
 

 

  
Abstract—In this paper the influence of a vertical plate’s thermal 

capacity is numerically investigated in order to evaluate the evolution 
of the thermal boundary layer structure, as well as the convective heat 
transfer coefficient and the velocity and temperature profiles. 
Whereas the heat flux of the heated vertical plate is evaluated under 
time depending boundary conditions. The main important feature of 
this problem is the unsteadiness of the physical phenomena. A 2D 
CFD model is developed with the Ansys Fluent 14.0 environment 
and is validated using unsteady data obtained for plasterboard studied 
under a dynamic temperature evolution. All the phenomena produced 
in the vicinity of the thermal conductive vertical plate (plasterboard) 
are analyzed and discussed. This work is the first stage of a holistic 
research on transient free convection that aims, in the future, to study 
the natural convection in the vicinity of a vertical plate containing 
Phase Change Materials (PCM). 

 
Keywords—CFD modeling, natural convection, thermal 

conductive plate, time-depending boundary conditions.  

I. INTRODUCTION 
HE phenomenon of natural convection with coupled heat 
transfer has received considerable attention due to its 

many applications in diverse research fields such as 
architectural design, chemical engineering and environmental 
dynamics. The heat transfer process is encountered in many 
engineering applications: aeronautics, fluid fuel nuclear 
reactors, chemical process industries and many other 
applications where the fluid is considered as the working 
medium. Nevertheless, in industrial processes, the phenomena 
of natural convection are presented in extremely varied forms. 
For example, the discharge of heat that is generated by 
electronic components in equipment is made due to natural 
convection. In a more concrete way, we can observe natural 
convection in everyday life, even in a room where the air 
circulation is generated, by upward movement along a radiator 
and downward movement along a closed window when 
outside air is colder than indoor air. 

Hence, in the last 50 years, the coupled heat transfer natural 
convection has received considerable attention on building 
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applications. A variety of theoretical and experimental studies 
focusing on this subject exists while these works are focused 
on the study of vertical surfaces where heat flux or 
temperature distributions are uniformly imposed.  

More precisely, because of the fact that many transport 
processes are occurring in nature due to temperature Qureshi 
and Gebhart [1], Vliet and Liu [2] and Goldstein and Eckert 
[3] worked basically in the experimental investigation on 
laminar, transient and turbulent natural convection on a 
uniformly heated vertical plate. On the other hand, the 
transient coupled heat transfer free convection along a semi-
infinite vertical isothermal plate has been studied by Gallahan 
and Marner [4]. In addition, Soundalgekar and Warve [5] 
proposed an analytical study on the unsteady free convection 
flow that passed through an infinite porous plate. The free 
convective heat transfer on a vertical semi-infinite plate has 
been also investigated by Berezovsky et al. [6]. Furthermore, 
Martynenko et al. [7] investigated the laminar free convection 
that occurs due to a vertical heated plate. Pohlhausen [8] 
developed an analytical solution and Ostrach [9]-[11] studied 
a numerical solution for the isothermal, vertical plate at steady 
state conditions. Their results are in accordance with the 
experimental data that Schmidth and Beckmann [12] had 
obtained for a uniform heat flux density at the same kind of 
vertical plate. Siegel [13] tried to extend this research by 
studying the transient case employing an integral method and 
he finally obtained an estimate of the time required to attain 
steady state. Towards this direction, Gebhart [14] developed 
an approximate solution for the transient behavior with a 
constant heat flux density at the plate. In addition, Sparrow 
[15] studied a laminar free convection on a vertical plate with 
prescribed non-uniform wall heat flux/temperature. 
Simultaneously, Hellum and Churchill [16] studied a complete 
transient and steady state natural convection problem in an 
unconfined fluid -initially at rest and at uniform temperature- 
adjacent to a semi-infinite vertical plate at a different uniform 
temperature. Finally, Bejan [17], Kays and Crawford [18] and 
Burmeister [19] based their work in theoretical, numerical and 
scaling analysis of laminar, transition and turbulent natural 
convection.  

However, even if there is a huge literature regarding studies 
that focus on natural convection developed near vertical plates 
under different initial and boundary conditions, only few 
works treat in a holistic way the natural convection in the 
vicinity of a thermal conductive plate. In this paper we present 
the development and validation of a 2D CFD model that aims 
to estimate the influence of a vertical plate’s thermal capacity 
in the thermal and kinetic boundary layer structure, the 
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convective heat transfer coefficient and the phenomena that 
are produced in the vicinity of the thermal conductive vertical 
plate. 

II. NUMERICAL ANALYSIS 

A. Governing Equations 
The governing equations for natural convection flow are 

presented in the form of coupled elliptic partial differential 
equations. The major problems in obtaining a solution to these 
equations lie in the inevitable variation of the density with 
temperature as well as in their partial elliptic nature. Several 
approximations are generally made to considerably simplify 
these equations. Two of the most important among these are 
the Boussinesq and the boundary-layer approximations [7].  

The initial system of equations to describe free convection 
that occurs from a vertical plate in a given initial temperature 
is considered here to be a system of both Navier-Stokes and 
energy equations. For a two–dimensional (2-D) developed 
flow this system is written down as below ((1)-(5)). The y-axis 
is directed along the plate from the leading edge, the x-axis is 
normal to it.  

The physical properties of the medium, except the density, 
are assumed to be constant. The natural convection flow (air) 
that is of interest in our study can be assumed to be nearly 
incompressible. Regarding the air, we chose to describe the 
temperature dependence of density employing the Boussinesq 
approximation. This choice has been made because the 
Boussinesq approximation correctly reflects the main specific 
features of coupled free-convective heat transfer for small 
temperature differences (βΔT<1), like in our case. The usual 
form of the Boussinesq approximation uses only the first-order 
term in the series. In this case the work of compression and 
viscous dissipation of energy are assumed to be negligibly 
small. Hence, the initial system of equations is the following 
[11]-[18]: 

 
( ) ( )

0
u v
x y

∂ ∂
+ =

∂ ∂
                                      (1)            

 
' 2 2

0 0 0 2 2
sPu u u u uu v

t x y x x y
ρ ρ ρ μ μ

∂∂ ∂ ∂ ∂ ∂
+ + = − + +

∂ ∂ ∂ ∂ ∂ ∂
    (2)   

 

( )
' 2 2

0 0 0 0 02 2
sPv v v v vu v T T g

t x y y x y
ρ ρ ρ μ μ ρ β∂∂ ∂ ∂ ∂ ∂

+ + = − + + + −
∂ ∂ ∂ ∂ ∂ ∂

  (3) 

 
2 2

0 2 2p
T T T T TC u v k
t x y x y

ρ
⎛ ⎞⎛ ⎞∂ ∂ ∂ ∂ ∂

+ + = +⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
       (4)  

 
2 2

2 2plate p plate
T T TC k
t x y

ρ
⎛ ⎞∂ ∂ ∂⎛ ⎞ = +⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠

              (5) 

 
where ρplate is the plate’s density in (kg/m2), and ρ0 is the air’s 
density in (kg/m2), Cp is the plate’s thermal capacity in 
(J/kgK), T is the temperature in K, k is the air’s thermal 

conductivity (W/m2K), kplate is the plate’s thermal conductivity 
(W/m2K) [a detailed explanation of the symbols is provided in 
the Appendix A section inside the nomenclature table (Table 
II)]. Equation (1) is the continuity equation, (2) is the x-
momentum equation, (3) is the y-momentum equation, (4) is 
the air-energy equation and finally (5) is the plate-energy 
equation. 

The basic parameters that characterize the process of free-
convective heat transfer are the Grashof or the Rayleigh 
number and the Prandtl number. These numbers are calculated 
as follows [15]: 
 

4

* 2
w

y
g y

Gr
v k

βφ
=                   (6) 

 
4

* * Prw
y y

g y
Ra Gr

vk
βφ
α

= =              (7) 

 

Pr PC
k
μ

=                    (8) 

 
The Prandtl number is determined by the physical 

parameters of the air and characterizes the similarity between 
the vorticity distribution and heat diffusion [6]. The Prandtl 
number depends on the viscosity and thermal conductivity, 
and for this reason it is a material property. Thus it varies from 
fluid to fluid. In our case the flow is the air so the Prandtl 
number is equal to 0.71. The Grashof number occurs in free 
convection and gives the relative importance of buoyancy 
force to the viscous force. For the laminar regime the Rayleigh 
number has to have the values between 5 13

*10 10yRa≺ ≺  [17]. 
In our case, since we focus on laminar convection, the mean 
Rayleigh number of the plate is considered *yRa ~1.14*1011. 

B. Initial and Boundary Conditions 
We consider an open cavity with a thermal conductive 

vertical plate, which dimensions are 0.012m thickness and 
1.6m height (Fig. 1). The plate is immersed in a static fluid, 
because of buoyancy, the plate sucks the fluid into the domain 
from the bottom boundary, and discharges it through the top 
boundary. The top boundary conditions have been placed at a 
distance from the plate. The reason is that the constant total 
pressure boundary condition requires the edge boundary to be 
far enough away from the heated plate in order to avoid 
perturbations due to the limited computational domain [20], 
[21]. 
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Fig. 1 The open cavity with the thermal conductive plate on the left 

 
Otherwise, the up boundary condition influences 

significantly the boundary layer development. The bottom 
boundary condition of the cavity was also placed at a distance 
to prevent the disturbance of the small velocity (v=0,02m/s) 
that was imposed for the inlet of the air (see also Appendix B).  

The governing equations require initial and boundary 
conditions. Initial conditions specify the initial values of all 
variables at t=0. In our case, as we are interested in studying 
the development and the evolution of natural convection in the 
vicinity of a thermal conductive plate with the passing of time 
we started from the same initial condition for both the air and 
the vertical plate. Hence, it is considered as initial condition 
that the plate and the flow (air) are in the same temperature: 

 
0,  295,16 ,  295,16 , 0plate airt T K T K v u= = = = =       (9) 

 
Regarding the top boundary condition (see Fig. 1) we can 

specify the pressure taken at a point A positioned away from 
the plate. This pseudo-point has a modified pressure as 
follows: 

 
2 2

' ( )
2

A A
totA

u v
P P ρ

+
= −               (10) 

 
Since the absolute value of reference pressure may be 

chosen arbitrary in numerical simulation, we set Ptot=Patm. So, 
PtotA=Patm and 2 2( ) 2A Au vρ +  is negligible when the point A is 
sufficiently far away from the plate. This is why this boundary 
condition requires the edge boundary to be sufficiently far 
away from the plate. We neglect the second term because the 
velocity is very small and does not influence on the results. 
The gradient normal to the boundary surface of the variables 
v,u,T are equal to 0. A detailed study on this kind of boundary 
conditions is provided by Xiaxiong Yuang [20], 
Georgantopoulou and Tsangaris [21] and Cebeci and 

Bradshaw [22]. Hence the top boundary condition is resumed 
as follows: 

 

'0, 0, 0, ,atm air
u v T P P T T
y y y

∂ ∂ ∂
= = = = =

∂ ∂ ∂
           (11) 

 
Regarding the bottom boundary condition (see Fig. 1) the 

fluid has a very small velocity in the inlet while unsteady data 
are provided for the temperature which decreases by 2°C per 
1h. Hence the bottom boundary condition is resumed as 
follows: 
 

0,02m/ s, 0 / s 295.16   0.0005, *v u m T K t= = = −       (12)  
  

The wall outside boundary condition (see Fig. 1) is 
considered adiabatic so the boundary condition is resumed as 
follows: 
 

0T
x

∂
=

∂
                    (13) 

 
Regarding the opposite wall boundary condition (see Fig. 1) 

we considered that the component of the velocity normal to 
the surface is set to zero, and the gradients normal to the 
boundary surface of all other variables v, T, P are specified as 
zero. Hence, we obtain: 

 

0, 0, 0, 0v T Pu
x x x

∂ ∂ ∂
= = = =

∂ ∂ ∂
                (14) 

 
Regarding the wall a solid wall boundary condition (see 

Fig. 1) is specified in order to assure that the fluid cannot flow 
the boundary surface. The fluid must adhere to the plate, with 
the no-slip condition of viscous flows:  

 
0, 0u v= =  and heat flux continuity: 

 

k plate air
T Tk
x x

∂ ∂
=

∂ ∂
                                   (15)                   

  
Finally, the up and down wall boundaries are also 

considered   adiabatic, so: 
 

0q
x

∂
=

∂
                       (16) 

C. Solution 
As our geometry is simple enough we chose a structure 

grid: hence, our mesh follows a structured i,j quadrilateral 
convention in 2D, in order to assure the same connectivity 
between neighboring vertices (Fig. 2). The discretization of 
the equations was done using the finite volume method. The 
Finite Volume Method divides the domain into a number of 
finite size sub-domains (control volumes). The governing 
differential equations are integrated over each control volume.  

 

top boundary condition

opposite side boundary

wall outside boundary 
condition

up wall boundary condition

down wall boundary condition

solid wall boundary condition

bottom boundary condition
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Fig. 2 Example of the problem’s meshing 

 
To estimate the evaluating of the dependent variables above 

integrals we considered a profile assumption. In our case we 
chose a Power Law scheme as the profile assumption for the 
momentum and energy equations. The reason is that it is the 
closest scheme to the exponential solution (exact solution) and 
it is less expensive than exponential scheme in computational 
time.  

Furthermore, in our case the Peclet number in the 
surrounding cells of the plate is bigger than 0 and less than 10. 
So, we chose the Power Law scheme because in this range it is 
the closest scheme to the exact solution according to Patankar 
[23]. The Peclet number is equal to ( )P u k xρ δ= , where δx 
is the characteristic length (the cell width). Table I shows the 
Peclet number values for different sizes of cells length. Table I 
summarizes the Peclet number values for different sizes of 
cells length (δx) when 0 10P≺ ≺ :  

 
TABLE I 

THE PECLET NUMBER FOR DIFFERENT CELL’S SIZES 
δx Peclet number 

0,00090604 6,62440937 
0,00045225 3,30659687 

0,00036168 2,64438146 
0,00030133 2,20315361 
0,00022593 1,65189886 

 
For constructing values of a scalar at the cell faces and for 

computing secondary diffusion terms and velocity derivatives 
we chose the Green-Gauss Node-Based Gradient method. The 
node-based averaging scheme is known to be more accurate 
than the cell-based scheme for unstructured meshes, most 
notably for triangular and tetrahedral meshes. Hence, 
according to this method we obtain: 

 

1 fN

f n
nfN

φ φ= ∑                   (17) 

 
where Nf  is the number of nodes on the face and nφ  illustrate 
the nodal physical quantity under investigation.  
 

START

, , ,Initial guess p u v φ∗ ∗ ∗ ∗

,J
,J

,J

I,
I,J

I,

nb nb i
i

i

nb nb j

j

a u b
u

a

a v b
v

a

∗∧

∗∧

+
=

+
=

∑

∑

STEP 1 : Calculate pseudo-velocities

,u v
∧ ∧

STEP 2 : Solve pressure equation
, , 1, 1, 1, 1, , 1 , 1 , 1 , 1 ,i J i J i J i J I J I J I J i J I J I J I Ja p a p a p a p a p b− − + + − − + += + + + +

Set p p∗ =

p

p∗

STEP 3 : Solve discretised momentum equations
( )
( )

, , 1, , , ,

, , , 1 , , ,

i J i J nb nb I J I J i J i J

I j I j nb nb I J I J I j I j

a u a u p p A b

a v a v p p A b

∗ ∗ ∗ ∗
−

∗ ∗ ∗ ∗
−

− + +

− + +

∑
∑

,u v∗ ∗

STEP 4 : Solve pressure correction equation' ' ' ' ' '
, , 1, 1, 1, 1, , 1 , 1 , 1 , 1 ,I J I J I J I J I J I J I J I J I J I J I Ja p a p a p a p a p b− − + + − − + += + + + +

'p
STEP 5 : Correct velocities

( )
( )

' '
, , , 1, ,

' '
, , , , 1 ,

i J i J i J I J I J

I j i J I j I J I J

u u d p p

v v d p p

∗
−

∗
−

= + −

= + −

, , ,p u v φ∗

STEP 6 : Solve all other discretised transport equations

, , 1, 1, 1, 1, , 1 , 1 , 1 , 1 ,I J I J I J I J I J I J I J I J I J I J I Ja a a a a bφ φ φ φ φ φ− − + + − − + += + + + +

Convergence?

φ

Yes
STOP

,

,

p p u u

v v φ φ

∗ ∗

∗ ∗

= =

= =

Set

 

Fig. 3 The flow chart of the SIMPLEC algorithm 
 
The nodal values nφ  in (17) are constructed from the 

weighted average of the cell values surrounding the nodes, 
following the originally proposed approach by Holmes and 
Connel [24] and Rauch et al. [25]. This scheme reconstructs 
exact values of a linear function at a node from surrounding 
cell-centered values, preserving a second-order spatial 
accuracy.  

For the solution of the system of equations the SIMPLEC 
(Simple-Consistent) algorithm was chosen. The SIMPLEC 
numerical algorithm uses a combination of continuity and 
momentum equations to derive an equation for pressure (or for 
pressure correction): it is the well known pressure-velocity 
coupling. SIMPLEC is preferred because it allows a faster 
convergence than the SIMPLE algorithm. The flow chart of 
the SIMPLEC algorithm is illustrated in Fig. 3. 

III. VALIDATION, RESULTS AND DISCUSSION 

A. Validation 
The detailed numerical investigation of the evolution of the 

natural convection phenomena that occur in the vicinity of the 
vertical thermal conductive plate gives us the evolution of the 
plate’s heat flux as a function of time. We observe that the 
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Finally, the SIMPLEC numerical algorithm that uses a 
combination of continuity and momentum equations to derive 
an equation for pressure is employed because it allows a faster 
convergence than the SIMPLE algorithm. For us quick 
convergence was very important since we simulated 5 hour of 
real time with adaptive time steps that often reach 10-5 sec 
values. 

Once the numerical model was validated and evaluated 
according to past literature results (after the confrontation of 
our simulated data to past researches on the same subject), we 
managed to obtained some very important quantitative and 
qualitative conclusions regarding the behavior of a vertical 
thermal conductive plate placed in an open cavity: 
 The velocity profile is not influenced from the decrease of 

the air temperature after approximately 3h (real time). 
Hence, the kinetic boundary layer remains constant even 
if changes occur on the temperature profile and as a 
consequence the thermal boundary layer grows.  

 On the other hand the temperature profile is significantly 
influenced by the air temperature decrease. The thermal 
boundary layer grows as a function to the air temperature 
decrease. 

 Heat flux curve has the tendency to become vertical as 
time passes until the system reaches steady state regime. 
The heat flux in the capacitive plate presents some 
differences of a uniform heated plate. 

 The kinetic boundary layer does not present important 
evolution as time passes. 

 The plate temperature decreases uniformly. 
 The local convective heat transfer coefficient decreases as 

we climb the vertical plate. 
Furthermore, an empirical second order polynomial 

equation that forecasts in an accurate way the temperature 
evolution curve inside the plate after 5 hours of simulated data 
is provided. 

Since we managed to validate and sufficiently evaluate our 
2-D CFD model with accuracy, our next step consists to 
extend the present research including Phase Change Materials 
in the plasterboard, which means adding the enthalpy vs. 
temperature curve for the material. Then we will be able to 
study in detail the thermal and kinetic boundary layer 
structure, the evolution of convective heat transfer coefficients 
and the phenomena that are produced in the vicinity of a 
building wall containing Phase Change Materials (PCM). This 
is an extremely important issue on building physics since the 
low inertia buildings generally suffer of summer discomfort 
however a potential solution to this problem is the use of walls 
containing Phase Change Materials (PCM). Finally, in the 
future we have the intention to work on 3-D CFD modeling in 
order to enhance on the understanding of the thermal and 
kinetic boundary layer structure and formulation in the 
vicinity of a vertical plates in scale 1:1, as well as studying the 
evolution of turbulent flow in the open cavity. 

APPENDIX A 
A nomenclature table is provided here. All the symbols 

employed in the paper, as well as their units in the SI system 

are tabulated below. 
 

TABLE II 
NOMENCLATURE 

Symbol Quantity SI Units 
u x-velocity m/s 
v y-velocity m/s 
K 
h 

thermal conductivity 
convective heat transfer coefficient 

W/Km2 
W/Km2 

Cp Heat capacity J/kgK 
ρ density Kg/m3 
T 
P 

temperature 
pressure 

K 
atm 

Pr Prundtl number 1 
Gry* Grashof number 1 
Ray* Rayleigh number 1 

v kinetic viscosity m2/s 
μ dynamic viscosity kg/ms 
g gravity m/s2 
β extension coefficient 1/T 
φw wall’s heat flux W/m2

t 
β∞ 

time 
temperature rate 

s 
K/s 

APPENDIX B 
The following graphical images show the thermal and 

kinetic distribution inside the plate and the open cavity after 
having simulated 2h 7min (real time). We observe that the low 
plate part has already lost some of its thermal energy in 
contrast to the up plate part. The heat discharge advances 
progressively inside the plate from the bottom to the top.  

 

 
Fig. 12 The plate thermal discharge and the thermal boundary layer in 

the vicinity of the plate after 2h 7min 
 
As about the velocity inside the open cavity we focus on the 

kinetic boundary layer in the vicinity of the plate. The kinetic 
boundary layer presents a significant growth on the top plate 
part and very small on the down plate part. The fact that the 
plate temperature is lower on the down part leads to the small 
buoyancy phenomena which mean very small y-velocity. The 
influence from the plate to the boundary layer and vice-versa 
is mutual.  
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Fig. 13 The Kinetic boundary layer after 2h7min 

APPENDIX C 
The following graphical images show that the top boundary 

condition's placement can generate a turbulent flow inside the 
open cavity.  

 
Fig. 14 Temperature distribution in the simulation domain 

 
This is why we chose to work employing the pseudo-cells 

method [20], [21] putting the edge boundary far enough from 
the heated plate to avoid the appearance of local turbulences. 
The following figures present the temperature and velocity 
distribution when no pseudo-cells are added. The top 
boundary position is imposed directly at the end of the vertical 
plate. As we can see local turbulences are present on the top 
and influence the accuracy of the simulated data.  

 

 
Fig. 15 Velocity distribution in the simulation domain 
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