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Abstract—In this paper the influence of a vertical plate’s thermal
capacity is numerically investigated in order to evaluate the evolution
of the thermal boundary layer structure, as well as the convective heat
transfer coefficient and the velocity and temperature profiles.
Whereas the heat flux of the heated vertical plate is evaluated under
time depending boundary conditions. The main important feature of
this problem is the unsteadiness of the physical phenomena. A 2D
CFD model is developed with the Ansys Fluent 14.0 environment
and is validated using unsteady data obtained for plasterboard studied
under a dynamic temperature evolution. All the phenomena produced
in the vicinity of the thermal conductive vertical plate (plasterboard)
are analyzed and discussed. This work is the first stage of a holistic
research on transient free convection that aims, in the future, to study
the natural convection in the vicinity of a vertical plate containing
Phase Change Materials (PCM).

Keywords—CFD modeling, natural convection, thermal
conductive plate, time-depending boundary conditions.

I. INTRODUCTION

HE phenomenon of natural convection with coupled heat
transfer has received considerable attention due to its
many applications in diverse research fields such as
architectural design, chemical engineering and environmental
dynamics. The heat transfer process is encountered in many
engineering applications: aeronautics, fluid fuel nuclear
reactors, chemical process industries and many other
applications where the fluid is considered as the working
medium. Nevertheless, in industrial processes, the phenomena
of natural convection are presented in extremely varied forms.
For example, the discharge of heat that is generated by
electronic components in equipment is made due to natural
convection. In a more concrete way, we can observe natural
convection in everyday life, even in a room where the air
circulation is generated, by upward movement along a radiator
and downward movement along a closed window when
outside air is colder than indoor air.
Hence, in the last 50 years, the coupled heat transfer natural
convection has received considerable attention on building
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applications. A variety of theoretical and experimental studies
focusing on this subject exists while these works are focused
on the study of vertical surfaces where heat flux or
temperature distributions are uniformly imposed.

More precisely, because of the fact that many transport
processes are occurring in nature due to temperature Qureshi
and Gebhart [1], Vliet and Liu [2] and Goldstein and Eckert
[3] worked basically in the experimental investigation on
laminar, transient and turbulent natural convection on a
uniformly heated vertical plate. On the other hand, the
transient coupled heat transfer free convection along a semi-
infinite vertical isothermal plate has been studied by Gallahan
and Marner [4]. In addition, Soundalgekar and Warve [5]
proposed an analytical study on the unsteady free convection
flow that passed through an infinite porous plate. The free
convective heat transfer on a vertical semi-infinite plate has
been also investigated by Berezovsky et al. [6]. Furthermore,
Martynenko et al. [7] investigated the laminar free convection
that occurs due to a vertical heated plate. Pohlhausen [8§]
developed an analytical solution and Ostrach [9]-[11] studied
a numerical solution for the isothermal, vertical plate at steady
state conditions. Their results are in accordance with the
experimental data that Schmidth and Beckmann [12] had
obtained for a uniform heat flux density at the same kind of
vertical plate. Siegel [13] tried to extend this research by
studying the transient case employing an integral method and
he finally obtained an estimate of the time required to attain
steady state. Towards this direction, Gebhart [14] developed
an approximate solution for the transient behavior with a
constant heat flux density at the plate. In addition, Sparrow
[15] studied a laminar free convection on a vertical plate with
prescribed non-uniform  wall heat flux/temperature.
Simultaneously, Hellum and Churchill [16] studied a complete
transient and steady state natural convection problem in an
unconfined fluid -initially at rest and at uniform temperature-
adjacent to a semi-infinite vertical plate at a different uniform
temperature. Finally, Bejan [17], Kays and Crawford [18] and
Burmeister [19] based their work in theoretical, numerical and
scaling analysis of laminar, transition and turbulent natural
convection.

However, even if there is a huge literature regarding studies
that focus on natural convection developed near vertical plates
under different initial and boundary conditions, only few
works treat in a holistic way the natural convection in the
vicinity of a thermal conductive plate. In this paper we present
the development and validation of a 2D CFD model that aims
to estimate the influence of a vertical plate’s thermal capacity
in the thermal and kinetic boundary layer structure, the
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convective heat transfer coefficient and the phenomena that
are produced in the vicinity of the thermal conductive vertical
plate.

II. NUMERICAL ANALYSIS

A. Governing Equations

The governing equations for natural convection flow are
presented in the form of coupled elliptic partial differential
equations. The major problems in obtaining a solution to these
equations lie in the inevitable variation of the density with
temperature as well as in their partial elliptic nature. Several
approximations are generally made to considerably simplify
these equations. Two of the most important among these are
the Boussinesq and the boundary-layer approximations [7].

The initial system of equations to describe free convection
that occurs from a vertical plate in a given initial temperature
is considered here to be a system of both Navier-Stokes and
energy equations. For a two—dimensional (2-D) developed
flow this system is written down as below ((1)-(5)). The y-axis
is directed along the plate from the leading edge, the x-axis is
normal to it.

The physical properties of the medium, except the density,
are assumed to be constant. The natural convection flow (air)
that is of interest in our study can be assumed to be nearly
incompressible. Regarding the air, we chose to describe the
temperature dependence of density employing the Boussinesq
approximation. This choice has been made because the
Boussinesq approximation correctly reflects the main specific
features of coupled free-convective heat transfer for small
temperature differences (f47<1), like in our case. The usual
form of the Boussinesq approximation uses only the first-order
term in the series. In this case the work of compression and
viscous dissipation of energy are assumed to be negligibly
small. Hence, the initial system of equations is the following
[11]-[18]:
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where p,. is the plate’s density in (kg/m?), and py is the air’s
density in (kg/m?), C, is the plate’s thermal capacity in
(J/kgK), T is the temperature in K, k is the air’s thermal

International Scholarly and Scientific Research & Innovation 7(12) 2013

conductivity (W/m’K), Kpiaee 1s the plate’s thermal conductivity
(W/m’K) [a detailed explanation of the symbols is provided in
the Appendix A section inside the nomenclature table (Table
ID)]. Equation (1) is the continuity equation, (2) is the x-
momentum equation, (3) is the y-momentum equation, (4) is
the air-energy equation and finally (5) is the plate-energy
equation.

The basic parameters that characterize the process of free-
convective heat transfer are the Grashof or the Rayleigh
number and the Prandtl number. These numbers are calculated
as follows [15]:

4

Gr,. - £P0 ©
4

Ra, = % =Gr,. Pr @)

Pr :_Czﬂ (8)

The Prandtl number is determined by the physical
parameters of the air and characterizes the similarity between
the vorticity distribution and heat diffusion [6]. The Prandtl
number depends on the viscosity and thermal conductivity,
and for this reason it is a material property. Thus it varies from
fluid to fluid. In our case the flow is the air so the Prandtl
number is equal to 0.71. The Grashof number occurs in free
convection and gives the relative importance of buoyancy
force to the viscous force. For the laminar regime the Rayleigh
number has to have the values between 10° < Ra,, <10 [17].

In our case, since we focus on laminar convection, the mean
Rayleigh number of the plate is considered Ra,.~1.14*10"".

B. Initial and Boundary Conditions

We consider an open cavity with a thermal conductive
vertical plate, which dimensions are 0.012m thickness and
1.6m height (Fig. 1). The plate is immersed in a static fluid,
because of buoyancy, the plate sucks the fluid into the domain
from the bottom boundary, and discharges it through the top
boundary. The top boundary conditions have been placed at a
distance from the plate. The reason is that the constant total
pressure boundary condition requires the edge boundary to be
far enough away from the heated plate in order to avoid
perturbations due to the limited computational domain [20],
[21].

2507 1SN1:0000000091950263



Open Science Index, Mechanical and Mechatronics Engineering Vol:7, No:12, 2013 publications.waset.org/9996823.pdf

World Academy of Science, Engineering and Technology
International Journal of Mechanical and Mechatronics Engineering
Vol:7, No:12, 2013

top boundary condition N

| opposite side boundary

wall outside boundary
condition

bottom boundary condition

Fig. 1 The open cavity with the thermal conductive plate on the left

Otherwise, the up boundary condition influences
significantly the boundary layer development. The bottom
boundary condition of the cavity was also placed at a distance
to prevent the disturbance of the small velocity (v=0,02m/s)
that was imposed for the inlet of the air (see also Appendix B).

The governing equations require initial and boundary
conditions. Initial conditions specify the initial values of all
variables at =0. In our case, as we are interested in studying
the development and the evolution of natural convection in the
vicinity of a thermal conductive plate with the passing of time
we started from the same initial condition for both the air and
the vertical plate. Hence, it is considered as initial condition
that the plate and the flow (air) are in the same temperature:
t=0,T

plate

=295,16K, T

air

=29516K,v=u=0 )

Regarding the fop boundary condition (see Fig. 1) we can
specify the pressure taken at a point A positioned away from
the plate. This pseudo-point has a modified pressure as
follows:

. W, +v,)
P =Pm—/?%

(10)

Since the absolute value of reference pressure may be
chosen arbitrary in numerical simulation, we set P,,,=P,,. So,
Pioia=Pumand p(u > +v,?)/2 is negligible when the point A is
sufficiently far away from the plate. This is why this boundary
condition requires the edge boundary to be sufficiently far
away from the plate. We neglect the second term because the
velocity is very small and does not influence on the results.
The gradient normal to the boundary surface of the variables
v,u, T are equal to 0. A detailed study on this kind of boundary
conditions is provided by Xiaxiong Yuang [20],
Georgantopoulou and Tsangaris [21] and Cebeci and
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Bradshaw [22]. Hence the fop boundary condition is resumed
as follows:

Oa—T:O,P':P T=T

? ay atm > air

M0 (11)
a oy

Regarding the bottom boundary condition (see Fig. 1) the
fluid has a very small velocity in the inlet while unsteady data
are provided for the temperature which decreases by 2°C per
lh. Hence the bottom boundary condition is resumed as
follows:
v=0,02m/s,u =0m/s,T =295.16K — 0.0005*¢ (12)
The wall outside boundary condition (see Fig. 1) is

considered adiabatic so the boundary condition is resumed as
follows:

orT
. 0 (13)

Regarding the opposite wall boundary condition (see Fig. 1)
we considered that the component of the velocity normal to
the surface is set to zero, and the gradients normal to the
boundary surface of all other variables v, T, P are specified as
zero. Hence, we obtain:

u=02 -0
ox ox ox

(14)

Regarding the wall a solid wall boundary condition (see
Fig. 1) is specified in order to assure that the fluid cannot flow
the boundary surface. The fluid must adhere to the plate, with
the no-slip condition of viscous flows:

u=0,v=0 and heat flux continuity:

i 15
plate ax air ax ( )

Finally, the up and down wall boundaries are also
considered adiabatic, so:

G,
ox

(16)

C. Solution

As our geometry is simple enough we chose a structure
grid: hence, our mesh follows a structured i,j quadrilateral
convention in 2D, in order to assure the same connectivity
between neighboring vertices (Fig. 2). The discretization of
the equations was done using the finite volume method. The
Finite Volume Method divides the domain into a number of
finite size sub-domains (control volumes). The governing
differential equations are integrated over each control volume.
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Fig. 2 Example of the problem’s meshing

To estimate the evaluating of the dependent variables above
integrals we considered a profile assumption. In our case we
chose a Power Law scheme as the profile assumption for the
momentum and energy equations. The reason is that it is the
closest scheme to the exponential solution (exact solution) and
it is less expensive than exponential scheme in computational
time.

Furthermore, in our case the Peclet number in the
surrounding cells of the plate is bigger than 0 and less than 10.
So, we chose the Power Law scheme because in this range it is
the closest scheme to the exact solution according to Patankar

[23]. The Peclet number is equal to P = pu/(k/§x) , where ox

is the characteristic length (the cell width). Table I shows the
Peclet number values for different sizes of cells length. Table I
summarizes the Peclet number values for different sizes of
cells length (dx) when0 < P <10:

TABLEI
THE PECLET NUMBER FOR DIFFERENT CELL’S SIZES
ox Peclet number
0,00090604 6,62440937
0,00045225 3,30659687
0,00036168 2,64438146
0,00030133 2,20315361
0,00022593 1,65189886

For constructing values of a scalar at the cell faces and for
computing secondary diffusion terms and velocity derivatives
we chose the Green-Gauss Node-Based Gradient method. The
node-based averaging scheme is known to be more accurate
than the cell-based scheme for unstructured meshes, most

notably for triangular and tetrahedral meshes. Hence,
according to this method we obtain:
_ 1 Y

=— 17
b 2.4, (17

where N, is the number of nodes on the face and ¢, illustrate

the nodal physical quantity under investigation.
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Fig. 3 The flow chart of the SIMPLEC algorithm

The nodal values ¢, in (17) are constructed from the

weighted average of the cell values surrounding the nodes,
following the originally proposed approach by Holmes and
Connel [24] and Rauch et al. [25]. This scheme reconstructs
exact values of a linear function at a node from surrounding
cell-centered values, preserving a second-order spatial
accuracy.

For the solution of the system of equations the SIMPLEC
(Simple-Consistent) algorithm was chosen. The SIMPLEC
numerical algorithm uses a combination of continuity and
momentum equations to derive an equation for pressure (or for
pressure correction): it is the well known pressure-velocity
coupling. SIMPLEC is preferred because it allows a faster
convergence than the SIMPLE algorithm. The flow chart of
the SIMPLEC algorithm is illustrated in Fig. 3.

III. VALIDATION, RESULTS AND DISCUSSION

A. Validation

The detailed numerical investigation of the evolution of the
natural convection phenomena that occur in the vicinity of the
vertical thermal conductive plate gives us the evolution of the
plate’s heat flux as a function of time. We observe that the
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heat flux curve has the tendency to become vertical as time
passes (Fig. 4). So after simulating 4 hours (real time), the
curve is almost vertical and the fluctuation is small (Fig. 4).
We can assume that the system reached the steady state
regime, as the air temperature and the plate temperature
decrease. So, laminar free convection phenomena occur along
a vertical plate with uniform surface heat flux. Employing the
energy equation we can deduce the value of the heat flux when
the system reaches the steady state regime. Fig. 5 shows the
evolution of the heat flux curves whereas a fictive constant
heat flux curve for steady state regime is fixed equal to
4,88W/m’.

Let’s explain how this value has been calculated. If we
change the variable from T to AT we obtain the following
system of 3 equations:

T, :Tx70+bwt
AT =T -T,
T=AT+T,=AT +T,,+b,t

(18)

Hence, employing the energy equation we calculate as
follows the ¢, that represents the value of the heat flux when
the system reaches the steady state regime:

OAT OAT OAT k  8°AT ¥=0
+u +v = -

= b, >
ot ox oy pC, Ox
‘¢ OAT “O°AT
= pC dt = k dx — [ b, pC,dx =
oc, [ lar- k| Colax— b pc,
ar_, (19)
OAT OAT OAT
= pC,——e, =k -—— )-b, pCre, =
PEr o o o . ox ) PePCre
:kaAT =b, pC,e, =
ox .,

= 4,y =b,pCpe, =4.88W /m’

where x=0 is considered to be at the solid wall boundary
condition.
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Fig. 4 The heat flux evolution with the passing of time in the vicinity
of the thermal conductive plate and the constant heat flux 4.88 W/m?
when the system reaches the steady state regime

Furthermore, to validate our results with the already existed
studies we compared them to the data of Sparrow and Gregg
[26] regarding laminar free convection for a vertical plate with
uniform surface heat flux of the thermal boundary layer. Fig. 5
shows two identical curves with a difference of ~0.1K. This
gap is due to the fact that in our case the heat flux in the level
of the thermal conductive plate is not uniform along the plate
on steady state conditions.

o
oo

=
-]

'
(¥

-

y (m)

lata-Tairlk)
ate-Tair (K}

Fig. 5 Confrontation of our simulated data to the thermal boundary
layers from Sparrow and Gregg [26] for heat uniform flux

B. Results

We notice that the results are in agreement with the steady
state regime thus we can emphasize on the plate’s behavior. In
Fig. 6 we observe the development of the thermal boundary
layer with the passing of time. We can see that the thermal
boundary layer becomes wider when time passes. This
phenomenon occurs because the air temperature in the open
cavity decreases as a function of time according to the
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equation T;. = 293.15-.0005 t. On the other hand the response
of the plate because of its thermal inertia is late and less
important. So, the difference 7}, —T5;- increases. We can also
notice that after 4 hours (real time) the thermal boundary layer
almost does not change, so it is obvious that the system
reached the steady state regime.

In addition the temperature and velocity profiles are
summarized on Figs. 7 and 8. The major difference that we
observe in this study is the fact that the air temperature
decreases with the passing of time. This is obvious especially
regarding the temperature profile that is presented on Fig. 7.

On the other hand, on Fig. 8 we notice that the velocity
profile does not present any important evolution after 3 hours
(real time). That means that the air maximum velocity in the
boundary layer increases locally however the kinetic boundary
layer remains constant even if changes occur on the
temperature profile and as a consequence the thermal
boundary layer grows. This fact illustrates that the temperature
changes are not influential enough to modify the width of the
velocity’s profile. Thus, the kinetic boundary layer does not
present an important evolution with the passing of time.

y (m)

—16463s=4h34min

AT= Tplate-Tair (K}

Fig. 6 Temperature profile evolution with the passing of time in the
vicinity of the thermal conductive plate

Temperature profile
24425=40min
293
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292
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291
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temperature (K)

287

159555=4h25min
286

164635=8h34min
285
17271s=4h48min
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distance of the plate (m]

Fig. 7 Temperature profile evolution with the passing of time
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Velocity Profile

disiance of the piate

Fig. 8 Velocity profile evolution with the passing of time

Regarding the local convection coefficient we observed that
it decreases in the vicinity of the higher layers of the plate
(Fig. 9). This observation is in accordance with theory. Since
the heat flux is almost constant (presenting very small
fluctuations) all along the vertical plate and the AT increases
from the plate’s bottom to the top then the convective heat
transfer coefficient decreases. This fact is also well known
from theory whereas AT and h are inversely proportional
physical quantities:

(20)

Local convection coefficient

v imj

3

It sl cornvesction coeflicient h[W/Em*2)

Fig. 9 The evolution of the local convective heat transfer coefficient
after simulating Sh (real time) We observe that it decreases as we
climb the plate

Finally concerning the temperature gradient inside the plate
we noticed that temperature decreases uniformly with the
passing of time (Fig. 10). We observe that the curves are
identical; however they are transposed in the vertical
dimension with the passing of time. This behavior is logical
because the air becomes colder as time passes; hence, the plate
becomes colder with the passing of time and especially it is
colder in the plate-air interface than on the adiabatic side.
More precisely, this happens since the A7=T,,,,-T,; increases
due to the fact that the air temperature in the open cavity
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varies according to the equation T,;, = 293.15-.0005 t as we
mentioned above.

late

—2442s=40min

—7278s=2h1min

89025=1h28min

—102353s=2h52min

v
o
[=]
=1

U,

(=]
(<]

X {mj

Fig. 10 Temperature evolution inside the plate with the passing of
time We can see that the temperature inside the plate decreases

Furthermore, Fig. 11 illustrates more closely the
temperature distribution inside the plate after 5 hours, when
we consider that our system is reaching the steady state
regime. Since the curves are identical and the only difference
is their transposition in the y dimension as time passes, we
chose to focus and analyze the behavior of only 1 curve in
order to be able to illustrate in the best scale the simulation
plots.

£ e N
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Fig. 11 Temperature evolution inside the plate after 5 hours The
second order polynomial equation and the square of the linear
correlation coefficient R? are also shown

Fig. 11 is a detail of Fig. 10 where only the temperature
evolution profile inside the plate after 5 hours of simulated
data is plotted. We observe an important gradient of
temperature in the plate. Furthermore, the temperature is
reaching its maximum values in the vicinity of the adiabatic
boundary condition. Also, the minimum temperature value is
observed in the plate-air interface. The difference between
minimum and maximum values is about 0.14 K. Thus, we
observed that the temperature evolution inside the plate
follows a second order polynomial equation. We found
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empirically that the relation y=-965.32x2-0.688x+287.66 fits
perfectly to the temperature evolution curve inside the plate
after 5 hours of simulated data presenting a R>=0.999.

IV. CONCLUSIONS AND PERSPECTIVES

In spite of the simple geometry, numerical simulation of
transient laminar free convection in the vicinity of a thermal
conductive vertical plate still remains a challenging problem
for computational fluid dynamics. This happens because of the
unsteadiness of the physical phenomena. Furthermore, in our
case the problem was much more complicated since the entire
numerical modeling is developed and validated using unsteady
data obtained for plasterboard under a dynamical temperature
evolution. This investigation is very important especially for
building applications since weather data are unpredictable and
so thermal engineers need to know in detail the behavior of a
thermal conductive wall under transient laminar free
convection to predict its insulating behavior.

Hence, in this paper a 2-D computational fluid dynamics
investigation of airflow, to estimate the influence of a vertical
plate’s thermal capacity in the thermal and kinetic boundary
layer structure, the convective heat transfer coefficient and
describe the phenomena that are produced in the vicinity of
thermal conductive vertical plate is conducted in the Ansys
Fluent 14.0 environment. A low thermal conductive vertical
plate has been placed in an open cavity, while a CFD
investigation was conducted for a wide range of different sizes
of cells length (dx) and for the related range of Peclet number
values that varied from very low (1,65189886) to very high
(6,62440937).

The governing equations for natural convection flow are
presented in the form of coupled elliptic partial differential
equations, whereas the initial system of equations to describe
free convection is considered to be a system of both Navier-
Stokes and energy equations. The air’s density temperature
dependence is described via the Boussinesq approximation
since it is considered to be an approximation that correctly
reflects the main specific features of coupled free-convective
heat transfer. Therefore, compression and viscous dissipation
of energy are assumed to be negligibly small in the present
study. Appropriate initial and boundary conditions has been
used. In order to anticipate perturbations due to the limited
computational domain we locally applied the pseudo-cells
method since previous research proved that the constant total
pressure boundary condition requires the edge boundary to be
far enough away from the heated plate otherwise local noise
appear as a constant noise influencing the results (see figures
in Appendix C).

The equations were discretized using the finite volume
method. Additionally, we chose the Power Law scheme as the
profile assumption for the momentum and energy equations to
estimate the evaluating of the dependent variables. The Green-
Gauss Node-Based Gradient method has been employed to
construct values of a scalar at the cell faces and to compute
secondary diffusion terms and velocity derivatives, since this
nodal-based averaging scheme is considered to be more
accurate than the cell-based scheme for unstructured meshes.
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Finally, the SIMPLEC numerical algorithm that uses a
combination of continuity and momentum equations to derive
an equation for pressure is employed because it allows a faster
convergence than the SIMPLE algorithm. For us quick
convergence was very important since we simulated 5 hour of
real time with adaptive time steps that often reach 107 sec
values.
Once the numerical model was validated and evaluated
according to past literature results (after the confrontation of
our simulated data to past researches on the same subject), we
managed to obtained some very important quantitative and
qualitative conclusions regarding the behavior of a vertical
thermal conductive plate placed in an open cavity:
= The velocity profile is not influenced from the decrease of
the air temperature after approximately 3h (real time).
Hence, the kinetic boundary layer remains constant even
if changes occur on the temperature profile and as a
consequence the thermal boundary layer grows.

=  On the other hand the temperature profile is significantly
influenced by the air temperature decrease. The thermal
boundary layer grows as a function to the air temperature
decrease.

= Heat flux curve has the tendency to become vertical as
time passes until the system reaches steady state regime.
The heat flux in the capacitive plate presents some
differences of a uniform heated plate.

= The kinetic boundary layer does not present important
evolution as time passes.

=  The plate temperature decreases uniformly.

= The local convective heat transfer coefficient decreases as
we climb the vertical plate.

Furthermore, an empirical second order polynomial
equation that forecasts in an accurate way the temperature
evolution curve inside the plate after 5 hours of simulated data
is provided.

Since we managed to validate and sufficiently evaluate our
2-D CFD model with accuracy, our next step consists to
extend the present research including Phase Change Materials
in the plasterboard, which means adding the enthalpy vs.
temperature curve for the material. Then we will be able to
study in detail the thermal and kinetic boundary layer
structure, the evolution of convective heat transfer coefficients
and the phenomena that are produced in the vicinity of a
building wall containing Phase Change Materials (PCM). This
is an extremely important issue on building physics since the
low inertia buildings generally suffer of summer discomfort
however a potential solution to this problem is the use of walls
containing Phase Change Materials (PCM). Finally, in the
future we have the intention to work on 3-D CFD modeling in
order to enhance on the understanding of the thermal and
kinetic boundary layer structure and formulation in the
vicinity of a vertical plates in scale 1:1, as well as studying the
evolution of turbulent flow in the open cavity.

APPENDIX A

A nomenclature table is provided here. All the symbols
employed in the paper, as well as their units in the SI system

International Scholarly and Scientific Research & Innovation 7(12) 2013

are tabulated below.

TABLEII
NOMENCLATURE
Symbol Quantity SI Units
u x-velocity m/s
v y-velocity m/s
K thermal conductivity W/Km?
h convective heat transfer coefficient W/Km®
Cp Heat capacity JlkgK
p density Ko/m’
T temperature K
P pressure atm
Pr Prundtl number 1
Gry» Grashof number 1
Ray» Rayleigh number 1
v kinetic viscosity m’/s
n dynamic viscosity kg/ms
g gravity m/s’
B extension coefficient T
Ow wall’s heat flux Wim®
t time s
B temperature rate K/s
APPENDIX B

The following graphical images show the thermal and
kinetic distribution inside the plate and the open cavity after
having simulated 2h 7min (real time). We observe that the low
plate part has already lost some of its thermal energy in
contrast to the up plate part. The heat discharge advances
progressively inside the plate from the bottom to the top.

2.92e+02
2.8Ze+02
2.8Z2e+02
2.82e+02
2.9Ze+02
2.81e+02
2.81e+02
2.91e+02
2.81e+02
2.81e+02
2.891e+02
2.81e+02
2.80e+02
2.90e+02
2.80e+02
2.80e+02
2.90e+02
2.80e+02
2.80e+02
2.89e+02
2.88e+02

Fig. 12 The plate thermal discharge and the thermal boundary layer in
the vicinity of the plate after 2h 7min

As about the velocity inside the open cavity we focus on the
kinetic boundary layer in the vicinity of the plate. The kinetic
boundary layer presents a significant growth on the top plate
part and very small on the down plate part. The fact that the
plate temperature is lower on the down part leads to the small
buoyancy phenomena which mean very small y-velocity. The
influence from the plate to the boundary layer and vice-versa
is mutual.
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Fig. 13 The Kinetic boundary layer after 2h7min

APPENDIX C

The following graphical images show that the top boundary
condition's placement can generate a turbulent flow inside the

open cavity.

- 3.002e+002

I 3.000e+002

(K]

- I
0.200 0800

Fig. 14 Temperature distribution in the simulation domain

This is why we chose to work employing the pseudo-cells
method [20], [21] putting the edge boundary far enough from
the heated plate to avoid the appearance of local turbulences.
The following figures present the temperature and velocity
distribution when no pseudo-cells are added. The top
boundary position is imposed directly at the end of the vertical
plate. As we can see local turbulences are present on the top

and influence the accuracy of the simulated data.
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Fig. 15 Velocity distribution in the simulation domain
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