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Abstract—Microgrids (small-scale power systems optimizing 

variable generation and loads) that use renewable energy (RE) for 
generation, are complex systems featuring nonlinear dynamics. 
Among a variety of different optimization tools, there are only a few 
ones that adequately consider the entire complex system. This paper 
evaluates applicability of two somewhat similar optimization tools 
tailored for standalone RE microgrids and also assesses a machine 
learning tool for performance prediction that can enhance the 
reliability of the two chosen optimization tools. It shows that one of 
these microgrid optimization tools has certain advantages over 
another and presents a detailed routine of preparing input data to 
simulate RE microgrid behavior. The paper also shows how neural-
network-based predictive modeling tools can be used to forecast 
power generation time series data based on whether time series data, 
and therefore to enhance the effectiveness of using optimization 
tools. 

 
Keywords—Microgrid, renewable energy, complex systems, 

optimization, predictive modeling, neural networks. 

I. INTRODUCTION 

NERGY independence and reliability for remote islands 
are compelling requirements for microgrids as seen for 

both the U.S. Navy and civilian communities residing on these 
islands. Without the capability to provide power in a 
sustainable and affordable manner, the ability to support either 
the military operations or communities found on these remote 
islands is significantly decreased. For these reasons, it is 
worthwhile to better understand the system behavior of these 
power systems that are typically modelled as microgrids. 

Maximum sustainability for an island microgrid would be to 
generate all the green power on-island using on-island 
resources independent of any off-island resources. Many 
islands in recent years have worked towards attaining 100% 
renewable or green energy generation on-island. Introducing 
RE necessitates the application of powerful tools that consider 
the complexity of the system to thereby create the opportunity 
to optimize towards 100% RE. 

Given the variability of RE generation serving small and 
disparate loads coupled with the system operation of a 
microgrid, these microgrids can conceivably be considered a 
complex system by virtue of their “interrelated, heterogeneous 
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elements (agents and objects)” [1]. By understanding the 
complex system characteristics of a microgrid to potentially 
include emergent behavior, resilient networks [2], and 
synchronous states, there may be an opportunity to improve the 
overall efficiency of the microgrid as well as to enhance overall 
system reliability of the island’s electrical grid through 
optimization of the microgrid architecture design. 

This paper evaluates three tools that can be used to better 
design green microgrid solutions, and is organized as follows. 
Section II presents a short overview of the essence of microgrid 
systems, followed by section III that presents an overview of 
two software packages, EnergyPLAN and the Hybrid 
Optimization Model for Multiple Energy Resources 
(HOMER), that can be used for microgrid system analysis and 
optimization. Section IV proceeds with an illustration on what 
input data are required for microgrid system modeling, 
followed by section V describing the initial efforts on 
predictive modeling of microgrid performance using 
MATLAB’s neural network (NN) tools. The paper ends with 
conclusions. 

II. MICROGRID COMPONENTS 

Microgrids are small scaled power systems located closer to 
the load than typically found in conventional power plants. A 
microgrid normally includes three core components: hybrid 
energy generation, energy storage (battery) and controls [3]. 
All of these components work together as a system solution to 
serve a nearby load. 

Green microgrids leverage an alternative energy source in 
the power generation. Typically, but not always, this alternative 
energy is a RE source and is paired with traditional generation 
such as a diesel genset. The RE often come from solar 
photovoltaic (PV) or wind turbines. Besides RE, there are 
alternative energy sources that can still be considered green 
when connected to a renewable generation source, e.g. a 
reversible solid oxide fuel cell system. 

Most microgrids are designed and installed to meet a 
specialized need not ideally served by the utility company. 
Often this need is dictated by the remoteness and dislocation of 
the load from a utility company such as a remote island or by 
loads that are deemed critical infrastructure (for example, at the 
U.S. Navy installations on San Nicholas Island of California, 
Kauai, Hawaii, and Diego Garcia of British Indian Ocean 
Territory). 

For remote island communities, the microgrids have been 
used to provide greater independence, reliability and 
sustainability from off-island power services. As a result, these 
green microgrids have rather creative and complex designs. 
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III. ENERGY SYSTEM ANALYSIS TOOLS 

The National Renewable Energy Laboratory’s (NREL) 
HOMER tool has been the gold standard for energy grid 
analysis and optimizations [4]. HOMER, the micro-power 
optimization tool allows designing both off-grid and grid-
connected systems. HOMER can be used to perform analyses 
to explore a wide range of design questions, such as cost-
effectiveness of different technologies as well as overall 
architecture and component size including RE components. It 
also conducts a sensitivity analysis identifying energy grid 
economics if component costs or loads change [4]. HOMER 
uses a system of graphical user interfaces (GUIs) to define the 
energy system (Fig. 1 shows an example of such a window 
defining the parameters of a wind turbine) and then allows 
performing optimization and sensitivity analysis addressing the 
aforementioned questions (Fig. 2 illustrates HOMER’s 
graphical capabilities). HOMER is used worldwide and had 
been very successful. 

Another tool, the EnergyPLAN, was designed by the 
Sustainable Energy Planning Research Group at Aalborg 

University in Denmark. It is intended to simulate (and 
optimize) energy systems, specifically green microgrids. Using 
a systems engineering approach, EnergyPLAN assists in the 
design of national energy planning strategies on the basis of 
technical and economic analyses of the consequences of 
different national energy systems and investments. It is a 
deterministic, hour-simulation model, aggregated in a systems 
description through optimizing operations and using analytical 
programming. The simulations include a technical simulation 
and a market-economic simulation. 

Major components of the EnergyPLAN user inputs include 
supply data, demand data, RE sources, energy plant capacities, 
and costs (Fig. 3 shows an example of EnergyPLAN GUI 
defining the wind turbine performance). Having these inputs 
defined, simulation produces energy balances, annual 
productions, fuel consumption, and total costs. Thus far 
EnergyPLAN has been most directly applicable to European 
nations, but the authors are now trying to access it for the use at 
U.S. Navy installations and specifically, energy usage at 
disparate and remote U.S. Navy facilities. A sample 
EnergyPLAN’s output is illustrated in Fig. 3. 
 

 

Fig. 1 HOMER’s wind turbine inputs window [11] 
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Fig. 2 HOMER’s sensitivity analysis GUI [11] 
 
Compared to HOMER, EnergyPLAN does not allow 

conducting optimization and sensitivity analysis by itself, 
however it is relatively easy to develop a wrapper and then use 
external optimization tools (e.g., MATLAB Optimization 
toolbox). Also, although EnergyPLAN does not offer a similar 
GUI as HOMER, it does provide standard distribution profile 
time series datasets for many generation and load profiles [5]. 

Among the two aforementioned tools, for a specific 
application in which the authors are interested (to model 
microgrids), EnergyPLAN seems to have certain advantages 
over HOMER. Specifically, 
 EnergyPLAN has been developed and tailored to be used 

to simulate a 100% RE system for Denmark. As such it 
includes the ability to add a plethora of RE options to the 
traditional energy grid. The result is a fully analyzed, both 
technical and economic, hybrid mircogrid for decision 
makers to choose the best course of action; 

 RE systems, like wind energy, tend to fluctuate greatly 
throughout any measured time period. Since 
EnergyPLAN considers the three primary sectors of an 
energy system to be electricity, heat, and transport, 
integration of these fluctuating sectors becomes more of 
an issue. This is even more pronounced when these RE 
sources come to achieve more penetration in the grid. To 
this end, EnergyPLAN enables both greater flexibility and 
reality by permitting the system evaluation to include 
combined heat and power (CHP) plants, heat pumps, 
electric vehicles, and hydrogen [6]; 

 HOMER does not account for transients of equipment and 
can lead to the output showing certain pieces of 
equipment, such as diesel genset, being switched on and 
off more often than may be realistic. This can lead to 
errors in the outputs; 

 HOMER will always optimize for cost first, not the best 
technical solution. EnergyPLAN, however allows 
optimizing for both technical solution and cost. Moreover, 
it allows simulating the costs of an energy system in four 
areas [7], specifically a) fuel costs, which includes 
purchasing/handling/taxes in relation to each fuel, b) 
investment costs including required capital costs, the 
lifetime of each unit, and the interest rate on repayments, 
c) operation costs that include both variable and fixed 
operation and maintenance costs for each production unit, 
and d) any extra costs not accounted for in the program by 
default, for example the cost of insulating houses for 
increased energy efficiency, etc.; 

 EnergyPLAN software is a free download; 
 The user interface is designed as a series of tab sheets and 

stacked side columns. Therefore, jumping between 
sections and inputting data is very quick and easy. Also, 
there is online training available from the EnergyPLAN 
website; 

The following section describes the inputs that are necessary 
to run the EnergyPLAN microgrid modeling. 
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Fig. 3 Sample EnergyPLAN output 
 

IV. ENERGYPLAN REQUIRED INPUTS 

The following steps outline the base required steps to 
construct a reference with EnergyPLAN: 
1) Diesel genset hourly data for a year (percentage of 

installed capacity). This may require local data collection 
or, if available, downloading data from a remote 
networked computer; 

2) Wind turbine hourly data for a year (percentage of 
installed capacity); 

3) Solar PV hourly data for a year (percentage of installed 
capacity); 

4) The total annual production/demand (TWh/year); 
5) The installed supply capacities (MW) of all supply 

sources at a specific site; 
6) Installation costs (these costs include overall investments, 

fixed operations and maintenance, variable operation and 
maintenance, fuel, and transportation); 

7) Weather data (that can be accessed from one of the 
weather websites that stores past data, e.g. National 
Weather Service Climate Services or W Weather 
Underground). 

Fig. 4 shows a typical energy system block diagram as 
created in EnergyPLAN, and Figs. 5 and 6 show examples of 
yearly data (8760 data points). All distribution files as for 
EnergyPLAN are supposed to be saved in the ASCII (.txt) 
format. Specifically, for the annual distributions files that 
contain data points, the data points can be normalized upfront 
(to reside between 0 and 1), representing 0-100% of production 
or demand or saved as is (in this case EnergyPLAN will index 
the distribution automatically). 

Once all these data, characterizing a reference model, are 
entered into the system, simulations can be run. Adding in 
proposed RE energy sources and analyzing how the model 
changes in terms of both technical outputs and economic 
outputs enables performing optimization and sensitivity 
analysis. 

Obtaining raw data and converting it into usable data for 
EnergyPLAN might require a considerable amount of effort 
including data conditioning and synchronization, outlier 
removal, etc. For example, Fig. 6 (b) features a couple of 
obvious outliers and two missing points, and Fig. 7 provides a 
graphical view of analyzing some particular dataset featuring 
quite a few missing points that needed to be filled in somehow. 
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Hence, data preparation may involve data forecasting as 
addressed in the next section. 

 

 

 

Fig. 4 Typical energy system in EnergyPLAN 
 

V. FORECASTING PV GENERATION 

This section presents an approach that can be used to fill in 
missed data and forecast future energy supply. As an example, 
predictive modelling is used to approximate future solar PV 
electrical generation. Hourly weather data input into the NN 
application in MATLAB allows training the network to learn 
how to predict the target time series output. The intent of doing 
this is to validate if the weather data could in fact be used to 
predict solar generation. If the solar PV generation could be 
predicted with accuracy, then the microgrid’s load would also 
be predicted with the intent of ultimately using these future 
values of generation and load to optimize the microgrid. An 
objective function to equalize the generation and load would 
then be used while seeking to minimize costs and maximizing 
efficiency. This optimal solution could be used to influence the 
construct (how much and which type of RE generation and 
storage) modeled in EnergyPLAN. 

 

 

Fig. 5 Sample of yearly power demand as recorded by three gauges 
 

In this example, the hourly data for solar PV generation was 
manually built by pulling generation data for the Isle of Eigg, 
Scotland directly from the installer’s website [8], [9]. Similarly, 
8,760 data points of weather data representing temperature, 
relative humidity, barometric pressure, wind speed and 
direction, rainfall, snowfall, and snow depth was downloaded 
from the Solar Radiation Data (SODA) website [10]. 

 

 

(a) 
 

 
(b) 

Fig. 6 Samples of yearly temperature data (a), and solar energy 
generated (b) 
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The first attempt to apply predictive modelling to these 
datasets was done using MATLAB’s NN Fitting Application 
commonly used to solve input-output fitting problems with 
two-layer feed-forward NNs. The weather data were used as 
the numeric input that NN will map to the numeric targets of 
solar generation as the output. The NN was trained best using 
Levenberg-Marquardt backpropagation. The model is 
presented in Fig. 8. 

 

 

Fig. 7 Example of data point analysis 
 
The regression R values, an indicator of correlation between 

the actual and desired outputs, did not exceed 0.913 and the 

aggregate (training, validation, and rest) R value was 0.911 as 
can be seen in Fig. 9. The best validation performance featured 
a Mean Squared Error (MSE), the average squared difference 
between outputs and target values, of 0.0037 at epoch 18. 

 

 

Fig. 8 Two-layer feed-forward NN training model 
 

MATLAB’s NN Time Series application was then used to 
predictively model the PV generation. This tool is intended to 
solve nonlinear time series problems with a dynamic NN. 
Given the inherent nonlinear nature of weather, this tool 
seemed very appropriate. Specifically, the nonlinear 
autoregressive with External (Exogenous) Input (NARX) was 
used to predict the PV generation time series using both past 
time series values of PV generation and weather. The results 
using Levenberg-Marquardt for training produced R-values that 
did not exceed 0.92 with an aggregate R of 0.91. The NARX 
model can be seen in Fig. 10. In this figure, x(t) is the weather 
time series data, y(t) is the solar PV generation time series data 
and there are 10 neurons. 

 

 

Fig. 9 NN training regression 
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Comparatively, the NARX predictive modelling produced 
similar results for regression as can be seen by the regression 
plot in Fig. 11. The best validation performance was a MSE of 
0.0035 at epoch 24. These results were obtained in less than 
half of the processing time as the two-layer feed-forward NN 
and given their significantly similar R-values were deemed 
acceptable without any need or real benefit deemed to increase 
the neurons. 

The NARX modelling proved that the target solar PV 
generation data time series could be reliably trained to the 
weather data time series. 

 

 

(a) 
 

 
(b) 

Fig. 10 NARX NN open-loop (a) and close loop (b) training model 

VI. CONCLUSIONS 

This paper presented an overview of EnergyPLAN versus 
HOMER software tools that can be used to assist exploring and 
optimizing green microgrids on isolated locations and showed 
some preliminary the results of their modeling using 
EnergyPLAN software package. Additionally, MATLAB’s 
predictive modeling tool was applied to an island’s microgrid 
data to evaluate its usefulness in further enhancing these 
optimization tools and suggested that the PV generation time 
series data could be predicted using weather time series data. 

 

 

Fig. 11 NARX NN training regression 
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