Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30172
Finite Volume Model to Study The Effect of Voltage Gated Ca2+ Channel on Cytosolic Calcium Advection Diffusion

Authors: Brajesh Kumar Jha, Neeru Adlakha, M. N. Mehta

Abstract:

Mathematical and computational modeling of calcium signalling in nerve cells has produced considerable insights into how the cells contracts with other cells under the variation of biophysical and physiological parameters. The modeling of calcium signaling in astrocytes has become more sophisticated. The modeling effort has provided insight to understand the cell contraction. Main objective of this work is to study the effect of voltage gated (Operated) calcium channel (VOC) on calcium profile in the form of advection diffusion equation. A mathematical model is developed in the form of advection diffusion equation for the calcium profile. The model incorporates the important physiological parameter like diffusion coefficient etc. Appropriate boundary conditions have been framed. Finite volume method is employed to solve the problem. A program has been developed using in MATLAB 7.5 for the entire problem and simulated on an AMD-Turion 32-bite machine to compute the numerical results.

Keywords: Ca2+ Profile, Advection Diffusion, VOC, FVM.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1078207

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1407

References:


[1] A. C. Charles, J.E. Merril, E.R. Ditksen, M.J. Sanderson, 1991. Intercellular signaling in glial cells: calcium waves and oscillations in response to mechanical stimulation and glutamate. Neuron 6, 983992.
[2] A. Tripathi and N. Adlakha, Finite Volume Model to Study Calcium Diffusion In Neuron Cell Under Excess Buffer Approximation, International J. of Math. Sci. and Engg. Appls. (IJMSEA) 5 (2011) 437-447
[3] A.H. Cornell-Bell, S.M. Finkbeiner, M.S. Cooper, S.J. Smith, 1990. Glutamate induces calcium waves in cultured astrocytes: long range glial signaling. Science 247, 470473.
[4] A. Verkhratsky, R. K. Orkand, and H. Kettenmann, Glial Calcium: Homeostasis and Signaling Function, Physiological Reviews 78 (1998)
[5] B.K. Jha, N. Adlakha, M.N. Mehta, Solution of advection diffusion equation arising in cytosolic calcium concentration distribution, Int. J. of Appl. Math and Mech. 7 (6): 72-79, 2011
[6] B.K. Jha, N. Adlakha, M.N. Mehta , Finite Volume Model to Study the Effect of Buffer on Cytosolic Ca2+ Advection Diffusion International Journal of Engineering and Natural Sciences, WASET, 4(3):160-163 2010
[7] B. A. Barres, L. L. Chun, And D. P. Corey. Ion channel expression by white matter glia. I. Type 2 astrocytes and oligodendrocytes. Glia 1 (1988) 1030
[8] B. A. Macvicar, Voltage-dependent calcium channels in glial cells. Science 226 ( 1984) 13451347
[9] B. R. Ransom and S. Goldring. Ionic determinants of membrane potential of cells presumed to be glia in cerebral cortex of cat. J. Neurophysiol. 36 (1973) 855868
[10] E. Neher, Concentration profiles of intracellular Ca2+ in the presence of diffusible chelator. Exp. Brain Res. Ser, 14 (1986) 80-96
[11] F. Hofmann, M. Biel and V. Flockerzi, Molecular basis for Ca2+ channel diversity. Annu. Rev. Neurosci. 17 (1994) 399418
[12] G.D. Smith, L. Dai, R. M. Miura, and A. Sherman, Asymptotic analysis of buffered calcium diffusion near a point source, SIAM J. Of Applied of Math, vol.61,pp.1816-1838.2000
[13] G.D. Smith, Analytical steady-state solution to the rapid buffering approximation near an open Ca2+ channel, Biophysical Journal, vol.71, pp.3064-3072,1996.
[14] H. K. Versteeg, W. Malalasekera, An introduction to computational fluid dynamics the finite volume method, Longman Scientific and Technical, 1995
[15] H. Sontheimer, J. A. Black, and S. G. Waxman. Voltage-gated Na/ channels in glia: properties and possible functions. Trends Neuroscience 19 (1996) 325331
[16] J. R. Huguenard, Low threshold calcium currents in central nervous system. Annu. Rev. Physiol. 58 (1996) 329348
[17] J. Wagner and J Keizer, Effect of rapid buffers on ca2+ diffusion and Ca2+ oscillations, Biophysical Journal, vol.67, pp. 447-456,1994.
[18] J.W. Deitmer, A.J. Verkhratsky, C. Lohr, Calcium signalling in glial cells, Cell Calcium (1998) 24 (5/6), 405-416
[19] J.W. Dani, A. Chernavsky, S.J. Smith, 1992. Neuronal activity triggers calcium waves in hippocampal astrocytic networks. Neuron 8, 429440.
[20] J. Keener and J. Sneyd, Mathematical Physiology, Springer 8 (1998) 53-56
[21] M. J. Berridge Elementary and global aspects of calcium signalling, J physiol. 499 (1997) 291-306
[22] Q. S., Liu, Q. Xu, J. Kang, and M. Nedergaard, Astrocyte activation of presynaptic metabotropic glutamate receptors modulates hippocampal inhibitory synaptic transmission. Neuron Glia Biol. 1 (2004.)307316
[23] S. Nadkarni, P. Jung, and H. Levine. 2008. Astrocytes optimize the synaptic transmission of information. PLOS Comput. Biol. 4:e1000088.]
[24] S. Bevan, S. Y. Chiu, P. T. Gray, and J. M. Ritchie. The presence of voltage-gated sodium, potassium and chloride channels in rat cultured astrocytes. Proc. R. Soc. Lond. B Biol. Sci. 225 (1985) 299 313
[25] S. Tiwari, and K. R. Pardasani, Finite difference model to study the effects of Na+ influx on cytosolic Ca2+ diffusion, International journal of Biological and Medical Sciences (2009) 205-209.
[26] S. Zeng, B. Li, S. Zeng, and S. Chen, Simulation of Spontaneous Ca2+ Oscillations in Astrocytes Mediated by Voltage-Gated Calcium Channels, Biophysical Journal 97 (2009) 24292437
[27] S. W. Kuffler and D. D. Potter. Glia in the leech central nervous system: physiological properties and neuron-glia relationship J. Neurophysiol. 27 (1964) 290320
[28] T. Fellin,communication between neuron and astrocytes: relevance to the modulation of synaptic and network activity, Journal of Neurochemistry,(2009)533-544,