Search results for: solar heating
174 Adomian’s Decomposition Method to Generalized Magneto-Thermoelasticity
Authors: Hamdy M. Youssef, Eman A. Al-Lehaibi
Abstract:
Due to many applications and problems in the fields of plasma physics, geophysics, and other many topics, the interaction between the strain field and the magnetic field has to be considered. Adomian introduced the decomposition method for solving linear and nonlinear functional equations. This method leads to accurate, computable, approximately convergent solutions of linear and nonlinear partial and ordinary differential equations even the equations with variable coefficients. This paper is dealing with a mathematical model of generalized thermoelasticity of a half-space conducting medium. A magnetic field with constant intensity acts normal to the bounding plane has been assumed. Adomian’s decomposition method has been used to solve the model when the bounding plane is taken to be traction free and thermally loaded by harmonic heating. The numerical results for the temperature increment, the stress, the strain, the displacement, the induced magnetic, and the electric fields have been represented in figures. The magnetic field, the relaxation time, and the angular thermal load have significant effects on all the studied fields.
Keywords: Adomian’s Decomposition Method, magneto-thermoelasticity, finite conductivity, iteration method, thermal load.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 795173 Development and Optimization of Automated Dry-Wafer Separation
Authors: Tim Giesen, Christian Fischmann, Fabian Böttinger, Alexander Ehm, Alexander Verl
Abstract:
In a state-of-the-art industrial production line of photovoltaic products the handling and automation processes are of particular importance and implication. While processing a fully functional crystalline solar cell an as-cut photovoltaic wafer is subject to numerous repeated handling steps. With respect to stronger requirements in productivity and decreasing rejections due to defects the mechanical stress on the thin wafers has to be reduced to a minimum as the fragility increases by decreasing wafer thicknesses. In relation to the increasing wafer fragility, researches at the Fraunhofer Institutes IPA and CSP showed a negative correlation between multiple handling processes and the wafer integrity. Recent work therefore focused on the analysis and optimization of the dry wafer stack separation process with compressed air. The achievement of a wafer sensitive process capability and a high production throughput rate is the basic motivation in this research.Keywords: Automation, Photovoltaic Manufacturing, Thin Wafer, Material Handling
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1671172 Geometric Simplification Method of Building Energy Model Based on Building Performance Simulation
Authors: Yan Lyu, Yiqun Pan, Zhizhong Huang
Abstract:
In the design stage of a new building, the energy model of this building is often required for the analysis of the performance on energy efficiency. In practice, a certain degree of geometric simplification should be done in the establishment of building energy models, since the detailed geometric features of a real building are hard to be described perfectly in most energy simulation engine, such as ESP-r, eQuest or EnergyPlus. Actually, the detailed description is not necessary when the result with extremely high accuracy is not demanded. Therefore, this paper analyzed the relationship between the error of the simulation result from building energy models and the geometric simplification of the models. Finally, the following two parameters are selected as the indices to characterize the geometric feature of in building energy simulation: the southward projected area and total side surface area of the building. Based on the parameterization method, the simplification from an arbitrary column building to a typical shape (a cuboid) building can be made for energy modeling. The result in this study indicates that no more than 7% prediction error of annual cooling/heating load will be caused by the geometric simplification for those buildings with the ratio of southward projection length to total perimeter of the bottom of 0.25~0.35, which means this method is applicable for building performance simulation.
Keywords: building energy model, simulation, geometric simplification, design, regression
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 624171 Ramification of Oil Prices on Renewable Energy Deployment
Authors: Osamah A. Alsayegh
Abstract:
This paper contributes to the literature by updating the analysis of the impact of the recent oil prices fall on the renewable energy (RE) industry and deployment. The research analysis uses the Renewable Energy Industrial Index (RENIXX), which tracks the world’s 30 largest publicly traded companies and oil prices daily data from January 2003 to March 2016. RENIXX represents RE industries developing solar, wind, geothermal, bioenergy, hydropower and fuel cells technologies. This paper tests the hypothesis that claims high oil prices encourage the substitution of alternate energy sources for conventional energy sources. Furthermore, it discusses RENIXX performance behavior with respect to the governments’ policies factor that investors should take into account. Moreover, the paper proposes a theoretical model that relates RE industry progress with oil prices and policies through the fuzzy logic system.
Keywords: Fuzzy logic, investment, policy, stock exchange index.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1328170 Analysis of Nonlinear Pulse Propagation Characteristics in Semiconductor Optical Amplifier for Different Input Pulse Shapes
Authors: Suchi Barua, Narottam Das, Sven Nordholm, Mohammad Razaghi
Abstract:
This paper presents nonlinear pulse propagation characteristics for different input optical pulse shapes with various input pulse energy levels in semiconductor optical amplifiers. For simulation of nonlinear pulse propagation, finite-difference beam propagation method is used to solve the nonlinear Schrödinger equation. In this equation, gain spectrum dynamics, gain saturation are taken into account which depends on carrier depletion, carrier heating, spectral-hole burning, group velocity dispersion, self-phase modulation and two photon absorption. From this analysis, we obtained the output waveforms and spectra for different input pulse shapes as well as for different input energies. It shows clearly that the peak position of the output waveforms are shifted toward the leading edge which due to the gain saturation of the SOA for higher input pulse energies. We also analyzed and compared the normalized difference of full-width at half maximum for different input pulse shapes in the SOA.
Keywords: Finite-difference beam propagation method, pulse shape, pulse propagation, semiconductor optical amplifier.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2370169 Shading Percentage Effects on Energy Consumption for Bahraini Residential Buildings
Authors: Saad F. Al Nuaimi
Abstract:
Energy consumption is a very important topic these days especially regarding air conditioning in residential buildings, since this takes the biggest amount of energy in buildings total consumption, residential buildings constitute the biggest percentage of energy consumption in Bahrain. This research reflects on the effects of shading percentage in different solar orientations on the energy consumption inside residential buildings (domestic dwellings). The research as found that, there are different effects of shading in changing building orientation: • 0.69% for the shading percentage 25% when the building is oriented to the north (0º); • 18.59% for 75% of shading in north-west orientation (325º); • The best effect for shading is in north-west orientation (315º); • The less effect for shading was in case of the building orientation is the north (0º).Keywords: Bahraini buildings, Building shading, energy consumption, residential buildings, shading effects.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1925168 Analysis of Bio-Oil Produced by Pyrolysis of Coconut Shell
Authors: D. S. Fardhyanti, A. Damayanti
Abstract:
The utilization of biomass as a source of new and renewable energy is being carried out. One of the technologies to convert biomass as an energy source is pyrolysis which is converting biomass into more valuable products, such as bio-oil. Bio-oil is a liquid which is produced by steam condensation process from the pyrolysis of coconut shells. The composition of a coconut shell e.g. hemicellulose, cellulose and lignin will be oxidized to phenolic compounds as the main component of the bio-oil. The phenolic compounds in bio-oil are corrosive; they cause various difficulties in the combustion system because of a high viscosity, low calorific value, corrosiveness, and instability. Phenolic compounds are very valuable components which phenol has used as the main component for the manufacture of antiseptic, disinfectant (known as Lysol) and deodorizer. The experiments typically occurred at the atmospheric pressure in a pyrolysis reactor at temperatures ranging from 300 oC to 350 oC with a heating rate of 10 oC/min and a holding time of 1 hour at the pyrolysis temperature. The Gas Chromatography-Mass Spectroscopy (GC-MS) was used to analyze the bio-oil components. The obtained bio-oil has the viscosity of 1.46 cP, the density of 1.50 g/cm3, the calorific value of 16.9 MJ/kg, and the molecular weight of 1996.64. By GC-MS, the analysis of bio-oil showed that it contained phenol (40.01%), ethyl ester (37.60%), 2-methoxy-phenol (7.02%), furfural (5.45%), formic acid (4.02%), 1-hydroxy-2-butanone (3.89%), and 3-methyl-1,2-cyclopentanedione (2.01%).
Keywords: Bio-oil, pyrolysis, coconut shell, phenol, gas chromatography-mass spectroscopy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1772167 Electrolysis Ship for Green Hydrogen Production and Possible Applications
Authors: Julian David Hunt, Andreas Nascimento
Abstract:
Green hydrogen is the most environmental, renewable alternative to produce hydrogen. However, an important challenge to make hydrogen a competitive energy carrier is a constant supply of renewable energy, such as solar, wind and hydropower. Given that the electricity generation potential of these sources vary seasonally and interannually, this paper proposes installing an electrolysis hydrogen production plant in a ship and move the ship to the locations where electricity is cheap, or where the seasonal potential for renewable generation is high. An example of electrolysis ship application is to produce green hydrogen with hydropower from the North region of Brazil and then sail to the Northeast region of Brazil and generate hydrogen using excess electricity from offshore wind power. The electrolysis ship concept is interesting because it has the flexibility to produce green hydrogen using the cheapest renewable electricity available in the market.Keywords: Green hydrogen, electrolysis ship, renewable energies, seasonal variations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 737166 Tehran-Tabriz Intelligent Highway
Authors: P. Parvizi, F. Norouzifard, S.Mohammadi
Abstract:
The need to implement intelligent highways is much more emphasized with the growth of vehicle production line as well as vehicle intelligence. The control of intelligent vehicles in order to reduce human error and boost ease congestion is not accomplished solely by the aid of human resources. The present article is an attempt to introduce an intelligent control system based on a single central computer. In this project, central computer, without utilizing Global Positioning System (GPS), is capable of tracking all vehicles, crisis management and control, traffic guidance and recording traffic crimes along the highway. By the help of RFID technology, vehicles are connected to computerized systems, intelligent light poles and other available hardware along the way. By the aid of Wimax communicative technology, all components of the system are virtually connected together through local and global networks devised in them and the energy of the network is provided by the solar cells installed on the intelligent light poles.Keywords: intelligent highway, intelligent light pole, highway automation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1754165 Selection and Exergy Analysis of Fuel Cell System to Meet all Energy Needs of Residential Buildings
Authors: G.R. Ashari, N.Hedayat, S. Shalbaf, E.Hajidavalloo
Abstract:
In this paper a polymer electrolyte membrane (PEM) fuel cell power system including burner, steam reformer, heat exchanger and water heater has been considered to meet the electrical, heating, cooling and domestic hot water loads of residential building which in Tehran. The system uses natural gas as fuel and works in CHP mode. Design and operating conditions of a PEM fuel cell system is considered in this study. The energy requirements of residential building and the number of fuel cell stacks to meet them have been estimated. The method involved exergy analysis and entropy generation thorough the months of the year. Results show that all the energy needs of the building can be met with 12 fuel cell stacks at a nominal capacity of 8.5 kW. Exergy analysis of the CHP system shows that the increase in the ambient air temperature from 1oC to 40oC, will have an increase of entropy generation by 5.73%.Maximum entropy generates for 15 hour in 15th of June and 15th of July is estimated to amount at 12624 (kW/K). Entropy generation of this system through a year is estimated to amount to 1004.54 GJ/k.year.Keywords: CHP mode, entropy, exergy, no of fuel cell stacks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1900164 Smart Grid Simulator
Authors: Andrei Ursachi, Dorin Bordeasu
Abstract:
The Smart Grid Simulator is a computer software based on advance algorithms which has as the main purpose to lower the energy bill in the most optimized price efficient way as possible for private households, companies or energy providers. It combines the energy provided by a number of solar modules and wind turbines with the consumption of one household or a cluster of nearby households and information regarding weather conditions and energy prices in order to predict the amount of energy that can be produced by renewable energy sources and the amount of energy that will be bought from the distributor for the following day. The user of the system will not only be able to minimize his expenditures on energy factures, but also he will be informed about his hourly consumption, electricity prices fluctuation and money spent for energy bought as well as how much money he saved each day and since he installed the system. The paper outlines the algorithm that supports the Smart Grid Simulator idea and presents preliminary test results that supports the discussion and implementation of the system.
Keywords: Applied Science, Renewable energy sources, Smart Grid, Sustainable energy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3110163 Mechanical Behavior of Geosynthetics vs. the Combining Effect of Aging, Temperature, and Internal Structure
Authors: Jaime Carpio-García, Elena Blanco-Fernández, Jorge Rodríguez-Hernández, Daniel Castro-Fresno
Abstract:
Geosynthetic mechanical behavior vs temperature or vs aging has been widely studied independently during the last years, both in laboratory and in outdoor conditions. This paper studies this behavior deeper, considering that geosynthetics have to perform adequately at different outdoor temperatures once they have been subjected to a certain degree of aging, and also considering the different geosynthetic structures made of the same material. This combining effect has been not considered so far and it is important to ensure the performance of geosynthetics, especially where high temperatures are expected. In order to fill this gap six commercial geosynthetics with different internal structures made of polypropylene (PP), high density polyethylene (HDPE), bitumen and polyvinyl chloride (PVC), or even a combination of some of them, have been mechanically tested at mild temperature (20 ºC or 23 ºC) and at warm temperature (45 ºC) before and after specific exposition to air at standardized high temperature in order to simulate 25 years of aging due to oxidation. Besides, for 45 ºC tests, a heating system during test for high deformable specimens is proposed. The influence of the combining effect of aging, structure and temperature in the product behavior has been analyzed and discussed, concluding that internal structure is more influential than aging in the mechanical behavior of a geosynthetic versus temperature.
Keywords: Aging, geosynthetics, internal structure, temperature.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 44162 Performance of Partially Covered N Number of Photovoltaic Thermal (PVT) - Compound Parabolic Concentrator (CPC) Series Connected Water Heating System
Authors: Rohit Tripathi, Sumit Tiwari, G. N. Tiwari
Abstract:
In present study, an approach is adopted where photovoltaic thermal flat plate collector is integrated with compound parabolic concentrator. Analytical expression of temperature dependent electrical efficiency of N number of partially covered Photovoltaic Thermal (PVT) - Compound Parabolic Concentrator (CPC) water collector connected in series has been derived with the help of basic thermal energy balance equations. Analysis has been carried for winter weather condition at Delhi location, India. Energy and exergy performance of N - partially covered Photovoltaic Thermal (PVT) - Compound Parabolic Concentrator (CPC) Water collector system has been compared for two cases: (i) 25% area of water collector covered by PV module, (ii) 75% area of water collector covered by PV module. It is observed that case (i) has been best suited for thermal performance and case (ii) for electrical energy as well as overall exergy.
Keywords: Compound parabolic concentrator, Energy, Photovoltaic thermal, Temperature dependent electrical efficiency.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1620161 Tools for Analysis and Optimization of Standalone Green Microgrids
Authors: William Anderson, Kyle Kobold, Oleg Yakimenko
Abstract:
Green microgrids using mostly renewable energy (RE) for generation, are complex systems with inherent nonlinear dynamics. Among a variety of different optimization tools there are only a few ones that adequately consider this complexity. This paper evaluates applicability of two somewhat similar optimization tools tailored for standalone RE microgrids and also assesses a machine learning tool for performance prediction that can enhance the reliability of any chosen optimization tool. It shows that one of these microgrid optimization tools has certain advantages over another and presents a detailed routine of preparing input data to simulate RE microgrid behavior. The paper also shows how neural-network-based predictive modeling can be used to validate and forecast solar power generation based on weather time series data, which improves the overall quality of standalone RE microgrid analysis.Keywords: Microgrid, renewable energy, complex systems, optimization, predictive modeling, neural networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1060160 Modification of the Conventional Power Flow Analysis for the Deployment of an HVDC Grid System in the Indian Subcontinent
Authors: Farhan Beg
Abstract:
The Indian subcontinent is facing a massive challenge with regards to the energy security in member countries, i.e. providing a reliable source of electricity to facilitate development across various sectors of the economy and thereby achieve the developmental targets it has set for itself. A highly precarious situation exists in the subcontinent which is observed in the series of system failures which most of the times leads to system collapses-blackouts. To mitigate the issues related with energy security as well as keep in check the increasing supply demand gap, a possible solution that stands in front of the subcontinent is the deployment of an interconnected electricity ‘Supergrid’ designed to carry huge quanta of power across the sub continent as well as provide the infra structure for RES integration. This paper assesses the need and conditions for a Supergrid deployment and consequently proposes a meshed topology based on VSC HVDC converters for the Supergrid modeling.
Keywords: Super grid, Wind and Solar Energy, HVDC, Electricity management, Load Flow Analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1733159 3A Distributed Method Algorithm for Exact Side Load Managing Smart Grid Using LABVIEW
Authors: N. Ravi Kumar, R. Kamalakannan
Abstract:
The advancement of hybrid energy resources such as solar and wind power leading to the emergence of customer owned grid. It provides an opportunity to regulars to obtain low energy costs as well as enabling the power supplier to regulate the utility grid. There is a need to develop smart systems that will automatically submit energy demand schedule and monitors energy price signals in real-time without the prompt of customers. In this paper, a demand side energy management for a grid connected household and also smart preparation of electrical appliance have been presented. It also reduces electricity bill for the consumers in the grid. In addition to this, when production is high, the surplus energy fashioned in the customer owned grid is given to main grid or neighboring micro grids. The simulation of the entire system is presented using LabVIEW software.
Keywords: Distributed renewable energy resource, power storage devices, scheduling, smart meters, smart micro grid, electric vehicle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1093158 Investigating the Thermal Characteristics of Reclaimed Solid Waste from a Landfill Site Using Thermogravimetry
Authors: S. M. Al-Salem, G.A. Leeke, H. J. Karam, R. Al-Enzi, A. T. Al-Dhafeeri, J. Wang
Abstract:
Thermogravimetry has been popularized as a thermal characterization technique since the 1950s. It aims at investigating the weight loss against both reaction time and temperature, whilst being able to characterize the evolved gases from the volatile components of the organic material being tested using an appropriate hyphenated analytical technique. In an effort to characterize and identify the reclaimed waste from an unsanitary landfill site, this approach was initiated. Solid waste (SW) reclaimed from an active landfill site in the State of Kuwait was collected and prepared for characterization in accordance with international protocols. The SW was segregated and its major components were identified after washing and air drying. Shredding and cryomilling was conducted on the plastic solid waste (PSW) component to yield a material that is representative for further testing and characterization. The material was subjected to five heating rates (b) with minimal repeatable weight for high accuracy thermogravimetric analysis (TGA) following the recommendation of the International Confederation for Thermal Analysis and Calorimetry (ICTAC). The TGA yielded thermograms that showed an off-set from typical behavior of commercial grade resin which was attributed to contact of material with soil and thermal/photo-degradation.
Keywords: Polymer, TGA, Pollution, Landfill, Waste, Plastic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 704157 Enhancing Thermal Efficiency of Double Skin Façade Buildings in Semi-Arid Climate
Authors: Farid Vahedi
Abstract:
There is a great deal of interest in constructing Double Skin Facade (DSF) structures which are considered as modern movement in field of Energy Conservation, renewable energies, and Architecture design. This trend provides many conclusive alternatives which are frequently associated with sustainable building. In this paper a building with Double Skin Facade is considered in the semiarid climate of Tehran, Iran, in order to consider the DSF-s performance during hot seasons. Mathematical formulations calculate solar heat gain by the external skin. Moreover, Computational Fluid Dynamics (CFD) simulations were performed on the case study building to enhance effectiveness of the facade. The conclusion divulged difference of gained energy by the cavity and room with and without blind and louvers. Some solutions were introduced to surge the performance of natural ventilation by plunging the cooling loads in summer.
Keywords: Double Skin Façade Buildings, Energy Conservation, Renewable Energy, Natural Ventilation, Semi-arid Climate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5432156 The Manufacturing of Metallurgical Grade Silicon from Diatomaceous Silica by an Induction Furnace
Authors: Shahrazed Medeghri, Saad Hamzaoui, Mokhtar Zerdali
Abstract:
The metallurgical grade silicon (MG-Si) is obtained from the reduction of silica (SiO2) in an induction furnace or an electric arc furnace. Impurities inherent in reduction process also depend on the quality of the raw material used. Among the applications of the silicon, it is used as a substrate for the photovoltaic conversion of solar energy and this conversion is wider as the purity of the substrate is important. Research is being done where the purpose is looking for new methods of manufacturing and purification of silicon, as well as new materials that can be used as substrates for the photovoltaic conversion of light energy. In this research, the technique of production of silicon in an induction furnace, using a high vacuum for fusion. Diatomaceous Silica (SiO2) used is 99 mass% initial purities, the carbon used is 6N of purity and the particle size of 63μm as starting materials. The final achieved purity of the material was above 50% by mass. These results demonstrate that this method is a technically reliable, and allows obtaining a better return on the amount 50% of silicon.Keywords: Induction, amorphous silica, carbon microstructure, silicon.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1663155 Comparison of Zero Voltage Soft Switching and Hard Switching Boost Converter with Maximum Power Point Tracking
Authors: N. Ravi Kumar, R. Kamalakannan
Abstract:
The inherent nature of normal boost converter has more voltage stress across the power electronics switch and ripple. The presented formation of the front end rectifier stage for a photovoltaic (PV) organization is mainly used to give the supply. Further increasing of the solar efficiency is achieved by connecting the zero voltage soft switching boost converter. The zero voltage boost converter is used to convert the low level DC voltage to high level DC voltage. The inherent nature of zero voltage switching boost converter is used to shrink the voltage tension across the power electronics switch and ripple. The input stage allows the determined power point tracking to be used to extract supreme power from the sun when it is available. The hardware setup was implemented by using PIC Micro controller (16F877A).
Keywords: Boost converter, duty cycle, hard switching, MOSFET, maximum power point tracking, photovoltaic, soft switching, zero voltage switching.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1204154 Advanced Micromanufacturing for Ultra Precision Part by Soft Lithography and Nano Powder Injection Molding
Authors: Andy Tirta, Yus Prasetyo, Eung-Ryul. Baek, Chul-Jin. Choi , Hye-Moon. Lee
Abstract:
Recently, the advanced technologies that offer high precision product, relative easy, economical process and also rapid production are needed to realize the high demand of ultra precision micro part. In our research, micromanufacturing based on soft lithography and nanopowder injection molding was investigated. The silicone metal pattern with ultra thick and high aspect ratio succeeds to fabricate Polydimethylsiloxane (PDMS) micro mold. The process followed by nanopowder injection molding (PIM) by a simple vacuum hot press. The 17-4ph nanopowder with diameter of 100 nm, succeed to be injected and it forms green sample microbearing with thickness, microchannel and aspect ratio is 700μm, 60μm and 12, respectively. Sintering process was done in 1200 C for 2 hours and heating rate 0.83oC/min. Since low powder load (45% PL) was applied to achieve green sample fabrication, ~15% shrinkage happen in the 86% relative density. Several improvements should be done to produce high accuracy and full density sintered part.Keywords: Micromanufacturing, Nano PIM, PDMS micro mould.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2063153 Daylightophil Approach towards High-Performance Architecture for Hybrid-Optimization of Visual Comfort and Daylight Factor in BSk
Authors: Mohammadjavad Mahdavinejad, Hadi Yazdi
Abstract:
The greatest influence we have from the world is shaped through the visual form, thus light is an inseparable element in human life. The use of daylight in visual perception and environment readability is an important issue for users. With regard to the hazards of greenhouse gas emissions from fossil fuels, and in line with the attitudes on the reduction of energy consumption, the correct use of daylight results in lower levels of energy consumed by artificial lighting, heating and cooling systems. Windows are usually the starting points for analysis and simulations to achieve visual comfort and energy optimization; therefore, attention should be paid to the orientation of buildings to minimize electrical energy and maximize the use of daylight. In this paper, by using the Design Builder Software, the effect of the orientation of an 18m2(3m*6m) room with 3m height in city of Tehran has been investigated considering the design constraint limitations. In these simulations, the dimensions of the building have been changed with one degree and the window is located on the smaller face (3m*3m) of the building with 80% ratio. The results indicate that the orientation of building has a lot to do with energy efficiency to meet high-performance architecture and planning goals and objectives.
Keywords: Daylight, window, orientation, energy consumption, design builder.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1086152 Preliminary Assessment of Feasibility of a Wind Energy Conversion System for a Martian Probe or Surface Rover
Authors: M. Raciti Castelli, M. Cescon, E. Benini
Abstract:
Nuclear energy sources have been widely used in the past decades in order to power spacecraft subsystems. Nevertheless, their use has attracted controversy because of the risk of harmful material released into the atmosphere if an accident were to occur during the launch phase of the mission, leading to the general adoption of photovoltaic systems. As compared to solar cells, wind turbines have a great advantage on Mars, as they can continuously produce power both during dust storms and at night-time: this paper focuses on the potential of a wind energy conversion system (WECS) considering the atmospheric conditions on Mars. Wind potential on Martian surface has been estimated, as well as the average energy requirements of a Martian probe or surface rover. Finally, the expected daily energy output of the WECS has been computed on the basis of both the swept area of the rotor and the equivalent wind speed at the landing site.Keywords: Wind turbine, wind potential, Mars, probe, surface rover.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1571151 Assessment of Energy Use and Energy Efficiency in Two Portuguese Slaughterhouses
Authors: M. Feliciano, F. Rodrigues, A. Gonçalves, J. M. R. C. A. Santos, V. Leite
Abstract:
With the objective of characterizing the profile and performance of energy use by slaughterhouses, surveys and audits were performed in two different facilities located in the northeastern region of Portugal. Energy consumption from multiple energy sources was assessed monthly, along with production and costs, for the same reference year. Gathered data was analyzed to identify and quantify the main consuming processes and to estimate energy efficiency indicators for benchmarking purposes. Main results show differences between the two slaughterhouses concerning energy sources, consumption by source and sector, and global energy efficiency. Electricity is the most used source in both slaughterhouses with a contribution of around 50%, being essentially used for meat processing and refrigeration. Natural gas, in slaughterhouse A, and pellets, in slaughterhouse B, used for heating water take the second place, with a mean contribution of about 45%. On average, a 62 kgoe/t specific energy consumption (SEC) was found, although with differences between slaughterhouses. A prominent negative correlation between SEC and carcass production was found specially in slaughterhouse A. Estimated Specific Energy Cost and Greenhouse Gases Intensity (GHGI) show mean values of about 50 €/t and 1.8 tCO2e/toe, respectively. Main results show that there is a significant margin for improving energy efficiency and therefore lowering costs in this type of non-energy intensive industries.
Keywords: Meat industry, energy intensity, energy efficiency, GHG emissions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3734150 Development of Cooling Load Demand Program for Building in Malaysia
Authors: Zamri Noranai, Dayang Siti Zainab Abang Bujang, Rosli Asmawi, Hamidon Salleh, Mohammad Zainal Md Yusof
Abstract:
Air conditioning is mainly to be used as human comfort medium. It has been use more often in country in which the daily temperatures are high. In scientific, air conditioning is defined as a process of controlling the moisture, cooling, heating and cleaning air. Without proper estimation of cooling load, big amount of waste energy been used because of unsuitable of air conditioning system are not considering to overcoming heat gains from surrounding. This is due to the size of the room is too big and the air conditioning has to use more energy to cool the room and the air conditioning is too small for the room. The studies are basically to develop a program to calculate cooling load. Through this study it is easy to calculate cooling load estimation. Furthermore it-s help to compare the cooling load estimation by hourly and yearly. Base on the last study that been done, the developed software are not user-friendly. For individual without proper knowledge of calculating cooling load estimation might be problem. Easy excess and user-friendly should be the main objective to design something. This program will allow cooling load able be estimate by any users rather than estimation by using rule of thumb. Several of limitation of case study is judged to sure it-s meeting to Malaysia building specification. Finally validation is done by comparison manual calculation and by developed program.Keywords: Building, Energy and Coaling Load
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2946149 Design and Sensitivity Analysis of Photovoltaic/Thermal Solar Collector
Authors: H. M. Farghally, N. M. Ahmed, H. T. El-Madany, D. M. Atia, F. H. Fahmy
Abstract:
Energy is required in almost every aspect of human activities and development of any nation in the world. Increasing fossil fuel price, energy security and climate change have important bearings on sustainable development of any nation. The renewable energy technology is considered one of the drastic approaches which taken over the world to reduce the energy problem. The preservation of vegetables by freezing is one of the most important methods of retaining quality in agricultural products over long-term storage periods. Freezing factories show high demand of energy for both heat and electricity; the hybrid Photovoltaic/Thermal (PV/T) systems could be used in order to meet this requirement. This paper presents PV/T system design for freezing factory. Also, the complete mathematical modeling and MATLAB SIMULINK of PV/T collector is introduced. The sensitivity analysis for the manufacturing parameters of PV/T collector is carried out to study their effect on both thermal and electrical efficiency.
Keywords: Renewable energy, Hybrid PV/T system, Sensitivity analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3894148 Renewable Energy Supply Options in Kuwait
Authors: Osamah A. Alsayegh, Fatma A. Fairouz
Abstract:
This paper compares planning results of the electricity and water generation inventory up to year 2030 in the State of Kuwait. Currently, the generation inventory consists of oil and gas fired technologies only. The planning study considers two main cases. The first case, Reference case, examines a generation inventory based on oil and gas fired generation technologies only. The second case examines the inclusion of renewables as part of the generation inventory under two scenarios. In the first scenario, Ref-RE, renewable build-out is based on optimum economic performance of overall generation system. Result shows that the optimum installed renewable capacity with electric energy generation of 11% . In the second scenario, Ref-RE20, the renewable capacity build-out is forced to provide 20% of electric energy by 2030. The respective energy systems costs of Reference, Ref-RE and Ref-RE20 case scenarios reach US dollar 24, 10 and 14 billion annually in 2030.Keywords: Generation inventory, solar, planning, TIMES, wind.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2635147 Towards the Use of Renewable Energy Sources in the Home
Authors: Adriana Alexandru, Elena Jitaru, Rayner Mayer
Abstract:
The paper presents the results of the European EIE project “Realising the potential for small scale renewable energy sources in the home – Kyotointhehome". The project's global aim is to inform and educate teachers, students and their families so that they can realise the need and can assess the potential for energy efficiency (EE) measures and renewable energy sources (RES) in their homes. The project resources were translated and trialled by 16 partners in 10 European countries. A web-based methodology which will enable families to assess how RES can be incorporated into energy efficient homes was accomplished. The web application “KYOTOINHOME" will help the citizens to identify what they can do to help their community meet the Kyoto target for greenhouse gas reductions and prevent global warming. This application provides useful information on how the citizens can use renewable energy sources in their home to provide space heating and cooling, hot water and electricity. A methodology for assessing heat loss in a dwelling and application of heat pump system was elaborated and will be implemented this year. For schools, we developed a set of practical activities concerned with preventing climate change through using renewable energy sources. Complementary resources will also developed in the Romanian research project “Romania Contribution to the European Targets Regarding the Development of Renewable Energy Sources" - PROMES.Keywords: Education, energy policy, Internet, renewable energy sources.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1707146 Heat Release Performance of Swaged- and Extruded-Type Heat Sink Used in Industrial Inverter
Authors: Jung Hyun Kim, Min Ye Ku, Gyo Woo Lee
Abstract:
In this experiment, we investigated the performance of two types of heat sink, swaged- and extruded-type, used in the inverter of industrial electricity generator. The swaged-type heat sink has 62 fins, and the extruded-type has 38 fins having the same dimension as that of the swaged-type. But the extruded-type heat sink maintains the same heat transfer area by the laterally waved surface which has 1 mm in radius. As a result, the swaged- and extruded-type heat sinks released 71% and 64% of the heat incoming to the heat sink, respectively. The other incoming heat were naturally convected and radiated to the ambient. In spite of 40% decrease in number of fins, the heat release performance of the extruded-type heat sink was lowered only 7% than that of the swaged-type. We believe that, this shows the increment of effective heat transfer area by the laterally waved surface of fins and the better heat transfer property of the extruded-type heat sink.Keywords: Solar Inverter, Heat Sink, Forced Convection, Heat Transfer, Performance Evaluation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1940145 Parametric Study of Vertical Diffusion Still for Water Desalination
Authors: A. Seleem, M. Mortada, M. El Morsi, M. Younan
Abstract:
Diffusion stills have been effective in water desalination. The present work represents a model of the distillation process by using vertical single-effect diffusion stills. A semianalytical model has been developed to model the process. A software computer code using Engineering Equation Solver EES software has been developed to solve the equations of the developed model. An experimental setup has been constructed, and used for the validation of the model. The model is also validated against former literature results. The results obtained from the present experimental test rig, and the data from the literature, have been compared with the results of the code to find its best range of validity. In addition, a parametric analysis of the system has been developed using the model to determine the effect of operating conditions on the system's performance. The dominant parameters that affect the productivity of the still are the hot plate temperature that ranges from (55- 90°C) and feed flow rate in range of (0.00694-0.0211 kg/m2-s).
Keywords: Analytical Model, Solar Distillation, Sustainable Water Systems, Vertical Diffusion Still.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2399