**Commenced**in January 2007

**Frequency:**Monthly

**Edition:**International

**Paper Count:**31515

##### Effects of Thermal Radiation on Mixed Convection in a MHD Nanofluid Flow over a Stretching Sheet Using a Spectral Relaxation Method

**Authors:**
Nageeb A. H. Haroun,
Sabyasachi Mondal,
Precious Sibanda

**Abstract:**

**Keywords:**
Non-isothermal wedge,
thermal radiation,
nanofluid,
magnetic field,
Soret and Dufour effects.

**Digital Object Identifier (DOI):**
doi.org/10.5281/zenodo.1339868

**References:**

[1] A. Subhas, P. H. Veena, “Visco-elastic fluid flow and heat transfer in porous medium over a stretching sheet”, Int. J. Non-linear Mech. vol. 33, pp, 531–540, 1998.

[2] K. V. Prasad, M. S. Abel, A. Joshi, “Oscillatory motion of a visco-elastic liquid over a stretching sheet in porous media”, J. Porous Media, vol. 3, PP. 61–68, 2000.

[3] H. Blasius, “Grenzschichten in Flussigkeiten Mit Kleiner Reibung”, Zeitschrift f¨ur Angewandte Mathematik und Physik, vol. 56, pp. 1–37, 1908.

[4] L. Howarth, “On the solution of the laminar boundary layer equations”, Proceedings of the Society of London, Mathematical and Physical Sciences, vol. 919, pp. 547–579, 1938.

[5] L. J. Crane, “Flow past a stretching plate”, Zeitschrift f¨ur Angewandte Mathematik und Physik, ZAMP vol. 21, pp. 645–647, 1970.

[6] P. S. Gupta, A. S. Gupta, “Heat and mass transfer on a stretching sheet with suction or blowing”, Can. J. Chem. Eng., vol. 55, pp. 744–746, 1977.

[7] Y. M. Aiyesimi, S. O. Abah, G. T. Okedayo, “The analysis of hydromagnetic free convection heat and mass transfer flow over a stretching vertical plate with suction”, Amer. J. Comput. Appl. Math., vol. 1, pp. 20–26, 2011.

[8] S. J. Liao, “Series solutions of unsteady boundary layer flows over a stretching flat plate”, Studies Applied Mathematics, vol. 117, pp. 239–263, 2006.

[9] H. Xu, S. J. Liao, I. Pop, “Series solutions of unsteady three-dimensional MHD flow and heat transfer in the boundary layer over an impulsively stretching plate”, Eur. J. Mech. B/Fluids, vol. 26, pp. 15–27, 2007.

[10] H. Masuda, A. Ebata, K. Teramae, N. Hishinuma, “Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles (dispersion of − Al2O3, SiO2 and TiO2 ultra-fine particles)”, Netsu. Bussei., vol. 7, pp. 227–233, 1993.

[11] J. Buongiorno, W. Hu, “Nanofluid coolants for advanced nuclear power plants”, Proceedings of ICAPP05, Seoul, 15-19 May 2005, vol. 5, pp. 15–15.

[12] S. Choi, Z. Zhang, W. Yu, F. Lockwood, E. Grulke, “Anomalously thermal conductivity enhancement in nanotube suspensions”, Appl. Phys. Letters, vol. 79, pp. 2252–2254, 2001.

[13] N. A. H. Haroun, S. Mondal, P. Sibanda, S. S. Motsa, M. M. Rashidi, “Heat and mass transfer of nanouid through an impulsively vertical stretching surface using the spectral relaxation method”, Boundary Value Problems vol. 2015, no. 161, pp. 1-16, 2015.

[14] N. A. H. Haroun, S. Mondal, P. Sibanda,“The effects of thermal radiation on an unsteady MHD axisymmetric stagnation- point flow over a shrinking sheet in presence of temperature dependent thermal conductivity with Navier slip”, PLoS One, vol. 10, no. 9: e0138355. doi:10.1371/journal.pone.0138355, 2015.

[15] N. A. H. Haroun, S. Mondal, P. Sibanda, “Unsteady natural convective boundary-layer flow of MHD nanofluid over a stretching surfaces with chemical reaction using the spectral relaxation method: A revised model”, Procedia Engineering, vol. 127, pp. 18 - 24, 2015.

[16] I. S. Oyelakin, S. Mondal, P. Sibanda, “Unsteady Casson nanofluid flow over a stretching sheet with thermal radiation, convective and slip boundary conditions”, Alexandria Engineering Journal, vol. 55, no. 2, pp. 10251035, 2016.

[17] T. M. Agbaje, S. Mondal, Z. G. Makukula, S. S. Motsa, P. Sibanda, “A new numerical approach to MHD stagnation point flow and heat transfer towards a stretching Sheet”,Ain Shams Engineering Journal doi:10.1016/j.asej.2015.10.015, 2016.

[18] J. A. Gbadeyan, A. S. Idowu, A. W. Ogunsola, O. O. Agboola, P. O. Olanrewaju, “Heat and mass transfer for Soret and Dufour’s effect on mixed convection boundary layer flow over a stretching vertical surface in a porous medium filled with a viscoelastic fluid in the presence of magnetic field”, Global J. Sci. Front. Res., vol. 11, pp. 1–19, 2011.

[19] M. J. Subhakar, K. Gangadhar, “Soret and Dufour effects on MHD free convection heat and mass transfer flow over a stretching vertical plate with suction and heat source/sink”, Int. J. Modern Eng. Res., vol. 2, pp. 3458–3468, 2012.

[20] T. R. Mahapatra, S. Mondal, D. Pal, “Heat transfer due to magnetohydrodynamic stagnation-point flow of a power-law fluid towards a stretching surface in the presence of thermal radiation and suction/injection”, ISRN Thermodynamics vol. 9, pp. 1–9, 2012.

[21] Md. S. Khan, Md. M. Alam, M. Ferdows, “Effects of magnetic field on radiative flow of a nanofluid past a stretching sheet”, Procedia Engineering vol. 56, pp. 316–322, 2013.

[22] P. Singh, D. Sinha, N. S. Tomer, “Oblique stagnation-point Darcy flow towards a stretching sheet”, J. Appl. Fluid Mech., vol. 5, pp. 29–37, 2012.

[23] A. M. Rohni, S. Ahmad, Md. I. A. Ismail, I. Pop, “Flow and heat transfer over an unsteady shrinking sheet with suction in a nanofluid using Buongiorno’s model”, Int. Commu. Heat Mass Trans., vol. 43, pp. 75–80, 2013.

[24] J. Buongiorno, “Convective transport in nanofluids”, ASME Journal of Heat Transfer, vol. 128, pp. 240–250, 2006.

[25] H. F. Oztop, E. Abu-Nada, “Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids”, Int. J. Heat Fluid Flow, vol 29 pp. 1326–1336, 2008.

[26] P.E. Gharagozloo,J. K. Eaton, K. E. Goodson, “Diffusion, aggregation, and the thermal conductivity of nanofluids”,Appl. Phys. Lett. vol. 93, pp. 103110, http://dx.doi.org/10.1063/1.2977868, 2008.

[27] J. Philip, P. D. Shima, B. Raj, “Nanofluid with tunable thermal properties”, Appl. Phys. Lett., vol. 92, pp. 043108, http://dx.doi.org/10.1063/1.2838304, 2008.

[28] N. A. H. Haroun, P. Sibanda, S. Mondal, S. S. Motsa, “On unsteady MHD mixed convection in a nanofluid due to a stretching/shrinking surface with suction/injection using the spectral relaxation method”, Boundary Value Problems, vol. 15, pp. 1–17, 2015.

[29] S. S. Motsa, “A new spectral relaxation method for similarity variable nonlinear boundary layer flow systems”, Chem. Eng. Commu., vol. 16, pp. 23–57, 2013.

[30] K. A. Yih, “MHD forced convection flow adjacennt to a non-isothermal wedge”, Int. Commun. Heat Mass Trans., vol. 26, pp. 819–827, 1999.

[31] R. K. Tiwari, M. K. Das, “Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids”, Int. J. Heat Mass Trans., vol. 50, pp. 2002–2018, 2007.

[32] H. C. Brinkman, “The viscosity of concentrated suspensions and solution”, J. Chem. Phys. vol. 20, pp. 571–581, 1952.

[33] E. Abu-Nada, “Application of nanofluids for heat transfer enhancement of separated flows encountered in a backward facing step”, Int. J. Heat Fluid Flow, vol. 29, pp. 242–249, 2008.

[34] M. Sheikholeslami, M. G. Bandpy, D. D. Ganji, S. Soleimani, S. M. Seyyedi, “Natural convection of nanofluids in an enclosure between a circular and a sinusoidal cylinder in the presence of magnetic field”, Int. Commun. Heat Mass Trans., vol. 39, pp. 1435–1443, 2012.

[35] S. S. Motsa, P. G. Dlamini, M. Khumalo, “Spectral relaxation method and spectral quasilinearization method for solving unsteady boundary layer flow problems”, Adv. Math. Phys., vol. 12, Article ID 341964, doi 10.1155/2014/341964, 2014.

[36] S. S. Motsa, Z. G. Makukula, “On spectral relaxation method approach for steady von Karman flow of a Reiner-Rivlin fluid with Joule heating and viscous dissipation”, Cent. Eur. J. Phys., vol. 11, pp. 363–374, 2013.

[37] P. K. Kameswaran, M. Narayana, P. Sibanda, P. V. S. N. Murthy, “Hydromagnetic nanofluid flow due to a stretching or shrinking sheet with viscous dissipation and chemical reaction effects”, Int. J. Heat Mass Trans., vol. 55, pp. 7587–7595, 2012.

[38] P. K. Kameswaran, P. Sibanda, “Thermal dispersion effects on convective heat and mass transfer in an Ostwald de Waele nanofluid flow in porous media”, Boundary Value Problems, vol. 10, pp. 1–12, 2013.