotors.

Keywords: Metal Matrix Composite, Strength to Weight Ratio, Wear Rate

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5958
352 CFD Simulation of Condensing Vapor Bubble using VOF Model

Authors: Seong-Su Jeon, Seong-Jin Kim, Goon-Cherl Park

Abstract:

In this study, direct numerical simulation for the bubble condensation in the subcooled boiling flow was performed. The main goal was to develop the CFD modeling for the bubble condensation and to evaluate the accuracy of the VOF model with the developed CFD modeling. CFD modeling for the bubble condensation was developed by modeling the source terms in the governing equations of VOF model using UDF. In the modeling, the amount of condensation was determined using the interfacial heat transfer coefficient obtained from the bubble velocity, liquid temperature and bubble diameter every time step. To evaluate the VOF model using the CFD modeling for the bubble condensation, CFD simulation results were compared with SNU experimental results such as bubble volume and shape, interfacial area, bubble diameter and bubble velocity. Simulation results predicted well the behavior of the actual condensing bubble. Therefore, it can be concluded that the VOF model using the CFD modeling for the bubble condensation will be a useful computational fluid dynamics tool for analyzing the behavior of the condensing bubble in a wide range of the subcooled boiling flow.

Keywords: Bubble condensation, CFD modeling, Subcooled boiling flow, VOF model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6747
351 Influence of Proteolysis and Soluble Calcium Levels on Textural Changes in the Interior and Exterior of Iranian UF White Cheese during Ripening

Authors: I. Fathollahi, J. Hesari, S. Azadmard, S. Oustan

Abstract:

The relationships between Proteolysis and soluble calcium levels with hardness of cheese texture were investigated in Iranian UF white cheese during 90 d ripening. Cheeses were sampled in interior and exterior. Results showed that levels of proteolysis, soluble calcium and hardness of cheese texture changed significantly (p< 0.05) over ripening. Levels of proteolysis and hardness were significantly (p< 0.05) different in interior and exterior zones of cheeses. External zones of cheeses became softer and had higher levels of proteolysis compared to internal zones during ripening. The highest correlation coefficient (r2= 0.979; p<0.01) was observed between hardness and levels of pH 4.6-soluble nitrogen in exterior zones of cheese. These result showed that proteolysis can contribute to textural softening during ripening of Iranian UF white cheese.

Keywords: Calcium, Proteolysis, Softening, Ultrafiltration, White cheese.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2492
350 Magnetohydrodynamics Boundary Layer Flows over a Stretching Surface with Radiation Effect and Embedded in Porous Medium

Authors: Siti Khuzaimah Soid, Zanariah Mohd Yusof, Ahmad Sukri Abd Aziz, Seripah Awang Kechil

Abstract:

A steady two-dimensional magnetohydrodynamics flow and heat transfer over a stretching vertical sheet influenced by radiation and porosity is studied. The governing boundary layer equations of partial differential equations are reduced to a system of ordinary differential equations using similarity transformation. The system is solved numerically by using a finite difference scheme known as the Keller-box method for some values of parameters, namely the radiation parameter N, magnetic parameter M, buoyancy parameter l , Prandtl number Pr and permeability parameter K. The effects of the parameters on the heat transfer characteristics are analyzed and discussed. It is found that both the skin friction coefficient and the local Nusselt number decrease as the magnetic parameter M and permeability parameter K increase. Heat transfer rate at the surface decreases as the radiation parameter increases.

Keywords: Keller-box, MHD boundary layer flow, permeability stretching.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1980
349 Influence of Initial Surface Roughness on Severe Wear Volume for SUS304 Austenitic Stainless Steels

Authors: A. Kawamura, K. Ishida, K. Okada, T. Sato

Abstract:

Simultaneous measurements of the curves for wear versus distance, wear rate versus distance, and coefficient of friction versus distance were performed in situ to distinguish the transition from severe running-in wear to mild wear. The effects of the initial surface roughness on the severe running-in wear volume were investigated. Disk-on-plate friction and wear tests were carried out with SUS304 austenitic stainless steel in contact with itself under repeated dry sliding conditions at room temperature. The wear volume was dependent on the initial surface roughness. The wear volume when the initial surfaces on the plate and disk had dissimilar roughness was lower than that when these surfaces had similar roughness. For the dissimilar roughness, the wear volume decreased with decreasing initial surface roughness and reached a minimum; it stayed nearly constant as the roughness was less than the mean size of the oxide particles.

Keywords: Austenitic stainless steel, initial surface roughness, running-in, severe wear.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2211
348 Finite Volume Model to Study The Effect of Voltage Gated Ca2+ Channel on Cytosolic Calcium Advection Diffusion

Authors: Brajesh Kumar Jha, Neeru Adlakha, M. N. Mehta

Abstract:

Mathematical and computational modeling of calcium signalling in nerve cells has produced considerable insights into how the cells contracts with other cells under the variation of biophysical and physiological parameters. The modeling of calcium signaling in astrocytes has become more sophisticated. The modeling effort has provided insight to understand the cell contraction. Main objective of this work is to study the effect of voltage gated (Operated) calcium channel (VOC) on calcium profile in the form of advection diffusion equation. A mathematical model is developed in the form of advection diffusion equation for the calcium profile. The model incorporates the important physiological parameter like diffusion coefficient etc. Appropriate boundary conditions have been framed. Finite volume method is employed to solve the problem. A program has been developed using in MATLAB 7.5 for the entire problem and simulated on an AMD-Turion 32-bite machine to compute the numerical results.

Keywords: Ca2+ Profile, Advection Diffusion, VOC, FVM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1781
347 Numerical Modeling of Benzene Transport in Andosol and Sand: Adequacy of Diffusion and Equilibrium Adsorption Equations

Authors: Ping Du, Masaki Sagehashi, Akihiko Terada, Masaaki Hosomi

Abstract:

Prediction of benzene transport in soil and volatilization from soil to the atmosphere is important for the preservation of human health and management of contaminated soils. The adequacy of a simple numerical model, assuming two-phase diffusion and equilibrium of liquid/solid adsorption, was investigated by experimental data of benzene concentration in a flux chamber (with headspace) where Andosol and sand were filled. Adsorption experiment for liquid phase was performed to determine an adsorption coefficient. Furthermore, adequacy of vapor phase adsorption was also studied through two runs of experiment using sand with different water content. The results show that the model adequately predicted benzene transport and volatilization from Andosol and sand with water content of 14.0%. In addition, the experiment additionally revealed that vapor phase adsorption should be considered in diffusion model for sand with very low water content.

Keywords: Benzene; Transport Model, Adsorption, Soil Contaminant.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1990
346 Passenger Flow Characteristics of Seoul Metropolitan Subway Network

Authors: Kang Won Lee, Jung Won Lee

Abstract:

Characterizing the network flow is of fundamental importance to understand the complex dynamics of networks. And passenger flow characteristics of the subway network are very relevant for an effective transportation management in urban cities. In this study, passenger flow of Seoul metropolitan subway network is investigated and characterized through statistical analysis. Traditional betweenness centrality measure considers only topological structure of the network and ignores the transportation factors. This paper proposes a weighted betweenness centrality measure that incorporates monthly passenger flow volume. We apply the proposed measure on the Seoul metropolitan subway network involving 493 stations and 16 lines. Several interesting insights about the network are derived from the new measures. Using Kolmogorov-Smirnov test, we also find out that monthly passenger flow between any two stations follows a power-law distribution and other traffic characteristics such as congestion level and throughflow traffic follow exponential distribution.

Keywords: Betweenness centrality, correlation coefficient, power-law distribution, Korea traffic data base.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1002
345 Selection of Pichia kudriavzevii Strain for the Production of Single-Cell Protein from Cassava Processing Waste

Authors: Phakamas Rachamontree, Theerawut Phusantisampan, Natthakorn Woravutthikul, Peerapong Pornwongthong, Malinee Sriariyanun

Abstract:

A total of 115 yeast strains isolated from local cassava processing wastes were measured for crude protein content. Among these strains, the strain MSY-2 possessed the highest protein concentration (>3.5 mg protein/mL). By using molecular identification tools, it was identified to be a strain of Pichia kudriavzevii based on similarity of D1/D2 domain of 26S rDNA region. In this study, to optimize the protein production by MSY-2 strain, Response Surface Methodology (RSM) was applied. The tested parameters were the carbon content, nitrogen content, and incubation time. Here, the value of regression coefficient (R2) = 0.7194 could be explained by the model which is high to support the significance of the model. Under the optimal condition, the protein content was produced up to 3.77 g per L of the culture and MSY-2 strain contains 66.8 g protein per 100 g of cell dry weight. These results revealed the plausibility of applying the novel strain of yeast in single-cell protein production.

Keywords: Single cell protein, response surface methodology, yeast, cassava processing waste.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2680
344 Effects of Thermal Radiation on Mixed Convection in a MHD Nanofluid Flow over a Stretching Sheet Using a Spectral Relaxation Method

Authors: Nageeb A. H. Haroun, Sabyasachi Mondal, Precious Sibanda

Abstract:

The effects of thermal radiation, Soret and Dufour parameters on mixed convection and nanofluid flow over a stretching sheet in the presence of a magnetic field are investigated. The flow is subject to temperature dependent viscosity and a chemical reaction parameter. It is assumed that the nanoparticle volume fraction at the wall may be actively controlled. The physical problem is modelled using systems of nonlinear differential equations which have been solved numerically using a spectral relaxation method. In addition to the discussion on heat and mass transfer processes, the velocity, nanoparticles volume fraction profiles as well as the skin friction coefficient are determined for different important physical parameters. A comparison of current findings with previously published results for some special cases of the problem shows an excellent agreement.

Keywords: Non-isothermal wedge, thermal radiation, nanofluid, magnetic field, Soret and Dufour effects.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1271
343 Robust Minutiae Watermarking in Wavelet Domain for Fingerprint Security

Authors: Rajlaxmi Chouhan, Pritee Khanna

Abstract:

In this manuscript, a wavelet-based blind watermarking scheme has been proposed as a means to provide security to authenticity of a fingerprint. The information used for identification or verification of a fingerprint mainly lies in its minutiae. By robust watermarking of the minutiae in the fingerprint image itself, the useful information can be extracted accurately even if the fingerprint is severely degraded. The minutiae are converted in a binary watermark and embedding these watermarks in the detail regions increases the robustness of watermarking, at little to no additional impact on image quality. It has been experimentally shown that when the minutiae is embedded into wavelet detail coefficients of a fingerprint image in spread spectrum fashion using a pseudorandom sequence, the robustness is observed to have a proportional response while perceptual invisibility has an inversely proportional response to amplification factor “K". The DWT-based technique has been found to be very robust against noises, geometrical distortions filtering and JPEG compression attacks and is also found to give remarkably better performance than DCT-based technique in terms of correlation coefficient and number of erroneous minutiae.

Keywords: Fingerprint watermarking, minutiae, discrete wavelet transform, PN sequence

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2019
342 Thermodynamic Analysis of Activated Carbon- CO2 based Adsorption Cooling Cycles

Authors: Skander Jribi, Anutosh Chakraborty, Ibrahim I. El-Sharkawy, Bidyut Baran Saha, Shigeru Koyama

Abstract:

Heat powered solid sorption is a feasible alternative to electrical vapor compression refrigeration systems. In this paper, activated carbon (powder type Maxsorb and fiber type ACF-A10)- CO2 based adsorption cooling cycles are studied using the pressuretemperature- concentration (P-T-W) diagram. The specific cooling effect (SCE) and the coefficient of performance (COP) of these two cooling systems are simulated for the driving heat source temperatures ranging from 30 ºC to 90 ºC in terms of different cooling load temperatures with a cooling source temperature of 25 ºC. It is found from the present analysis that Maxsorb-CO2 couple shows higher cooling capacity and COP. The maximum COPs of Maxsorb-CO2 and ACF(A10)-CO2 based cooling systems are found to be 0.15 and 0.083, respectively. The main innovative feature of this cooling cycle is the ability to utilize low temperature waste heat or solar energy using CO2 as the refrigerant, which is one of the best alternative for applications where flammability and toxicity are not allowed.

Keywords: Activated carbon, Adsorption cooling system, Carbon dioxide, Performance evaluation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3675
341 Reaction Rate of Olive Stone during Combustion in a Bubbling Fluidized Bed

Authors: A. Soria-Verdugo, M. Rubio-Rubio, J. Arrieta, N. García-Hernando

Abstract:

Combustion of biomass is a promising alternative to reduce the high pollutant emission levels associated to the combustion of fossil flues due to the net null emission of CO2 attributed to biomass. However, the biomass selected should also have low contents of nitrogen and sulfur to limit the NOx and SOx emissions derived from its combustion. In this sense, olive stone is an excellent fuel to power combustion reactors with reduced levels of pollutant emissions. In this work, the combustion of olive stone particles is analyzed experimentally in a thermogravimetric analyzer (TGA) and in a bubbling fluidized bed reactor (BFB). The bubbling fluidized bed reactor was installed over a scale, conforming a macro-TGA. In both equipment, the evolution of the mass of the samples was registered as the combustion process progressed. The results show a much faster combustion process in the bubbling fluidized bed reactor compared to the thermogravimetric analyzer measurements, due to the higher heat transfer coefficient and the abrasion of the fuel particles by the bed material in the BFB reactor.

Keywords: Olive stone, combustion, reaction rate, thermogravimetric analysis, fluidized bed.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 849
340 Transient Free Laminar Convection in the Vicinity of a Thermal Conductive Vertical Plate

Authors: Anna Bykalyuk, Frédéric Kuznik, Kévyn Johannes

Abstract:

In this paper the influence of a vertical plate’s thermal capacity is numerically investigated in order to evaluate the evolution of the thermal boundary layer structure, as well as the convective heat transfer coefficient and the velocity and temperature profiles. Whereas the heat flux of the heated vertical plate is evaluated under time depending boundary conditions. The main important feature of this problem is the unsteadiness of the physical phenomena. A 2D CFD model is developed with the Ansys Fluent 14.0 environment and is validated using unsteady data obtained for plasterboard studied under a dynamic temperature evolution. All the phenomena produced in the vicinity of the thermal conductive vertical plate (plasterboard) are analyzed and discussed. This work is the first stage of a holistic research on transient free convection that aims, in the future, to study the natural convection in the vicinity of a vertical plate containing Phase Change Materials (PCM).

Keywords: CFD modeling, natural convection, thermal conductive plate, time-depending boundary conditions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2154
339 Modeling of Thermal Processes Associated to an Electric Arc

Authors: Allagui Hatem, Ghodbane Fathi

Abstract:

The primary objective of this paper is to study the thermal effects of the electric arc on the breaker apparatus contacts for forecasting and improving the contact durability. We will propose a model which takes account of the main influence factors on the erosion contacts. This phenomenon is very complicated because the amount of ejected metal is not necessarily constituted by the whole melted metal bath but this depends on the balance of forces on the contact surface. Consequently, to calculate the metal ejection coefficient, we propose a method which consists in comparing the experimental results with the calculated ones. The proposed model estimates the mass lost by vaporization, by droplets ejection and by the extraction mechanism of liquid or solid metal. In the one-dimensional geometry, to calculate of the contact heating, we used Green’s function which expresses the point source and allows the transition to the surface source. However, for the two- dimensional model we used explicit and implicit numerical methods. The results are similar to those found by Wilson’s experiments.

Keywords: Electric arc, thermal effect, erosion, contact, durability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2114
338 Self-Organizing Map Network for Wheeled Robot Movement Optimization

Authors: Boguslaw Schreyer

Abstract:

The paper investigates the application of the Kohonen’s Self-Organizing Map (SOM) to the wheeled robot starting and braking dynamic states. In securing wheeled robot stability as well as minimum starting and braking time, it is important to ensure correct torque distribution as well as proper slope of braking and driving moments. In this paper, a correct movement distribution has been formulated, securing optimum adhesion coefficient and good transversal stability of a wheeled robot. A neural tuner has been proposed to secure the above properties, although most of the attention is attached to the SOM network application. If the delay of the torque application or torque release is not negligible, it is important to change the rising and falling slopes of the torque. The road/surface condition is also paramount in robot dynamic states control. As the road conditions may randomly change in time, application of the SOM network has been suggested in order to classify the actual road conditions.

Keywords: SOM network, torque distribution, torque slope, wheeled robots.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 590
337 Applications of Carbon Fibers Produced from Polyacrylonitrile Fibers

Authors: R. Eslami Farsani, R. Fazaeli

Abstract:

Carbon fibers have specific characteristics in comparison with industrial and structural materials used in different applications. Special properties of carbon fibers make them attractive for reinforcing and fabrication of composites. These fibers have been utilized for composites of metals, ceramics and plastics. However, it-s mainly used in different forms to reinforce lightweight polymer materials such as epoxy resin, polyesters or polyamides. The composites of carbon fiber are stronger than steel, stiffer than titanium, and lighter than aluminum and nowadays they are used in a variety of applications. This study explains applications of carbon fibers in different fields such as space, aviation, transportation, medical, construction, energy, sporting goods, electronics, and the other commercial/industrial applications. The last findings of composites with polymer, metal and ceramic matrices containing carbon fibers and their applications in the world investigated. Researches show that carbon fibers-reinforced composites due to unique properties (including high specific strength and specific modulus, low thermal expansion coefficient, high fatigue strength, and high thermal stability) can be replaced with common industrial and structural materials.

Keywords: Polyacrylonitrile Fibers, Carbon Fibers, Application

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4847
336 Time-Dependent Behavior of Reinforced Concrete Beams under Sustained and Repeated Loading

Authors: Sultan Daud, John P. Forth, Nikolaos Nikitas

Abstract:

The current study aims to highlight the loading characteristics impact on the time evolution (focusing particularly on long term effects) of the deformation of realized reinforced concrete beams. Namely the tension stiffening code provisions (i.e. within Eurocode 2) are reviewed with a clear intention to reassess their operational value and predicting capacity. In what follows the experimental programme adopted along with some preliminary findings and numerical modeling attempts are presented. For a range of long slender reinforced concrete simply supported beams (4200 mm) constant static sustained and repeated cyclic loadings were applied mapping the time evolution of deformation. All experiments were carried out at the Heavy Structures Lab of the University of Leeds. During tests the mid-span deflection, creep coefficient and shrinkage strains were monitored for duration of 90 days. The obtained results are set against the values predicted by Eurocode 2 and the tools within an FE commercial package (i.e. Midas FEA) to yield that existing knowledge and practise is at times over-conservative.

Keywords: Eurocode2, midas fea, repeated, sustained loading.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2771
335 Design of Stable IIR Digital Filters with Specified Group Delay Errors

Authors: Yasunori Sugita, Toshinori Yoshikawa

Abstract:

The design problem of Infinite Impulse Response (IIR) digital filters is usually expressed as the minimization problem of the complex magnitude error that includes both the magnitude and phase information. However, the group delay of the filter obtained by solving such design problem may be far from the desired group delay. In this paper, we propose a design method of stable IIR digital filters with prespecified maximum group delay errors. In the proposed method, the approximation problems of the magnitude-phase and group delay are separately defined, and these two approximation problems are alternately solved using successive projections. As a result, the proposed method can design the IIR filters that satisfy the prespecified allowable errors for not only the complex magnitude but also the group delay by alternately executing the coefficient update for the magnitude-phase and the group delay approximation. The usefulness of the proposed method is verified through some examples.

Keywords: Filter design, Group delay approximation, Stable IIRfilters, Successive projection method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1561
334 Estimation of Subgrade Resilient Modulus from Soil Index Properties

Authors: Magdi M. E. Zumrawi, Mohamed Awad

Abstract:

Determination of Resilient Modulus (MR) is quite important for characterizing materials in pavement design and evaluation. The main focus of this study is to develop a correlation that predict the resilient modulus of subgrade soils from simple and easy measured soil index properties. To achieve this objective, three subgrade soils representing typical Khartoum soils were selected and tested in the laboratory for measuring resilient modulus. Other basic laboratory tests were conducted on the soils to determine their physical properties. Several soil samples were prepared and compacted at different moisture contents and dry densities and then tested using resilient modulus testing machine. Based on experimental results, linear relationship of MR with the consistency factor ‘Fc’ which is a combination of dry density, void ratio and consistency index had been developed. The results revealed that very good linear relationship found between the MR and the consistency factor with a coefficient of linearity (R2) more than 0.9. The consistency factor could be used for the prediction of the MR of compacted subgrade soils with precise and reliable results.

Keywords: Consistency factor, resilient modulus, subgrade soil, properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1897