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Abstract—The design problem of Infinite Impulse Response (IIR)
digital filters is usually expressed as the minimization problem of
the complex magnitude error that includes both the magnitude and
phase information. However, the group delay of the filter obtained
by solving such design problem may be far from the desired group
delay. In this paper, we propose a design method of stable IIR digital
filters with prespecified maximum group delay errors. In the proposed
method, the approximation problems of the magnitude-phase and
group delay are separately defined, and these two approximation
problems are alternately solved using successive projections. As a
result, the proposed method can design the IIR filters that satisfy the
prespecified allowable errors for not only the complex magnitude but
also the group delay by alternately executing the coefficient update
for the magnitude-phase and the group delay approximation. The
usefulness of the proposed method is verified through some examples.

Keywords—Filter design, Group delay approximation, Stable IIR
filters, Successive projection method.

I. INTRODUCTION

Finite-impulse response (FIR) digital filters find many ap-
plications in image processing, waveform transmission, etc. in
which phase distortion becomes a problem, because they can
easily realize an exactly linear phase characteristic and are
always stable [1]-[4]. However, since the resulting delay at the
output of the exactly linear phase FIR filters is half of the filter
order, its group delay may become unacceptably large when
high-order filters or narrow transition bands are required. On
the other hand, it is known that Infinite Impulse Response (IIR)
digital filters can realize about the same magnitude response
by the lower order compared with the FIR filters. Hence, in
order to process a signal processing with high-speed and with
high-precision, it is very important to design the IIR filters.

The design problem of the IIR filters is usually expressed
as the approximation problem of the magnitude and the phase
responses [7]-[12]. However, the group delay response of the
filter obtained by those methods tends to become relatively
large, especially in the vicinity of the band-edge. This is
because that the complex magnitude error, which include both
the magnitude and phase responses, is minimized instead of
the group delay error. In general, an allpass filter is used
to equalize the phase response to make the group delay
approximately constant in the interested bandwidth. However,
the use of the allpass filter is not necessarily a good policy
because the filter coefficients are redundant. Therefore, it is
desirable to realize the filter that has an equalized group
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delay without using the allpass filter. This motivates the
investigation on designing the IIR filters with prespecified
maximum group delay errors by directly approximating the
group delay response.

By the way, it is desirable to have a unified approach that
is able to design various types of digital filters. Recently,
semi-definite programming (SDP) has been widely employed
designing various types of FIR and IIR filters [6],[12]-[14].
However, because the design method based on the SDP needs
to solve a large matrix, it often causes a problem that personal
computers cannot be used. On the other hand, the successive
projection method (SP) proposed by A. A. -Taleb et. al. [3],
which is one of convex projection algorithm, is a simple
iterative approximation method, and the amount of computing
memory is very small. The SP method also has been applied to
the design problem of various types of the filters such as one-
and two-dimentional IIR filters, minimum phase FIR filters,
the filters with time- and frequency-domain constraints, and so
on [3],[15]-[19].That is, the applicability of the SP method is
wider than that of the SDP algorithm. Moreover, it is known
that the filters designed by the SP method have better filter
characteristics than those by other design methods.

In [18], we presented a design method of stable IIR filters
using the SP method. However, since this method is also for-
mulated as the approximation problem of the magnitude-phase
responses, the group delay response of the filter obtained tends
to become a large. So, in this paper, we propose an improved
method to design the stable IIR filters with prespecified maxi-
mum group delay errors using the SP method. In our proposed
method, the approximation problems of the magnitude-phase
and the group delay responses are defined separately on the
different dimension, and these two approximation problems
are solved alternately using the SP method. As a result, the
proposed method allows the direct approximation of the group
delay response, and it can restrict the group delay response
within the preselected allowable errors. The usefulness of the
proposed method is verified through some examples.

This paper is organized as follows: in section 2, the itera-
tive algorithm for the approximation of the magnitude-phase
responses using the SP method [18] is described. The iterative
algorithm to directly approximate the group delay response are
described in Section 3. Several design examples are given in
Section 4. Conclusions of this work are drawn in Section 5.

II. MAGNITUDE-PHASE APPROXIMATION [18]

Let the transfer function of an infinite impulse response
(IIR) digital filter with numerator degree m and denominator
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degree n be

H (z) =
N (z)
D (z)

=

m
∑

i=0

biz
−i

n
∑

i=0

aiz
−i

, (1)

where ai and bi are the real-valued filter coefficients and a0 =
1. Then, the frequency response H(ω) of H(z) can be given
by

H (ω) =
N (ω)
D (ω)

=

m
∑

i=0

bie
−jiω

n
∑

i=0

aie
−jiω

= |H (ω)| e−jτ(ω)ω, (2)

where ω is the normalized angular frequency.
Now, we define a desired frequency response Hd(ω) as

Hd(ω) = A (ω) e−jτd(ω)ω, (3)

where A (ω) is the desired magnitude response and τd(ω)
is the desired group delay response. Then, the filter design
problem considered here is to find the filter coefficients ai

and bi satisfying the following complex magnitude error:

|Hd (ω) −H (ω)| ≤ λ (ω) (4)

for ω ∈ ΩH , where λ (ω) is the positive maximum allowable
deviation from the desired frequency response Hd(ω) and ΩH

is the interest region, which usually consists of the passband
and stopband.

The SP method is an iterative approximation technique.
Using the technique presented in [18], the error function
E

[k+1]
H (ω) in the (k+1)th iteration step can be written as

E
[k+1]
H (ω) =

Q[k+1] (ω)
R[k] (ω)

, (5)

where

Q[k+1](ω)=A (ω)
n
∑

i=0

aicos
(

τd(ω)ω+iω−2πt[k+1]
n (ω)

)

−
m
∑

i=0

bicos
(

iω−2πt[k+1]
n (ω)

)

(6)

t
[k+1]
n (ω) = − 1

2π
tan−1 y

[k+1]
n (ω)

x
[k+1]
n (ω)

(7)

x
[k+1]
n (ω) = A (ω)

n
∑

i=0

a
[k+1]
i cos (τd(ω)ω + iω)

−
m
∑

i=0

b
[k+1]
i cos (iω)

(8)

y
[k+1]
n (ω) = −A (ω)

n
∑

i=0

a
[k+1]
i sin (τd(ω)ω + iω)

+
m
∑

i=0

b
[k+1]
i sin (iω)

(9)

R[k] (ω) =
n
∑

i=0

a
[k]
i cos

(

iω − 2πt[k]
d (ω)

)

(10)

t
[k]
d (ω) = − 1

2π
tan−1 y

[k]
d (ω)

x
[k]
d (ω)

(11)

x
[k]
d (ω) =

n
∑

i=0

a
[k]
i cos (iω) (12)

y
[k]
d (ω) = −

n
∑

i=0

a
[k]
i sin (iω) . (13)

The filter coefficient update by the SP method is equivalent to
solving the following optimization problem:

Minimize
∥

∥a[k+1] − a[k]
∥

∥

2
+

∥

∥

∥
b[k+1] − b[k]

∥

∥

∥

2

Subject to E
[k+1]
H (ωM ) − λ (ωM ) ≤ 0

where
∥

∥

∥
a[k+1] − a[k]

∥

∥

∥

2

=
N

∑

i=0

(

a
[k+1]
i − a

[k]
i

)2

(14)

∥

∥

∥
b[k+1] − b[k]

∥

∥

∥

2

=
N

∑

i=0

(

b
[k+1]
i − b

[k]
i

)2

, (15)

and ωM is the frequency point at which the specifications are
violated the most and satisfies

E
[k]
H (ωM ) − μ(ωM ) = max

all ω∈ΩH

E
[k]
H (ω) − μ(ω). (16)

Consequently, for the magnitude-phase response approxima-
tion, we can get the following iterative algorithm:

a
[k+1]
i = a

[k]
i −

R[k](ωM )
{

E
[k]
H (ωM ) − λ(ωM )

}

φ
[k]
1M

n
∑

i=0

(φ[k]
1M )2 +

m
∑

i=0

(φ[k]
2M )2

(17)

b
[k+1]
i = b

[k]
i +

R[k](ωM )
{

E
[k]
H (ωM ) − λ(ωM )

}

φ
[k]
2M

n
∑

i=0

(φ[k]
1M )2 +

m
∑

i=0

(φ[k]
2M )2

,

(18)

where

φ
[k]
1M = A (ωM ) cos

(

τd(ωM )ωM +iωM−2πt[k]
n (ωM )

)

(19)

φ
[k]
2M = cos (iωM−2πtn (ωM )) . (20)

In order to obtain the stable IIR filters, in [18], they
expanded eq.(17) using Rouché’s theorem. Then, the iterative
algorithm is

a
[k+1]
i = a

[k]
i − βδ

[k]
i,a, (21)

where

δ
[k]
i,a =

R[k](ωM )
{

E
[k]
H (ωM ) − λ(ωM )

}

φ
[k]
1M

n
∑

i=0

(φ[k]
1M )2 +

m
∑

i=0

(φ[k]
2M )2

. (22)

In eqs.(21) and (22), β (0 < β ≤ 1) is chosen as much as
possible large value satisfying

β

∣

∣

∣

∣

∣

N
∑

i=1

δ
[k]
i,az

−i

∣

∣

∣

∣

∣

<
∣

∣

∣
D[k](z)

∣

∣

∣
for z = ρejω, (23)
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where ρ(0 < ρ < 1) is the maximum allowable radius of the
poles of the filter obtained.

The detail of this algorithm has been presented in [18].
By the way, the group delay response of the filter obtained

by the above iterative algorithm may be distant from the
desired group delay because this is the iterative algorithm for
the magnitude-phase approximation. In the next section, we
consider about the iterative algorithm to approximate directly
the group delay response.

III. GROUP DELAY APPROXIMATION

The group delay response of the frequency response H(ω)
in eq.(2) is written by

τ (ω) = Re

⎧

⎪

⎪

⎨

⎪

⎪

⎩

m
∑

i=0

i · bie−jiω

m
∑

i=0

bie−jiω

+

n
∑

i=0

i · aie
−jiω

n
∑

i=0

aie−jiω

⎫

⎪

⎪

⎬

⎪

⎪

⎭

. (24)

Then, the problem considered here is to find the filter coeffi-
cients ai and bi satisfying

∣

∣

∣

∣

∣

∣

∣

∣

τd (ω) − Re

⎧

⎪

⎪

⎨

⎪

⎪

⎩

m
∑

i=0

i · bie−jiω

m
∑

i=0

bie−jiω

+

n
∑

i=0

i · aie
−jiω

n
∑

i=0

aie−jiω

⎫

⎪

⎪

⎬

⎪

⎪

⎭

∣

∣

∣

∣

∣

∣

∣

∣

≤ μ(ω)

(25)

for ω ∈ Ωτ . Where a nonnegative function μ(ω) is the
maximum allowable error from the desired group delay re-
sponse τd(ω), Ωτ is the frequency band where the desired
group delay is prescribed, which consists of the passband
in this paper. However, it is very difficult to solve directly
this design problem using the SP method because eq. (25)
is the rational function of the filter coefficients. The SP
method has a property that the filter coefficients become
a
[n+1]
i � a

[n]
i and b

[n+1]
i � b

[n]
i , i.e. D[n+1] (ω) � D[n] (ω)

and N [n+1] (ω) � N [n] (ω), if the algorithm converges. And
so, we consider the following new design formula instead of
eq.(25):

∣

∣

∣

∣

∣

∣

∣

∣

τd (ω)−Re

⎧

⎪

⎪

⎨

⎪

⎪

⎩

m
∑

i=0

i · bie−jiω

N̂(ω)
+

n
∑

i=0

i · aie
−jiω

D̂(ω)

⎫

⎪

⎪

⎬

⎪

⎪

⎭

∣

∣

∣

∣

∣

∣

∣

∣

≤ μ(ω)

(26)

where

N̂ (ω) =
m

∑

i=0

b′ie
−jiω = |N̂ (ω) |ejθ̂N (ω), (27)

D̂(ω) =
n

∑

i=0

a′ie
−jiω = |D̂(ω)|ejθ̂D(ω), (28)

and a′i and b′i are the previous filter coefficients in each
iteration step.

The coefficient update by the SP method is equivalent to
solving the following optimization problem:

Minimize
∥

∥a[k+1] − a[k]
∥

∥

2
+

∥

∥

∥
b[k+1] − b[k]

∥

∥

∥

2

Subject to
∣

∣

∣
E[k+1]

τ (ωM )
∣

∣

∣
− μ (ωM ) ≤ 0

where

∥

∥

∥
a[k+1] − a[k]

∥

∥

∥

2

=
N

∑

i=0

(

a
[k+1]
i − a

[k]
i

)2

(29)

∥

∥

∥
b[k+1] − b[k]

∥

∥

∥

2

=
N

∑

i=0

(

b
[k+1]
i − b

[k]
i

)2

(30)

E
[k+1]
τ (ωM ) = τd (ωM )

−

m
∑

i=0

ib
[k+1]
i cos

(

iωM +θ̂N (ωM )
)

|N̂(ωM )|

−

n
∑

i=0

ia
[k+1]
i cos

(

iωM +θ̂D (ωM )
)

∣

∣

∣
D̂ (ωM )

∣

∣

∣

,

(31)

and ωM is the frequency point at which the specifications are
violated the most and satisfies

∣

∣

∣
E[k]

τ (ωM )
∣

∣

∣
− μ(ωM ) = max

all ω∈Ωτ

∣

∣

∣
E[k]

τ (ω)
∣

∣

∣
− μ(ω). (32)

Below, in order to simplify the designation, D̂(ωM ), N̂(ωM ),
E

[k]
τ (ωM ), and μ(ωM ) are written as D̂M , N̂M , E[k]

τ,M , and
μM .

Solving the above optimization problem, we can get the
following iterative algorithm.

a
[k+1]
i = a

[k]
i −

|D̂M ||N̂M |
(∣

∣

∣
E

[k]
τ,M

∣

∣

∣
−μM

)

ψ
[k]
2M sign(E[k]

τ,M )
m
∑

i=0

(ψ[k]
1M )2 +

m
∑

i=0

(ψ[k]
2M )2

(33)

b
[k+1]
i = b

[k]
i +

|D̂M ||N̂M |
(∣

∣

∣
E

[k]
τ,M

∣

∣

∣
−μM

)

ψ
[k]
1M sign(E[k]

τ,M)
m
∑

i=0

(ψ[k]
1M )2 +

m
∑

i=0

(ψ[k]
2M )2

,

(34)

where

ψ
[k]
1M = |D̂M |i cos

(

iωM +θ̂N (ωM )
)

(35)

ψ
[k]
2M = |N̂M |i cos

(

iωM +θ̂D (ωM )
)

. (36)

And then, in order to design the stable IIR filters, eq.(33)
is modified using Rouché’s theorem as follows:

a
[k+1]
i = a

[k]
i − βδ

[k]
i,a (37)
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where

δ
[k]
i,a =

|D̂M ||N̂M |
(
∣

∣

∣
E

[k]
τ,M

∣

∣

∣
−μM

)

ψ
[k]
2M sign(E[k]

τ,M )
m
∑

i=0

(ψ[k]
1M )2 +

m
∑

i=0

(ψ[k]
2M )2

(38)

and β (0 < β ≤ 1) is chosen as much as possible large value
satisfying

β

∣

∣

∣

∣

∣

N
∑

i=1

δ
[k]
i,az

−i

∣

∣

∣

∣

∣

<
∣

∣

∣
D[k](z)

∣

∣

∣
for z = ρejω. (39)

In the proposed method, the magnitude-phase approxima-
tion algorithm described in section 2 and the group delay
approximation algorithm described in this section are carried
out alternately. Note, however, that the direct approximation
for the group delay response should be executed after the
magnitude-phase approximation converged enough.

The design procedure of the proposed method is summa-
rized as follows.

The Design Procedure.

Step 0 Set the filter order m and n, desired frequency
response Hd(ω), magnitude allowable error λ(ω),
group delay allowable error μ(ω), and an initial filter
coefficients a[k]|k=0 and b[k]|k=0 .

Step 1 Calculate the complex magnitude error E[k]
H (ω) and

find the frequency points ωM satisfying eq. (16).
Step 2 If E[k]

H (ωM )> λ(ωM ), then compute the new filter
coefficients h[n+1] by eqs. (17)-(23). Otherwise, set
h[n+1] =h[n]

Step 3 If (E[k+1]
H (ω)−λ(ω))/λ(ω) ≤ ε (≤ 0.1) for all ω ∈

ΩH , then go to next step. Otherwise, go back to Step
1.

Step 4 Calculate the group delay error |E[n+1]
τ (ω)| and find

the frequency points ωM satisfying eq. (32).
Step 5 If E[k+1]

τ (ωM )>μ(ωM ), then compute the new filter
coefficients h[n+2] by eqs. (33)-(39); otherwise, set
h[n+2] =h[n+1].

Step 6 If h[n+1] = h[n] in Step 2 and h[n+2] = h[n+1] in
Step 4, then terminates. Otherwise, go back to Step
1.

IV. DESIGN EXAMPLES

In this section, the examples of the IIR filters with reduced
group delay errors are presented to illustrate the effectiveness
of the proposed method. In all the following examples, the
initial value of the filter coefficients was set to ai = 0 for
i = 1, 2, · · · , n and bi = 1 for i = 0, 1, 2, · · · ,m.

A. Example 1

The specifications are as follows:

• n = m = 4
• Hd(ω)=

{

e−j5.0ω if 0 ≤ |ω| ≤ 0.2π
0 if 0.4π ≤ |ω| ≤ π

• λ(ω)=
{

Δp if 0 ≤ |ω| ≤ 0.2π
Δs if 0.4π ≤ |ω| ≤ π

• μ(ω)=Δτ if 0 ≤ |ω| ≤ 0.2π

0 0.2 0.4 0.6 0.8 1
−80

−60

−40

−20

0

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

(a)

0 0.1 0.2
−0.4

−0.2

0

0.2

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

(b)

0 0.1 0.2
4.5

5

5.5

6

Normalized Frequency (×π rad/sample)

G
ro

up
 D

el
ay

 (
Sa

m
pl

es
)

(c)

Fig. 1. Frequency responses of the proposed IIR filters with Δτ = 0.500
(solid lines) and Δτ = 0.250 (dashed lines) and of the previous IIR filter
(dotted lines) in Example 1. (a) Overall magnitude response (b) Magnitude
response in the passband (c) Group delay response in the passband

The maximum allowable pole radius ρ to guarantee the sta-
bility was set to 0.940.

First of all, for comparison, the IIR filter with the above de-
sign specifications was designed using the previous SP method
[18]. Note that this method [18] is not possible to specify
the maximum group delay allowable error μ(ω). The resulting
maximum group delay error of the filter obtained using this
method was 0.630 in passband, and the maximum passband
ripple and the maximum stopband ripple were 0.02130 and
0.02130, respectively. And, the maximum pole radius was
0.895.

On the other hand, the main advantage of the proposed
method is that it can directly specify the maximum group delay
allowable error μ(ω). The resulting filters for many different
μ(ω) are summarized in Table 1. Moreover, the frequency
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TABLE I
PERFORMANCE COMPARISON WITH [18] (EX. 1)

Previous SP [18] Proposed Method
Δp 0.0213 0.0215 0.0247
Δs 0.0213 0.0215 0.0247
Δτ 0.6302 0.5000 0.2500

Maximum pole radius 0.8951 0.9028 0.9018

responses of the obtained filter are depicted in Figures. 1(a)-
(c). In Figure 1, the dotted line is the frequency response of
the filter designed by [18], and the solid line and the dashed
line are the frequency response in the case of μ(ω) = 0.500
and μ(ω) = 0.250 of the proposed method, respectively. It is
seen from Figure 1 and Table 1 that the performance of the
filter obtained using the proposed method is much better in
group delay response, while the magnitude response is poorer
ripples. Also, we can see that the magnitude and the group
delay errors have the relation of trade-off.

B. Example 2

We attempt the design of the IIR filters that satisfy the
following specifications:

• Hd(ω)=
{

e−j10.0ω if 0 ≤ |ω| ≤ 0.5π
0 if 0.6π ≤ |ω| ≤ π

• λ(ω)=
{

0.0132 if 0 ≤ |ω| ≤ 0.5π
0.0132 if 0.6π ≤ |ω| ≤ π

• μ(ω)=0.250 if 0 ≤ |ω| ≤ 0.5π
• ρ = 0.960

The performance of the resulting filters are summarized in
Table 2, and the frequency responses of the IIR filter with
(n,m)=(8, 12) obtained by the proposed method are shown
in Figure 2. From Table 2, it can see that, in the previous SP
method, the passband ripple becomes small with an increase
in order n but the group delay response in the passband cannot
satisfy the given specification. Whereas, the filter with order
(n,m)=(8, 12) obtained by the proposed method satisfies all
the given specifications. That is, the proposed method has a
possibility that the filter that can not be designed using the
previous SP method can be designed.

V. CONCLUSION

In this paper, we have proposed the improved method to
design the stable IIR filters with prespecified group delay
errors using the successive projection method. In our proposed
method, the approximation problems of the magnitude-phase
and the group delay responses are defined separately on the
different dimension, and these two approximation problems
are solved alternately using the successive projection method.
With the proposed method, it is possible to directly approxi-
mate of the group delay response, and it can restrict the group
delay response within the preselected allowable error. As a
result, the proposed method can design the filters that can
not be obtained using the previous method. Finally, the design
examples are demonstrated to illustrate the effectiveness of the
proposed method.
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Fig. 2. Frequency response of the proposed IIR filters with the order
(n, m) = (8, 12) in Example 2. (a) Overall magnitude response (b)
Magnitude response in the passband (c) Group delay response in the passband
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