Search results for: water lubrication.
1830 Degradation of Amitriptyline Hydrochloride, Methyl Salicylate and 2-Phenoxyethanol in Water Systems by the Combination UV/Cl2
Authors: F. Javier Benitez, Francisco J. Real, Juan Luis Acero, Francisco Casas
Abstract:
Three emerging contaminants (amitriptyline hydrochloride, methyl salicylate and 2-phenoxyethanol) frequently found in waste-waters were selected to be individually degraded in ultra-pure water by the combined advanced oxidation process constituted by UV radiation and chlorine. The influence of pH, initial chlorine concentration and nature of the contaminants was firstly explored. The trend for the reactivity of the selected compounds was deduced: amitriptyline hydrochloride > methyl salicylate > 2-phenoxyethanol. A later kinetic study was carried out and focused on the specific evaluation of the first-order rate constants and the determination of the partial contribution to the global reaction of the direct photochemical pathway and the radical pathway. A comparison between the rate constant values among photochemical experiments without and with the presence of Cl2 reveals a clear increase in the oxidation efficiency of the combined process with respect to the photochemical reaction alone. In a second stage, the simultaneous oxidation of mixtures of the selected contaminants in several types of water (ultrapure water, surface water from a reservoir, and two secondary effluents) was also performed by the same combination UV/Cl2 under more realistic operating conditions. The efficiency of this combined system UV/Cl2 was compared to other oxidants such as the UV/S2O82- and UV/H2O2 AOPs. Results confirmed that the UV/Cl2 system provides higher elimination efficiencies among the AOPs tested.
Keywords: Emerging contaminants, amitriptyline, methyl salicylate, 2-phenoxyethanol, chlorination, photolysis, rate constants, UV/chlorine advanced oxidation process.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15541829 Development of Combined Cure Type for Rigid Pavement with Reactive Powder Concrete
Authors: Fatih Hattatoglu, Abdulrezzak Bakiş
Abstract:
In this study, fiberless reactive powder concrete (RPC) was produced with high pressure and flexural strength. C30/37 concrete was chosen as the control sample. In this study, 9 different cure types were applied to fiberless RPC. the most suitable combined cure type was selected according to the pressure and flexure strength. Pressure and flexural strength tests were applied to these samples after curing. As a result of the study, the combined cure type with the highest pressure resistance was obtained. The highest pressure resistance was achieved with consecutive standard water cure at 20 °C for 7 days – hot water cure at 90 °C for 2 days - drying oven cure at 180 °C for 2 days. As a result of the study, the highest pressure resistance of fiberless RPC was found as 123 MPa with water cure at 20 °C for 7 days - hot water cure at 90 °C for 2 days - drying oven cure at 180 °C for 2 days; and the highest flexural resistance was found as 8.37 MPa for the same combined cure type.
Keywords: Rigid pavement, reactive powder concrete, combined cure, pressure test, flexural test.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13971828 A Review of Test Protocols for Assessing Coating Performance of Water Ballast Tank Coatings
Authors: Emmanuel A. Oriaifo, Noel Perera, Alan Guy, Pak. S. Leung, Kian T. Tan
Abstract:
Concerns on corrosion and effective coating protection of double hull tankers and bulk carriers in service have been raised especially in water ballast tanks (WBTs). Test protocols/methodologies specifically that which is incorporated in the International Maritime Organisation (IMO), Performance Standard for Protective Coatings for Dedicated Sea Water ballast tanks (PSPC) are being used to assess and evaluate the performance of the coatings for type approval prior to their application in WBTs. However, some of the type approved coatings may be applied as very thick films to less than ideally prepared steel substrates in the WBT. As such films experience hygrothermal cycling from operating and environmental conditions, they become embrittled which may ultimately result in cracking. This embrittlement of the coatings is identified as an undesirable feature in the PSPC but is not mentioned in the test protocols within it. There is therefore renewed industrial research aimed at understanding this issue in order to eliminate cracking and achieve the intended coating lifespan of 15 years in good condition. This paper will critically review test protocols currently used for assessing and evaluating coating performance, particularly the IMO PSPC.
Keywords: Corrosion Test, Hygrothermal Cycling, Coating Test Protocols, Water Ballast Tanks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 42211827 Review of the Characteristics of Mahan Garden:One Type of Persian Gardens
Authors: Ladan Tajaddini
Abstract:
Iranians- imagination of heaven, which is the reward of a person-s good deeds during their life, has shown itself in pleasant and green gardens where earthly gardens were made as representations of paradise. Iranians are also quite interested in making their earthly gardens and plantations around their buildings. With Iran-s hot and dry climate with a lack of sufficient water for plantation coverage, it becomes noticeable how important it is to Iranians- art in making gardens. This study, with regard to examples, documents and library studies, investigates the characteristics of Persian gardens. The result shows that elements such as soil, water, plants and layout have been used in forming a unique style of Persian gardens. Bagh-e Shah Zadeh Mahan (Mahan prince garden) is a typical example and has been carefully studied. In this paper I try to investigate and evaluate the characteristics of a Persian garden by means of a descriptive approach.Keywords: environmental planning, Persian garden, landscape, shah zadeh garden, soil and water, gardening.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29391826 Comparison of Nutritional and Chemical Parameters of Soymilk and Cow milk
Authors: Bahareh Hajirostamloo
Abstract:
Cow milk, is a product of the mammary gland and soymilk is a beverage made from soybeans; it is the liquid that remains after soybeans are soaked. In this research effort, we compared nutritional parameters of this two kind milk such as total fat, fiber, protein, minerals (Ca, Fe and P), fatty acids, carbohydrate, lactose, water, total solids, ash, pH, acidity and calories content in one cup (245 g). Results showed soymilk contains 4.67 grams of fat, 0.52 of fatty acids, 3.18 of fiber, 6.73 of protein, 4.43 of carbohydrate, 0.00 of lactose, 228.51 of water, 10.40 of total solids and 0.66 of ash, also 9.80 milligrams of Ca, 1.42 of Fe, and 120.05 of P, 79 Kcal of calories, pH=6.74 and acidity was 0.24%. Cow milk contains 8.15 grams of fat, 5.07 of fatty acids, 0.00 of fiber, 8.02 of protein, 11.37 of carbohydrate, ´Çá4.27 of lactose, 214.69 of water, 12.90 of total solids, 1.75 of ash, 290.36 milligrams of Ca, 0.12 of Fe, and 226.92 of P, 150 Kcal of calories, pH=6.90 and acidity was 0.21% . Soy milk is one of plant-based complete proteins and cow milk is a rich source of nutrients as well. Cow milk is containing near twice as much fat as and ten times more fatty acids do soymilk. Cow milk contains greater amounts of mineral (except Fe) it contain more than three hundred times the amount of Ca and nearly twice the amount of P as does soymilk but soymilk contains more Fe (ten time more) than does cow milk. Cow milk and soy milk contain nearly identical amounts of protein and water and fiber is a big plus, dairy has none. Although what we choose to drink is really a mater of personal preference and our health objectives but looking at the comparison, soy looks like healthier choices.Keywords: Soymilk, cow milk, nutritional, comparison.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 73461825 Performance of Ground Clay Bricks as Partial Cement Replacement in Grade 30 Concrete
Authors: Kartini, K., Rohaidah, M.N., Zuraini, ZA.
Abstract:
Demolitions of buildings have created a lot of waste and one of it is clay bricks. The waste clay bricks were ground to roughly cement fineness and used to partially replaced cement at 10%, 20% and 30% with w/b ratio of 0.6 and tested at 7, 28, 60, 90 and 120 days. The result shows that the compressive strength of GCB concrete increases over age however, decreases as the level of replacements increases. It was also found that 10% replacement of GCB gave the highest compressive strength, however for optimum replacement, 30% was chosen as it still attained strength of grade 30 concrete. In terms of durability performances, results show that GCB replacement up to 30% was found to be efficient in reducing water absorption as well as water permeability. These studies show that GCB has the potential to be used as partial cement replacement in making concrete.Keywords: Compressive Strength, Ground Clay Bricks, Partial Cement Replacement, Water Absorption and Permeability
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31051824 Development of Groundwater Management Model Using Groundwater Sustainability Index
Authors: S. S. Rwanga, J. M. Ndambuki, Y. Woyessa
Abstract:
Development of a groundwater management model is an important step in the exploitation and management of any groundwater aquifer as it assists in the long-term sustainable planning of the resource. The current study was conducted in Central Limpopo province of South Africa with the overall objective of determining how much water can be withdrawn from the aquifer without producing nonreversible impacts on the groundwater quantity, hence developing a model which can sustainably protect the aquifer. The development was done through the computation of Groundwater Sustainability Index (GSI). Values of GSI close to unity and above indicated overexploitation. In this study, an index of 0.8 was considered as overexploitation. The results indicated that there is potential for higher abstraction rates compared to the current abstraction rates. GSI approach can be used in the management of groundwater aquifer to sustainably develop the resource and also provides water managers and policy makers with fundamental information on where future water developments can be carried out.
Keywords: Development, groundwater, groundwater sustainability index, model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8621823 Role of Organic Wastewater Constituents in Iron Redox Cycling for Ferric Sludge Reuse in the Fenton-Based Treatment
Authors: J. Bolobajev, M. Trapido, A. Goi
Abstract:
The practical application of the Fenton-based treatment method for organic compounds-contaminated water purification is limited mainly because of the large amount of ferric sludge formed during the treatment, where ferrous iron (Fe(II)) is used as the activator of the hydrogen peroxide oxidation processes. Reuse of ferric sludge collected from clarifiers to substitute Fe(II) salts allows reducing the total cost of Fenton-type treatment technologies and minimizing the accumulation of hazardous ferric waste. Dissolution of ferric iron (Fe(III)) from the sludge to liquid phase at acidic pH and autocatalytic transformation of Fe(III) to Fe(II) by phenolic compounds (tannic acid, lignin, phenol, catechol, pyrogallol and hydroquinone) added or present as water/wastewater constituents were found to be essentially involved in the Fenton-based oxidation mechanism. Observed enhanced formation of highly reactive species, hydroxyl radicals, resulted in a substantial organic contaminant degradation increase. Sludge reuse at acidic pH and in the presence of ferric iron reductants is a novel strategy in the Fenton-based treatment application for organic compounds-contaminated water purification.
Keywords: Ferric sludge reuse, ferric iron reductant, water treatment, organic pollutant.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16691822 Characterization and Geochemical Modeling of Cu and Zn Sorption Using Mixed Mineral Systems Injected with Iron Sulfide under Sulfidic-Anoxic Conditions I: Case Study of Cwmheidol Mine Waste Water, Wales, United Kingdom
Authors: D. E. Egirani, J. E. Andrews, A. R. Baker
Abstract:
This study investigates sorption of Cu and Zn contained in natural mine wastewater, using mixed mineral systems in sulfidic-anoxic condition. The mine wastewater was obtained from disused mine workings at Cwmheidol in Wales, United Kingdom. These contaminants flow into water courses. These water courses include River Rheidol. In this River fishing activities exist. In an attempt to reduce Cu-Zn levels of fish intake in the watercourses, single mineral systems and 1:1 mixed mineral systems of clay and goethite were tested with the mine waste water for copper and zinc removal at variable pH. Modelling of hydroxyl complexes was carried out using phreeqc method. Reactions using batch mode technique was conducted at room temperature. There was significant differences in the behaviour of copper and zinc removal using mixed mineral systems when compared to single mineral systems. All mixed mineral systems sorb more Cu than Zn when tested with mine wastewater.
Keywords: Cu- Zn, hydroxyl complexes, kinetics, mixed mineral systems, reactivity
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9251821 Impact of Combustion of Water in Fuel on Polycyclic Aromatic Hydrocarbon (Pah-s)Precursors- Formation
Authors: Abdulaziz H. El-Sinawi
Abstract:
Some of the polycyclic aromatic hydrocarbons (PAHs) are the strongest known carcinogens compounds; the majority of them are mostly produced by the incomplete combustion of fossil fuels; Motor vehicles are a significant source of polycyclic aromatic hydrocarbon (PAH) where diesel emission is one of the main sources of such compounds available in the ambient air. There is a big concern about the increasing concentration of PAHs in the environment. Researchers are trying to explore optimal methods to reduce those pollutants and improve the quality of air. Water blended fuel is one of the possible approaches to reduce emission of PAHs from the combustion of diesel in urban and domestic vehicles. In this work a modeling study was conducted using CHEMKIN-PRO software to simulate spray combustion at similar diesel engine conditions. Surrogate fuel of (80 % n-heptane and 20 % toluene) was used due to detailed kinetic and thermodynamic data needed for modeling is available for this kind of fuel but not available for diesel. An emulsified fuel with 3, 5, 8, 10 and 20 % water by volume is used as an engine feed for this study. The modeling results show that water has a significant effect on reducing engine soot and PAHs precursors formation up to certain extent.Keywords: Polycyclic Aromatic Hydrocarbons (PAHs), DieselEngine, Emission, Surrogate Fuel, Emulsified Fuel, Soot precursors, Combustion
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19931820 Oil-Water Two-Phase Flow Characteristics in Horizontal Pipeline – A Comprehensive CFD Study
Authors: Anand B. Desamala, Ashok Kumar Dasamahapatra, Tapas K. Mandal
Abstract:
In the present work, detailed analysis on flow characteristics of a pair of immiscible liquids through horizontal pipeline is simulated by using ANSYS FLUENT 6.2. Moderately viscous oil and water (viscosity ratio = 107, density ratio = 0.89 and interfacial tension = 0.024 N/m) have been taken as system fluids for the study. Volume of Fluid (VOF) method has been employed by assuming unsteady flow, immiscible liquid pair, constant liquid properties, and co-axial flow. Meshing has been done using GAMBIT. Quadrilateral mesh type has been chosen to account for the surface tension effect more accurately. From the grid independent study, we have selected 47037 number of mesh elements for the entire geometry. Simulation successfully predicts slug, stratified wavy, stratified mixed and annular flow, except dispersion of oil in water, and dispersion of water in oil. Simulation results are validated with horizontal literature data and good conformity is observed. Subsequently, we have simulated the hydrodynamics (viz., velocity profile, area average pressure across a cross section and volume fraction profile along the radius) of stratified wavy and annular flow at different phase velocities. The simulation results show that in the annular flow, total pressure of the mixture decreases with increase in oil velocity due to the fact that pipe cross section is completely wetted with water. Simulated oil volume fraction shows maximum at the centre in core annular flow, whereas, in stratified flow, maximum value appears at upper side of the pipeline. These results are in accord with the actual flow configuration. Our findings could be useful in designing pipeline for transportation of crude oil.
Keywords: CFD, Horizontal pipeline, Oil-water flow, VOF technique.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 57111819 Development of Composite Adsorbent for Waste Water Treatment Using Adsorption and Electrochemical Regeneration
Authors: H. M. A. Asghar, S. N. Hussain, E. P. L. Roberts, N. W. Brown, H. Sattar
Abstract:
A unique combination of adsorption and electrochemical regeneration with a proprietary adsorbent material called Nyex 100 was introduced at the University of Manchester for waste water treatment applications. Nyex 100 is based on graphite intercalation compound. It is non porous and electrically conducing adsorbent material. This material exhibited very small BET surface area i.e. 2.75 m2g-1, in consequence, small adsorptive capacities for the adsorption of various organic pollutants were obtained. This work aims to develop composite adsorbent material essentially capable of electrochemical regeneration coupled with improved adsorption characteristics. An organic dye, acid violet 17 was used as standard organic pollutant. The developed composite material was successfully electrochemically regenerated using a DC current of 1 A for 60 minutes. Regeneration efficiency was maintained at around 100% for five adsorption-regeneration cycles.Keywords: Adsorption, electrically conducting adsorbent material, electrochemical regeneration, waste water.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32161818 Identifying Karst Pattern to Prevent Bell Spring from Being Submerged in Daryan Dam Reservoir
Authors: H. Shafaattalab Dehghani, H. R. Zarei
Abstract:
The large karstic Bell spring with a discharge ranging between 250 and 5300 lit/ sec is one of the most important springs of Kermanshah Province. This spring supplies drinking water of Nodsheh City and its surrounding villages. The spring is located in the reservoir of Daryan Dam and its mouth would be submerged after impounding under a water column of about 110 m height. This paper has aimed to render an account of the karstification pattern around the spring under consideration with the intention of preventing Bell Spring from being submerged in Daryan Dam Reservoir. The studies comprise engineering geology and hydrogeology investigations. Some geotechnical activities included in these studies include geophysical studies, drilling, excavation of exploratory gallery and shaft and diving. The results depict that Bell is a single-conduit siphon spring with 4 m diameter and 85 m height that 32 m of the conduit is located below the spring outlet. To survive the spring, it was decided to plug the outlet and convey the water to upper elevations under the natural pressure of the aquifer. After plugging, water was successfully conveyed to elevation 837 meter above sea level (about 120 m from the outlet) under the natural pressure of the aquifer. This signifies the accuracy of the studies done and proper recognition of the karstification pattern of Bell Spring. This is a unique experience in karst problems in Iran.
Keywords: Bell spring, karst, Daryan Dam, submerged.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12191817 Reduction of Plutonium Production in Heavy Water Research Reactor: A Feasibility Study through Neutronic Analysis Using MCNPX2.6 and CINDER90 Codes
Authors: H. Shamoradifar, B. Teimuri, P. Parvaresh, S. Mohammadi
Abstract:
One of the main characteristics of Heavy Water Moderated Reactors is their high production of plutonium. This article demonstrates the possibility of reduction of plutonium and other actinides in Heavy Water Research Reactor. Among the many ways for reducing plutonium production in a heavy water reactor, in this research, changing the fuel from natural Uranium fuel to Thorium-Uranium mixed fuel was focused. The main fissile nucleus in Thorium-Uranium fuels is U-233 which would be produced after neutron absorption by Th-232, so the Thorium-Uranium fuels have some known advantages compared to the Uranium fuels. Due to this fact, four Thorium-Uranium fuels with different compositions ratios were chosen in our simulations; a) 10% UO2-90% THO2 (enriched= 20%); b) 15% UO2-85% THO2 (enriched= 10%); c) 30% UO2-70% THO2 (enriched= 5%); d) 35% UO2-65% THO2 (enriched= 3.7%). The natural Uranium Oxide (UO2) is considered as the reference fuel, in other words all of the calculated data are compared with the related data from Uranium fuel. Neutronic parameters were calculated and used as the comparison parameters. All calculations were performed by Monte Carol (MCNPX2.6) steady state reaction rate calculation linked to a deterministic depletion calculation (CINDER90). The obtained computational data showed that Thorium-Uranium fuels with four different fissile compositions ratios can satisfy the safety and operating requirements for Heavy Water Research Reactor. Furthermore, Thorium-Uranium fuels have a very good proliferation resistance and consume less fissile material than uranium fuels at the same reactor operation time. Using mixed Thorium-Uranium fuels reduced the long-lived α emitter, high radiotoxic wastes and the radio toxicity level of spent fuel.
Keywords: Burn-up, heavy water reactor, minor actinides, Monte Carlo, proliferation resistance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10051816 A Study on the Introduction of Wastewater Reuse Facility in Military Barracks by Cost-Benefit Analysis
Authors: D. G. Jung, J. B. Lim, J. H. Kim, J. J. Kim
Abstract:
The international society focuses on the environment protection and natural energy sources control for the global cooperation against weather change and sustainable growth. The study presents the overview of the water shortage status and the necessity of wastewater reuse facility in military facilities and for the possibility of the introduction, compares the economics by means of cost-benefit analysis. The military features such as the number of users of military barracks and the water use were surveyed by the design principles by facility types, the application method of wastewater reuse facility was selected, the feed water, its application and the volume of reuse volume were defined and the expectation was estimated, confirming the possibility of introducing a wastewater reuse possibility by means of cost-benefit analysis.Keywords: military barracks, wastewater reuse facility, cost-benefit analysis
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14491815 Simultaneous Treatment and Catalytic Gasification of Olive Mill Wastewater under Supercritical Conditions
Authors: Ekin Kıpçak, Sinan Kutluay, Mesut Akgün
Abstract:
Recently, a growing interest has emerged on the development of new and efficient energy sources, due to the inevitable extinction of the nonrenewable energy reserves. One of these alternative sources which has a great potential and sustainability to meet up the energy demand is biomass energy. This significant energy source can be utilized with various energy conversion technologies, one of which is biomass gasification in supercritical water. Water, being the most important solvent in nature, has very important characteristics as a reaction solvent under supercritical circumstances. At temperatures above its critical point (374.8oC and 22.1 MPa), water becomes more acidic and its diffusivity increases. Working with water at high temperatures increases the thermal reaction rate, which in consequence leads to a better dissolving of the organic matters and a fast reaction with oxygen. Hence, supercritical water offers a control mechanism depending on solubility, excellent transport properties based on its high diffusion ability and new reaction possibilities for hydrolysis or oxidation. In this study the gasification of a real biomass, namely olive mill wastewater (OMW), in supercritical water is investigated with the use of Pt/Al2O3 and Ni/Al2O3 catalysts. OMW is a by-product obtained during olive oil production, which has a complex nature characterized by a high content of organic compounds and polyphenols. These properties impose OMW a significant pollution potential, but at the same time, the high content of organics makes OMW a desirable biomass candidate for energy production. All of the catalytic gasification experiments were made with five different reaction temperatures (400, 450, 500, 550 and 600°C), under a constant pressure of 25 MPa. For the experiments conducted with Ni/Al2O3 catalyst, the effect of five reaction times (30, 60, 90, 120 and 150 s) was investigated. However, procuring that similar gasification efficiencies could be obtained at shorter times, the experiments were made by using different reaction times (10, 15, 20, 25 and 30 s) for the case of Pt/Al2O3 catalyst. Through these experiments, the effects of temperature, time and catalyst type on the gasification yields and treatment efficiencies were investigated.Keywords: Catalyst, Gasification, Olive mill wastewater, Supercritical water.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17471814 Effect of Temperature on the Water Retention Capacity of Liner Materials
Authors: Ahmed M. Al-Mahbashi, Mosleh A. Al-Shamrani, Muawia Dafalla
Abstract:
Mixtures of sand and clay are frequently used to serve for specific purposes in several engineering practices. In environmental engineering, liner layers and cover layers are common for controlling waste disposal facilities. These layers are exposed to moisture and temperature fluctuation specially when existing in unsaturated condition. The relationship between soil suction and water content for these materials is essential for understanding their unsaturated behavior and properties such as retention capacity and unsaturated follow (hydraulic conductivity). This study is aimed at investigating retention capacity for two sand-natural expansive clay mixtures (15% (C15) and 30% (C30) expansive clay) at two ambient temperatures within the range of 5 -50 °C. Soil water retention curves (SWRC) for these materials were determined at these two ambient temperatures using different salt solutions for a wide range of suction (up to 200MPa). The results indicate that retention capacity of C15 mixture underwent significant changes due to temperature variations. This effect tends to be less visible when the clay fraction is doubled (C30). In addition, the overall volume change is marginally affected by high temperature within the range considered in this study.
Keywords: Soil water retention curve, sand-expansive clay mixture, suction, temperature.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6401813 The Long-Term Leaching Behaviour of 137Cs, 60Co and 152Eu Radionuclides Incorporated in Mortar Matrices Made from Natural Aggregates and Recycled Aggregates
Authors: R. Deju, M. Mincu, D. Gurau
Abstract:
During the interim storage or final disposal of low level waste, migration/diffusion of radionuclides can occur when the waste comes in contact with water. The long-term leaching behaviour into surrounding fluid (demineralized water) of 137Cs, 60Co and 152Eu radionuclides, artificially incorporated in mortar matrices made from natural aggregates (river sand) and recycled radioactive concrete was studied. Results presented in this work are obtained in two years of mortar testing and will be used for the safety increasing in the storage of low level radioactive waste. The study involved the influence of curing time, type and size distribution of the aggregates on leaching behaviour. The mortar samples were immersed in distilled water for 30 days. The leached activity of the mortar samples was measured on samples from the immersing water and analyzed through a gamma-ray spectrometry method using an HPGe detector with a GESPECOR code for efficiency evaluation. The long-term leaching behaviour of the radionuclides was evaluated from the leaching data calculating the apparent diffusion coefficient.Keywords: Leaching behaviour, recycling of radioactive concrete, waste management, gamma-ray spectrometry.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11041812 The Extraction and Stripping of Hg (II) from Produced Water via Hollow Fiber Contactor
Authors: Dolapop Sribudda, Ura Pancharoen
Abstract:
The separation of Hg (II) from produced water by hollow fiber contactors (HFC) was investigation. This system included of two hollow fiber modules in the series connecting. The first module used for the extraction reaction and the second module for stripping reaction. Aliquat336 extractant was fed from the organic reservoirs into the shell side of the first hollow fiber module and continuous to the shell side of the second module. The organic liquid was continuously feed recirculate and back to the reservoirs. The feed solution was pumped into the lumen (tube side) of the first hollow fiber module. Simultaneously, the stripping solution was pumped in the same way in tube side of the second module. The feed and stripping solution was fed which had a countercurrent flow. Samples were kept in the outlet of feed and stripping solution at 1 hour and characterized concentration of Hg (II) by Inductively Couple Plasma Atomic Emission Spectroscopy (ICP-AES). Feed solution was produced water from natural gulf of Thailand. The extractant was Aliquat336 dissolved in kerosene diluent. Stripping solution used was nitric acid (HNO3) and thiourea (NH2CSNH2). The effect of carrier concentration and type of stripping solution were investigated. Results showed that the best condition were 10 % (v/v) Aliquat336 and 1.0 M NH2CSNH2. At the optimum condition, the extraction and stripping of Hg (II) were 98% and 44.2%, respectively.Keywords: Hg (II), hollow fiber contactor, produced water, wastewater treatment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18231811 Natural Gas Dehydration Process Simulation and Optimization: A Case Study of Khurmala Field in Iraqi Kurdistan Region
Authors: R. Abdulrahman, I. Sebastine
Abstract:
Natural gas is the most popular fossil fuel in the current era and future as well. Natural gas is existed in underground reservoirs so it may contain many of non-hydrocarbon components for instance, hydrogen sulfide, nitrogen and water vapor. These impurities are undesirable compounds and cause several technical problems for example, corrosion and environment pollution. Therefore, these impurities should be reduce or removed from natural gas stream. Khurmala dome is located in southwest Erbil-Kurdistan region. The Kurdistan region government has paid great attention for this dome to provide the fuel for Kurdistan region. However, the Khurmala associated natural gas is currently flaring at the field. Moreover, nowadays there is a plan to recover and trade this gas and to use it either as feedstock to power station or to sell it in global market. However, the laboratory analysis has showed that the Khurmala sour gas has huge quantities of H2S about (5.3%) and CO2 about (4.4%). Indeed, Khurmala gas sweetening process has been removed in previous study by using Aspen HYSYS. However, Khurmala sweet gas still contents some quintets of water about 23 ppm in sweet gas stream. This amount of water should be removed or reduced. Indeed, water content in natural gas cause several technical problems such as hydrates and corrosion. Therefore, this study aims to simulate the prospective Khurmala gas dehydration process by using Aspen HYSYS V. 7.3 program. Moreover, the simulation process succeeded in reducing the water content to less than 0.1ppm. In addition, the simulation work is also achieved process optimization by using several desiccant types for example, TEG and DEG and it also study the relationship between absorbents type and its circulation rate with HCs losses from glycol regenerator tower.Keywords: Aspen Hysys, Process simulation, gas dehydration, process optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 89701810 Unsteady Flow and Heat Transfer of Nanofluid from Circular Tube in Cross-Flow
Authors: H. Bayat, M. Majidi, M. Bolhasani, A. Karbalaie Alilou, A. Mirabdolah Lavasani
Abstract:
Unsteady flow and heat transfer from a circular cylinder in cross-flow is studied numerically. The governing equations are solved by using finite volume method. Reynolds number varies in range of 50 to 200; in this range flow is considered to be laminar and unsteady. Al2O3 nanoparticle with volume fraction in range of 5% to 20% is added to pure water. Effects of adding nanoparticle to pure water on lift and drag coefficient and Nusselt number is presented. Addition of Al2O3 has inconsiderable effect on the value of drags and lift coefficient. However, it has significant effect on heat transfer; results show that heat transfer of Al2O3 nanofluid is about 9% to 36% higher than pure water.
Keywords: Nanofluid, heat transfer, unsteady flow, forced convection, cross-flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25221809 Assessment of Wastewater Reuse Potential for an Enamel Coating Industry
Authors: Guclu Insel, Efe Gumuslu, Gulten Yuksek, Nilay Sayi Ucar, Emine Ubay Cokgor, Tugba Olmez Hanci, Didem Okutman Tas, Fatos Germirli Babuna, Derya Firat Ertem, Okmen Yildirim, Ozge Erturan, Betul Kirci
Abstract:
In order to eliminate water scarcity problems, effective precautions must be taken. Growing competition for water is increasingly forcing facilities to tackle their own water scarcity problems. At this point, application of wastewater reclamation and reuse results in considerable economic advantageous. In this study, an enamel coating facility, which is one of the high water consumed facilities, is evaluated in terms of its wastewater reuse potential. Wastewater reclamation and reuse can be defined as one of the best available techniques for this sector. Hence, process and pollution profiles together with detailed characterization of segregated wastewater sources are appraised in a way to find out the recoverable effluent streams arising from enamel coating operations. Daily, 170 m3 of process water is required and 160 m3 of wastewater is generated. The segregated streams generated by two enamel coating processes are characterized in terms of conventional parameters. Relatively clean segregated wastewater streams (reusable wastewaters) are separately collected and experimental treatability studies are conducted on it. The results reflected that the reusable wastewater fraction has an approximate amount of 110 m3/day that accounts for 68% of the total wastewaters. The need for treatment applicable on reusable wastewaters is determined by considering water quality requirements of various operations and characterization of reusable wastewater streams. Ultra-filtration (UF), Nano-filtration (NF) and Reverse Osmosis (RO) membranes are subsequently applied on reusable effluent fraction. Adequate organic matter removal is not obtained with the mentioned treatment sequence.Keywords: enamel coating, membrane, reuse, wastewater
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14901808 Stress Analysis of Water Wall Tubes of a Coal-fired Boiler during Soot Blowing Operation
Authors: Pratch Kittipongpattana, Thongchai Fongsamootr
Abstract:
This research aimed to study the influences of a soot blowing operation and geometrical variables to the stress characteristic of water wall tubes located in soot blowing areas which caused the boilers of Mae Moh power plant to lose their generation hour. The research method is divided into 2 parts (a) measuring the strain on water wall tubes by using 3-element rosette strain gages orientation during a full capacity plant operation and in periods of soot blowing operations (b) creating a finite element model in order to calculate stresses on tubes and validating the model by using experimental data in a steady state plant operation. Then, the geometrical variables in the model were changed to study stresses on the tubes. The results revealed that the stress was not affected by the soot blowing process and the finite element model gave the results 1.24% errors from the experiment. The geometrical variables influenced the stress, with the most optimum tubes design in this research reduced the average stress from the present design 31.28%.
Keywords: Boiler water wall tube, Finite element, Stress analysis, Strain gage rosette.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18431807 Urban Areas Management in Developing Countries: Analysis of the Urban Areas Crossed with Risk of Storm Water Drains, Aswan-Egypt
Authors: Omar Hamdy, Schichen Zhao, Hussein Abd El-Atty, Ayman Ragab, Muhammad Salem
Abstract:
One of the most risky areas in Aswan is Abouelreesh, which is suffering from flood disasters, as heavy deluge inundates urban areas causing considerable damage to buildings and infrastructure. Moreover, the main problem was the urban sprawl towards this risky area. This paper aims to identify the urban areas located in the risk areas prone to flash floods. Analyzing this phenomenon needs a lot of data to ensure satisfactory results; however, in this case the official data and field data were limited, and therefore, free sources of satellite data were used. This paper used ArcGIS tools to obtain the storm water drains network by analyzing DEM files. Additionally, historical imagery in Google Earth was studied to determine the age of each building. The last step was to overlay the urban area layer and the storm water drains layer to identify the vulnerable areas. The results of this study would be helpful to urban planners and government officials to make the disasters risk estimation and develop primary plans to recover the risky area, especially urban areas located in torrents.
Keywords: Risk area, DEM, storm water drains, GIS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9211806 Chromium-Leaching Study of Cements in Various Environments
Authors: Adriana Estokova, Lenka Palascakova, Martina Kovalcikova
Abstract:
Cement is a basic material used for building construction. Chromium as an indelible non-volatile trace element of raw materials occurs in cement clinker in the trivalent or hexavalent form. Hexavalent form of chromium is harmful and allergenic having very high water solubility and thus can easily come into contact with the human skin. The paper is aimed at analyzing the content of total chromium in Portland cements and leaching rate of hexavalent chromium in various leachants: Deionized water, Britton-Robinson buffer, used to simulate the natural environment, and hydrochloric acid (HCl). The concentration of total chromium in Portland cement samples was in a range from 173.2 to 218.5 mg/kg. The content of dissolved hexavalent chromium ranged 0.23-3.19, 2.0-5.78 and 8.88-16.25 mg/kg in deionized water, Britton-Robinson solution and hydrochloric acid, respectively. The calculated leachable fraction of Cr(VI) from cement samples was observed in the range 0.1--7.58 %.
Keywords: Cement, hexavalent chromium, leaching, total chromium.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13391805 Porous Ni and Ni-Co Electrodeposits for Alkaline Water Electrolysis – Energy Saving
Authors: I. Herraiz-Cardona, C. González-Buch, E. Ortega, V. Pérez-Herranz, J. García-Antón
Abstract:
Hydrogen is considered to be the most promising candidate as a future energy carrier. One of the most used technologies for the electrolytic hydrogen production is alkaline water electrolysis. However, due to the high energy requirements, the cost of hydrogen produced in such a way is high. In continuous search to improve this process using advanced electrocatalytic materials for the hydrogen evolution reaction (HER), Ni type Raney and macro-porous Ni-Co electrodes were prepared on AISI 304 stainless steel substrates by electrodeposition. The developed electrodes were characterized by SEM and confocal laser scanning microscopy. HER on these electrodes was evaluated in 30 wt.% KOH solution by means of hydrogen discharge curves and galvanostatic tests. Results show that the developed electrodes present a most efficient behaviour for HER when comparing with the smooth Ni cathode. It has been reported a reduction in the energy consumption of the electrolysis cell of about 25% by using the developed coatings as cathodes.Keywords: Alkaline water electrolysis, energy efficiency, porous nickel electrodes
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32411804 Identification of PIP Aquaporin Genes from Wheat
Authors: Sh. A. Yousif, M. Bhave
Abstract:
There is strong evidence that water channel proteins 'aquaporins (AQPs)' are central components in plant-water relations as well as a number of other physiological parameters. We had previously reported the isolation of 24 plasma membrane intrinsic protein (PIP) type AQPs. However, the gene numbers in rice and the polyploid nature of bread wheat indicated a high probability of further genes in the latter. The present work focused on identification of further AQP isoforms in bread wheat. With the use of altered primer design, we identified five genes homologous, designated PIP1;5b, PIP2;9b, TaPIP2;2, TaPIP2;2a, TaPIP2;2b. Sequence alignments indicate PIP1;5b, PIP2;9b are likely to be homeologues of two previously reported genes while the other three are new genes and could be homeologs of each other. The results indicate further AQP diversity in wheat and the sequence data will enable physical mapping of these genes to identify their genomes as well as genetic to determine their association with any quantitative trait loci (QTLs) associated with plant-water relation such as salinity or drought tolerance.Keywords: Aquaporins, homeologues, PIP, wheat
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20361803 The Heat and Mass Transfer Phenomena in Vacuum Membrane Distillation for Desalination
Authors: Bhausaheb L. Pangarkar, M. G. Sane, Saroj B. Parjane, Rajendra M. Abhang, Mahendra Guddad
Abstract:
Vacuum membrane distillation (VMD) process can be used for water purification or the desalination of salt water. The process simply consists of a flat sheet hydrophobic micro porous PTFE membrane and diaphragm vacuum pump without a condenser for the water recovery or trap. The feed was used aqueous NaCl solution. The VMD experiments were performed to evaluate the heat and mass transfer coefficient of the boundary layer in a membrane module. The only operating parameters are feed inlet temperature, and feed flow rate were investigated. The permeate flux was strongly affected by the feed inlet temperature, feed flow rate, and boundary layer heat transfer coefficient. Since lowering the temperature polarization coefficient is essential enhance the process performance considerable and maximizing the heat transfer coefficient for maximizes the mass flux of distillate water. In this paper, the results of VMD experiments are used to measure the boundary layer heat transfer coefficient, and the experimental results are used to reevaluate the empirical constants in the Dittus- Boelter equation.Keywords: Desalination, heat and mass transfer coefficient, temperature polarization, membrane distillation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25741802 The Ethics of Instream Flows: Science and Policy in Southern Alberta, Canada
Authors: Jeremy J. Schmidt
Abstract:
Securing instream flows for aquatic ecosystems is critical for sustainable water management and the promotion of human and environmental health. Using a case study from the semiarid region of southern Alberta (Canada) this paper considers how the determination of instream flow standards requires judgments with respect to: (1) The relationship between instream flow indicators and assessments of overall environmental health; (2) The indicators used to determine adequate instream flows, and; (3) The assumptions underlying efforts to model instream flows given data constraints. It argues that judgments in each of these areas have an inherently ethical component because instream flows have direct effects on the water(s) available to meet obligations to humans and non-humans. The conclusion expands from the case study to generic issues regarding instream flows, the growing water ethics literature and prospects for linking science to policy.Keywords: ethics, instream flows, policy, science, watermanagement
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15421801 Comparison of Different Solvents and Extraction Methods for Isolation of Phenolic Compounds from Horseradish Roots (Armoracia rusticana)
Authors: Lolita Tomsone, Zanda Kruma, Ruta Galoburda
Abstract:
Horseradish (Armoracia rusticana) is a perennial herb belonging to the Brassicaceae family and contains biologically active substances. The aim of the current research was to determine best method for extraction of phenolic compounds from horseradish roots showing high antiradical activity. Three genotypes (No. 105; No. 106 and variety ‘Turku’) of horseradish roots were extracted with eight different solvents: n-hexane, ethyl acetate, diethyl ether, 2-propanol, acetone, ethanol (95%), ethanol / water / acetic acid (80/20/1 v/v/v) and ethanol / water (80/20 by volume) using two extraction methods (conventional and Soxhlet). As the best solvents ethanol and ethanol / water solutions can be chosen. Although in Soxhlet extracts TPC was higher, scavenging activity of DPPH˙ radicals did not increase. It can be concluded that using Soxhlet extraction method more compounds that are not effective antioxidants.
Keywords: DPPH˙, extraction, solvent, Soxhlet, TPC
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14497