The inherent nature of normal boost converter has more voltage stress across the power electronics switch and ripple. The presented formation of the front end rectifier stage for a photovoltaic (PV) organization is mainly used to give the supply. Further increasing of the solar efficiency is achieved by connecting the zero voltage soft switching boost converter. The zero voltage boost converter is used to convert the low level DC voltage to high level DC voltage. The inherent nature of zero voltage switching boost converter is used to shrink the voltage tension across the power electronics switch and ripple. The input stage allows the determined power point tracking to be used to extract supreme power from the sun when it is available. The hardware setup was implemented by using PIC Micro controller (16F877A).<\/p>\r\n","references":"[1] \tMassoud A. M., Abdelsalam A.K., Enjeti P. N. And Ahmed S., (2011) \u2018High-performance adaptive perturb and study MPPT practice for photovoltaic-based micro grids\u2019 IEEE Transaction, vol. 26, no. 4, pp. 1010\u20131021.\r\n[2] \tBorrega M., Lopez J., Agorreta J. L. and Marroyo L., (2001) \u2018Modelling and organize of N-paralleled grid-connected inverters with LCL filter coupled due to grid impedance in PV plants\u2019 IEEE Transaction, vol. 26, no. 3, pp. 770\u2013785.\r\n[3] \tAhmed K. H., Finney S. J., Williams B. W. and Alajmi B. N., (2011) \u2018Fuzzy logic- control approach of a modified hill-climbing method for maximum power point in micro grid standalone photovoltaic system\u2019 IEEE Transaction, vol. 26, no. 4, pp. 1022\u20131030.\r\n[4] \tShanxu D. Tao C. And Bangyin L., (2011) \u2018Photovoltaic DC-building-module based BIP system-concept and design considerations\u2019 IEEE Transaction, vol. 26, no. 5, pp. 1418\u20131429.\r\n[5] \tKulkarni S. R., Brunton S. L., Clarkson C. and Rowley C.W., (2010) \u2018Maximum power point tracking for photovoltaic optimization using ripple-based extremum seeking control\u2019 IEEE Transaction, vol. 25, no. 10, pp. 2531\u20132540.\r\n[6] \tPetrone G., Spagnuolo G., Vitelli M. and Femia N., (2005) \u2018Optimization of perturb an observe maximum power point tracking method\u2019 IEEE Transaction, vol. 20, no. 4, pp. 963\u2013973.\r\n[7] \tAbido M. A. and Hassan M. A., (2011) \u2018Optimal design of micro grids in autonomous and grid-connected modes using particle swarm optimization\u2019 IEEE Transaction, vol. 26, no. 3, pp. 765-770.\r\n[8] \tSaito T., Irisawa K., Sawada Y. and Takano I., (2000) \u2018Maximum power point tracking control of photovoltaic generation system under non uniform insolation by means of monitoring cells\u2019 Proceedings 28th IEEE Conference proceeding, pp. 1707\u20131710. \r\n[9] \tAgarwal V. and Jain S., (2007) \u2018A single-stage grid connected inverter topology for solar PV systems with maximum power point tracking\u2019 IEEE Transaction, vol. 22, no. 5, pp. 1928\u20131940.\r\n[10] \tKai S., Yan X., Lanlan F., Li Z. and Hongjuan G., (2011) \u2018A modular grid connected photovoltaic generation system based on DC bus\u2019 IEEE Transaction, vol. 26, no. 2, pp. 523\u2013531.\r\n[11] \tMasoum M. A., Fuchs E. F. and Dehbonei H., (2002) \u2018Theoretical and Experimental analyses of photovoltaic systems with voltage and current -based maximum power point tracking\u2019 IEEE Power Eng. Rev., vol. 22, no. 8, pp. 62\u201362.\r\n[12] \tNakamoto R., Togashi S. and Noguchi T., (2002) \u2018Short-current pulse-based maximum-power-point tracking method for multiple photovoltaic and converter module system\u2019 IEEE Transaction, vol. 49, no. 1, pp. 217\u2013223.\r\n[13] \tAgarwal V. and Patel H., (2008) \u2018Maximum power point tracking scheme for PV systems operating under partially shaded conditions\u2019 IEEE Transaction, vol. 55, no. 4, pp. 1689\u20131698.\r\n[14] \tMekhilef S. and Safari, (2011) \u2018Simulation and hardware implementation of incremental conductance MPPT with direct control method using cuk converter\u2019 IEEE Transaction, vol. 58, no. 4, pp. 1154\u20131161.\r\n[15] \tHantschel J., Teodorescu R., Knoll M. and Sera D., (2008) \u2018Optimized maximum power point tracker for fast-changing environmental conditions\u2019 IEEE Transaction, vol. 55, no. 7, pp. 2629\u20132637.\r\n[16] \tSerban H. and Serban E., (2010) \u2018A control advance for a distributed power production microgrid function with voltage and current-controlled source converter\u2019 IEEE Transaction, vol. 25, no. 12, pp. 2981\u20132992.\r\n[17] \tHo M. T., Chung H., Tse K. K., and Hui S. Y., (2002) \u2018A novel maximum power point tracker for PV panels using switching frequency modulation\u2019 IEEE Transaction, vol. 17, no. 6, pp. 980\u2013989.\r\n[18] \tUezato K., Veerachary M. and Senjyu T., (2002) \u2018Voltage-based maximum power point tracking control of PV system\u2019 IEEE Transaction, vol. 38, no. 1, pp. 262\u2013270.\r\n[19] \tDoo-Yong J., Tae-Won L. Jun-GuK., Young-Hyok J., Jae-Hyung K. and Chung-Yuen W., (2011) \u2018A real maximum power point tracking method for mismatching compensation in PV array under partially shaded conditions\u2019 IEEE Transaction, vol. 26, no. 4, pp. 1001\u20131009.\r\n[20] \tRavikumar. N., Santhana Krishnan, (2013) \u2018Design and execution of photovoltaic system with soft switched boost converter using analog fuzzy based MPPT\u2019 IOSR Journal, Vol 4, issue 4, pp. 48-54.","publisher":"World Academy of Science, Engineering and Technology","index":"Open Science Index 116, 2016"}