Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 46

Search results for: reactivity

46 Investigation of the GFR2400 Reactivity Control System

Authors: Ján Haščík, Štefan Čerba, Jakub Lüley, Branislav Vrban

Abstract:

The presented paper is related to the design methods and neutronic characterization of the reactivity control system in the large power unit of Generation IV Gas cooled Fast Reactor – GFR2400. The reactor core is based on carbide pin fuel type with the application of refractory metallic liners used to enhance the fission product retention of the SiCcladding. The heterogeneous design optimization of control rod is presented and the results of rods worth and their interferences in a core are evaluated. In addition, the idea of reflector removal as an additive reactivity management option is investigated and briefly described.

Keywords: Control rods design, GFR2400, hot spot, movable reflector, reactivity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1596
45 Neutronic Study of Two Reactor Cores Cooled with Light and Heavy Water Using Computation Method

Authors: Z. Gholamzadeh, A. Zali, S. A. H. Feghhi, C. Tenreiro, Y. Kadi, M. Rezazadeh, M. Aref

Abstract:

Most HWRs currently use natural uranium fuel. Using enriched uranium fuel results in a significant improvement in fuel cycle costs and uranium utilization. On the other hand, reactivity changes of HWRs over the full range of operating conditions from cold shutdown to full power are small. This reduces the required reactivity worth of control devices and minimizes local flux distribution perturbations, minimizing potential problems due to transient local overheating of fuel. Analyzing heavy water effectiveness on neutronic parameters such as enrichment requirements, peaking factor and reactivity is important and should pay attention as primary concepts of a HWR core designing. Two nuclear nuclear reactors of CANDU-type and hexagonal-type reactor cores of 33 fuel assemblies and 19 assemblies in 1.04 P/D have been respectively simulated using MCNP-4C code. Using heavy water and light water as moderator have been compared for achieving less reactivity insertion and enrichment requirements. Two fuel matrixes of (232Th/235U)O2 and (238/235U)O2 have been compared to achieve more economical and safe design. Heavy water not only decreased enrichment needs, but it concluded in negative reactivity insertions during moderator density variations. Thorium oxide fuel assemblies of 2.3% enrichment loaded into the core of heavy water moderator resulted in 0.751 fission to absorption ratio and peaking factor of 1.7 using. Heavy water not only provides negative reactivity insertion during temperature raises which changes moderator density but concluded in 2 to 10 kg reduction of enrichment requirements, depend on geometry type.

Keywords: MCNP-4C, Reactor core, Multiplication factor, Reactivity, Peaking factor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1615
44 Effect of Substituent on Titanocene/MMAO Catalyst for Ethylene/1-Hexene Copolymerization

Authors: M. Wannaborworn, B. Jongsomjit, T. Shiono

Abstract:

Copolymerization of ethylene with 1-hexene was carried out using two ansa-fluorenyl titanium derivative complexes. The substituent effect on the catalytic activity, monomer reactivity ratio and polymer property was investigated. It was found that the presence of t-Bu groups on fluorenyl ring exhibited remarkable catalytic activity and produced polymer with high molecular weight. However, these catalysts produce polymer with narrow molecular weight distribution, indicating the characteristic of single-site metallocene catalyst. Based on 13C NMR, we can observe that monomer reactivity ratio was affected by catalyst structure. The rH values of complex 2 were lower than that of complex 1 which might be result from the higher steric hindrance leading to a reduction of 1- hexene insertion step.

Keywords: Constrained geometry catalyst, linear low density polyethylene, copolymerization, reactivity ratio

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1441
43 Antibody Reactivity of Synthetic Peptides Belonging to Proteins Encoded by Genes Located in Mycobacterium tuberculosis-Specific Genomic Regions of Differences

Authors: Abu Salim Mustafa

Abstract:

The comparisons of mycobacterial genomes have identified several Mycobacterium tuberculosis-specific genomic regions that are absent in other mycobacteria and are known as regions of differences. Due to M. tuberculosis-specificity, the peptides encoded by these regions could be useful in the specific diagnosis of tuberculosis. To explore this possibility, overlapping synthetic peptides corresponding to 39 proteins predicted to be encoded by genes present in regions of differences were tested for antibody-reactivity with sera from tuberculosis patients and healthy subjects. The results identified four immunodominant peptides corresponding to four different proteins, with three of the peptides showing significantly stronger antibody reactivity and rate of positivity with sera from tuberculosis patients than healthy subjects. The fourth peptide was recognized equally well by the sera of tuberculosis patients as well as healthy subjects. Predication of antibody epitopes by bioinformatics analyses using ABCpred server predicted multiple linear epitopes in each peptide. Furthermore, peptide sequence analysis for sequence identity using BLAST suggested M. tuberculosis-specificity for the three peptides that had preferential reactivity with sera from tuberculosis patients, but the peptide with equal reactivity with sera of TB patients and healthy subjects showed significant identity with sequences present in nob-tuberculous mycobacteria. The three identified M. tuberculosis-specific immunodominant peptides may be useful in the serological diagnosis of tuberculosis.

Keywords: Genomic regions of differences, Mycobacterium tuberculosis, peptides, serodiagnosis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 626
42 Comparing Spontaneous Hydrolysis Rates of Activated Models of DNA and RNA

Authors: Mohamed S. Sasi, Adel M. Mlitan, Abdulfattah M. Alkherraz

Abstract:

This research project aims to investigate difference in relative rates concerning phosphoryl transfer relevant to biological catalysis of DNA and RNA in the pH-independent reactions. Activated Models of DNA and RNA for alkyl-aryl phosphate diesters (with 4-nitrophenyl as a good leaving group) have successfully been prepared to gather kinetic parameters. Eyring plots for the pH– independent hydrolysis of 1 and 2 were established at different temperatures in the range 100–160 °C. These measurements have been used to provide a better estimate for the difference in relative rates between the reactivity of DNA and RNA cleavage. Eyring plot gave an extrapolated rate of kH2O = 1 × 10-10 s -1 for 1 (RNA model) and 2 (DNA model) at 25°C. Comparing the reactivity of RNA model and DNA model shows that the difference in relative rates in the pH-independent reactions is surprisingly very similar at 25°. This allows us to obtain chemical insights into how biological catalysts such as enzymes may have evolved to perform their current functions.

Keywords: DNA & RNA Models, Relative Rates, Reactivity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2197
41 Potential Use of Local Materials as Synthesizing One Part Geopolymer Cement

Authors: Areej Almalkawi, Sameer Hamadna, Parviz Soroushian, Nalin Darsana

Abstract:

The work on indigenous binders in this paper focused on the following indigenous raw materials: red clay, red lava and pumice (as primary aluminosilicate precursors), wood ash and gypsum (as supplementary minerals), and sodium sulfate and lime (as alkali activators). The experimental methods used for evaluation of these indigenous raw materials included laser granulometry, x-ray fluorescence (XRF) spectroscopy, and chemical reactivity. Formulations were devised for transforming these raw materials into alkali aluminosilicate-based hydraulic cements. These formulations were processed into hydraulic cements via simple heating and milling actions to render thermal activation, mechanochemical and size reduction effects. The resulting hydraulic cements were subjected to laser granulometry, heat of hydration and reactivity tests. These cements were also used to prepare mortar mixtures, which were evaluated via performance of compressive strength tests. The measured values of strength were correlated with the reactivity, size distribution and microstructural features of raw materials. Some of the indigenous hydraulic cements produced in this reporting period yielded viable levels of compressive strength. The correlation trends established in this work are being evaluated for development of simple and thorough methods of qualifying indigenous raw materials for use in production of indigenous hydraulic cements.

Keywords: One-part geopolymer cement, aluminosilicate precursors, thermal activation, mechanochemical.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 405
40 The Effect of Saturates on Rheological and Aging Characteristics of Bitumen

Authors: Madi Hermadi, Kemas A. Zamhari, Ahmad T. bin A. Karim, Mohd. E. Abdullah, Ling Lloyd L.

Abstract:

According to Rostler method (ASTM D 2006), saturates content of bitumen is determined based on its reactivity to sulphuric acid. While Corbett method (ASTM D 4124) based on its polarity level. This paper presents results from the study on the effect of saturates content determined by two different fractionation methods on the rheological and aging characteristics of bitumen. The result indicated that the increment of saturates content tended to reduce all the rheological characteristics concerned. Bitumen became less elastic, less viscous, and less resistant to plastic deformation, but became more resistant to fatigue cracking. After short and long term aging process, the treatment effect coefficients of saturates decreased, saturates became thicker due to aging process. This study concludes that saturates is not really stable or reactive in aging process. Therefore, the reactivity of saturates should be considered in bitumen aging index

Keywords: Aging index, bitumen, saturates, rheolgy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2159
39 Nuclear Fuel Safety Threshold Determined by Logistic Regression Plus Uncertainty

Authors: D. S. Gomes, A. T. Silva

Abstract:

Analysis of the uncertainty quantification related to nuclear safety margins applied to the nuclear reactor is an important concept to prevent future radioactive accidents. The nuclear fuel performance code may involve the tolerance level determined by traditional deterministic models producing acceptable results at burn cycles under 62 GWd/MTU. The behavior of nuclear fuel can simulate applying a series of material properties under irradiation and physics models to calculate the safety limits. In this study, theoretical predictions of nuclear fuel failure under transient conditions investigate extended radiation cycles at 75 GWd/MTU, considering the behavior of fuel rods in light-water reactors under reactivity accident conditions. The fuel pellet can melt due to the quick increase of reactivity during a transient. Large power excursions in the reactor are the subject of interest bringing to a treatment that is known as the Fuchs-Hansen model. The point kinetic neutron equations show similar characteristics of non-linear differential equations. In this investigation, the multivariate logistic regression is employed to a probabilistic forecast of fuel failure. A comparison of computational simulation and experimental results was acceptable. The experiments carried out use the pre-irradiated fuels rods subjected to a rapid energy pulse which exhibits the same behavior during a nuclear accident. The propagation of uncertainty utilizes the Wilk's formulation. The variables chosen as essential to failure prediction were the fuel burnup, the applied peak power, the pulse width, the oxidation layer thickness, and the cladding type.

Keywords: Logistic regression, reactivity-initiated accident, safety margins, uncertainty propagation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 769
38 Comparison of Physical and Chemical Properties of Micro-Silica and Locally Produced Metakaolin and Effect on the Properties of Concrete

Authors: S. U. Khan, T. Ayub, N. Shafiq

Abstract:

The properties of locally produced metakaolin (MK) as cement replacing material and the comparison of reactivity with commercially available micro-silica have been investigated. Compressive strength, splitting tensile strength, and load-deflection behaviour under bending are the properties that have been studied. The amorphous phase of MK with micro-silica was compared through X-ray diffraction (XRD) pattern. Further, interfacial transition zone of concrete with micro-silica and MK was observed through Field Emission Scanning Electron Microscopy (FESEM). Three mixes of concrete were prepared. One of the mix is without cement replacement as control mix, and the remaining two mixes are 10% cement replacement with micro-silica and MK. It has been found that MK, due to its irregular structure and amorphous phase, has high reactivity with portlandite in concrete. The compressive strength at early age is higher with MK as compared to micro-silica. MK concrete showed higher splitting tensile strength and higher load carrying capacity as compared to control and micro-silica concrete at all ages respectively.

Keywords: Metakaolin, compressive strength, splitting tensile strength, load deflection, interfacial transition zone.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 990
37 An Evaluation of the Feasibility of Several Industrial Wastes and Natural Materials as Precursors for the Production of Alkali Activated Materials

Authors: O. Alelweet, S. Pavia

Abstract:

In order to face current compelling environmental problems affecting the planet, the construction industry needs to adapt. It is widely acknowledged that there is a need for durable, high-performance, low-greenhouse gas emission binders that can be used as an alternative to Portland cement (PC) to lower the environmental impact of construction. Alkali activated materials (AAMs) are considered a more sustainable alternative to PC materials. The binders of AAMs result from the reaction of an alkali metal source and a silicate powder or precursor which can be a calcium silicate or an aluminosilicate-rich material. This paper evaluates the particle size, specific surface area, chemical and mineral composition and amorphousness of silicate materials (most industrial waste locally produced in Ireland and Saudi Arabia) to develop alkali-activated binders that can replace PC resources in specific applications. These include recycled ceramic brick, bauxite, illitic clay, fly ash and metallurgical slag. According to the results, the wastes are reactive and comply with building standards requirements. The study also evidenced that the reactivity of the Saudi bauxite (with significant kaolinite) can be enhanced on thermal activation; and high calcium in the slag will promote reaction; which should be possible with low alkalinity activators. The wastes evidenced variable water demands that will be taken into account for mixing with the activators. Finally, further research is proposed to further determine the reactive fraction of the clay-based precursors.

Keywords: Reactivity, water demand, alkali-activated materials, brick, bauxite, illitic clay, fly ash, slag.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 413
36 ELISA Based hTSH Assessment Using Two Sensitive and Specific Anti-hTSH Polyclonal Antibodies

Authors: Maysam Mard-Soltani, Mohamad Javad Rasaee, Saeed Khalili, Abdol Karim Sheikhi, Mehdi Hedayati

Abstract:

Production of specific antibody responses against hTSH is a cumbersome process due to the high identity between the hTSH and the other members of the glycoprotein hormone family (FSH, LH and HCG) and the high identity between the human hTSH and host animals for antibody production. Therefore, two polyclonal antibodies were purified against two recombinant proteins. Four possible ELISA tests were designed based on these antibodies. These ELISA tests were checked against hTSH and other glycoprotein hormones, and their sensitivity and specificity were assessed. Bioinformatics tools were used to analyze the immunological properties. After the immunogen region selection from hTSH protein, c terminal of B hTSH was selected and applied. Two recombinant genes, with these cut pieces (first: two repeats of C terminal of B hTSH, second: tetanous toxin+B hTSH C terminal), were designed and sub-cloned into the pET32a expression vector. Standard methods were used for protein expression, purification, and verification. Thereafter, immunizations of the white New Zealand rabbits were performed and the serums of them were used for antibody titration, purification and characterization. Then, four ELISA tests based on two antibodies were employed to assess the hTSH and other glycoprotein hormones. The results of these assessments were compared with standard amounts. The obtained results indicated that the desired antigens were successfully designed, sub-cloned, expressed, confirmed and used for in vivo immunization. The raised antibodies were capable of specific and sensitive hTSH detection, while the cross reactivity with the other members of the glycoprotein hormone family was minimum. Among the four designed tests, the test in which the antibody against first protein was used as capture antibody, and the antibody against second protein was used as detector antibody did not show any hook effect up to 50 miu/l. Both proteins have the ability to induce highly sensitive and specific antibody responses against the hTSH. One of the antibody combinations of these antibodies has the highest sensitivity and specificity in hTSH detection.

Keywords: hTSH, bioinformatics, protein expression, cross reactivity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 824
35 Formation of Volatile Iodine from Cesium Iodide Aerosols: A DFT Study

Authors: Houssam Hijazi, Laurent Cantrel, Jean-François Paul

Abstract:

Periodic DFT calculations were performed to study the chemistry of CsI particles and the possible release of volatile iodine from CsI surfaces for nuclear safety interest. The results show that water adsorbs at low temperature associatively on the (011) surface of CsI, while water desorbs at higher temperatures. On the other hand, removing iodine species from the surface requires oxidizing the surface one time for each removed iodide atom. The activation energy of removing I2 from the surface in the presence of two OH is 1,2 eV.

Keywords: Aerosols, CsI, reactivity, DFT, water adsorption.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 827
34 Relationship of Reaction Temperature on Phosphate Oligomers Reactivity to Properties of Soy-Polyurethane

Authors: Flora Elvistia Firdaus

Abstract:

Polyurethane foam (PUF) were prepared by reacting polyols synthesized from soy-oil into mixture of 2,4- Toluene diisocyanate (TDI) with 4,4--Methylene Diamine Isocyanate (MDI) with ratio of 70:30. The polyols obtained via esterification reaction were categorize into different temperature of reaction and by used of varied concentration of phosphoric acid catalyst. The purpose of catalysts is to shifting selectivity to a desired and value added of product. The effect of stoichiometric balance (molar ratio of epoxide/ethylene glycol) to the concentration of the catalyst on the final properties was evaluated.

Keywords: temperature, phosphate, soy polyurethane

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1869
33 Chemical Characterization of Submicron Aerosol in Kanpur Region: a Source Apportionment Study

Authors: A. Chakraborty, T. Gupta

Abstract:

Several studies have shown the association between ambient particulate matter (PM) and adverse health effects and climate change, thus highlighting the need to limit the anthropogenic sources of PM. PM Exposure is commonly monitored as mass concentration of PM10 (particle aerodynamic diameter < 10μm) or PM2.5 (particle aerodynamic diameter < 2.5μm), although increasing toxicity with decreasing aerodynamic diameter has been reported due to increased surface area and enhanced chemical reactivity with other species. Additionally, the light scattering properties of PM increases with decreasing size. Hence, it is important to study the chemical characterization of finer fraction of the particulate matter and to identify their sources so that they can be controlled appropriately to a large extent at the sources before reaching to the receptors.

Keywords: PM1, PCA, source apportionment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1434
32 Properties of Cement Pastes with Different Particle Size Fractions of Metakaolin

Authors: M. Boháč, R. Novotný, F. Frajkorová, R. S. Yadav, T. Opravil, M. Palou

Abstract:

Properties of Portland cement mixtures with various fractions of metakaolin were studied. 10% of Portland cement CEM I 42.5 R was replaced by different fractions of high reactivity metakaolin with defined chemical and mineralogical properties. Various fractions of metakaolin were prepared by jet mill classifying system. There is a clear trend between fineness of metakaolin and hydration heat development. Due to metakaolin presence in mixtures the compressive strength development of mortars is rather slower for coarser fractions but 28-day flexural strengths are improved for all fractions of metakaoline used in mixtures compared to reference sample of pure Portland cement. Yield point, plastic viscosity and adhesion of fresh pastes are considerably influenced by fineness of metakaolin used in cement pastes.

Keywords: Calorimetry, cement, metakaolin fineness, rheology, strength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2497
31 Investigation of the Synthesis of Alcohols Byproducts in Fischer-Tropsch Synthesis on Modified Fe-Cu Catalyst: Reactivity and Mechanism

Authors: Wanyu Mao, Qiwen Sun, Weiyong Ying, Dingye Fang

Abstract:

The influence of copper promoters and reaction conditions on the formation of alcohols byproducts of a common Fischer-Tropsch synthesis used iron-based catalysts were investigated. A good compromise of 28%Cu/FeKLaSiO2 can lead to the optimization of an improved Fischer-Tropsch catalyst. The product distribution shifts towards hydrocarbons with increasing the reaction temperature, while pressure promotes the formation of alcohols. It was found that the production of either alcohols or hydrocarbons followed A-S-F distributions, and their α parameters were essentially different which indicated a competition in the growing chain between the two species. TPD after acetaldehyde adsorption gave strong evidence of the insertion of a C1 oxygen-containing species into an alkyl chain.

Keywords: Fischer-Tropsch synthesis, Fe-Cu catalyst, alcohols byproducts, reaction pathways

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1426
30 Utilizing Fly Ash Cenosphere and Aerogel for Lightweight Thermal Insulating Cement-Based Composites

Authors: Asad Hanif, Pavithra Parthasarathy, Zongjin Li

Abstract:

Thermal insulating composites help to reduce the total power consumption in a building by creating a barrier between external and internal environment. Such composites can be used in the roofing tiles or wall panels for exterior surfaces. This study purposes to develop lightweight cement-based composites for thermal insulating applications. Waste materials like silica fume (an industrial by-product) and fly ash cenosphere (FAC) (hollow micro-spherical shells obtained as a waste residue from coal fired power plants) were used as partial replacement of cement and lightweight filler, respectively. Moreover, aerogel, a nano-porous material made of silica, was also used in different dosages for improved thermal insulating behavior, while poly vinyl alcohol (PVA) fibers were added for enhanced toughness. The raw materials including binders and fillers were characterized by X-Ray Diffraction (XRD), X-Ray Fluorescence spectroscopy (XRF), and Brunauer–Emmett–Teller (BET) analysis techniques in which various physical and chemical properties of the raw materials were evaluated like specific surface area, chemical composition (oxide form), and pore size distribution (if any). Ultra-lightweight cementitious composites were developed by varying the amounts of FAC and aerogel with 28-day unit weight ranging from 1551.28 kg/m3 to 1027.85 kg/m3. Excellent mechanical and thermal insulating properties of the resulting composites were obtained ranging from 53.62 MPa to 8.66 MPa compressive strength, 9.77 MPa to 3.98 MPa flexural strength, and 0.3025 W/m-K to 0.2009 W/m-K as thermal conductivity coefficient (QTM-500). The composites were also tested for peak temperature difference between outer and inner surfaces when subjected to heating (in a specially designed experimental set-up) by a 275W infrared lamp. The temperature difference up to 16.78 oC was achieved, which indicated outstanding properties of the developed composites to act as a thermal barrier for building envelopes. Microstructural studies were carried out by Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Spectroscopy (EDS) for characterizing the inner structure of the composite specimen. Also, the hydration products were quantified using the surface area mapping and line scale technique in EDS. The microstructural analyses indicated excellent bonding of FAC and aerogel in the cementitious system. Also, selective reactivity of FAC was ascertained from the SEM imagery where the partially consumed FAC shells were observed. All in all, the lightweight fillers, FAC, and aerogel helped to produce the lightweight composites due to their physical characteristics, while exceptional mechanical properties, owing to FAC partial reactivity, were achieved.

Keywords: Sustainable development, fly ash cenosphere, aerogel, lightweight, cement, composite.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1811
29 Effect of Particle Size on Alkali-Activation of Slag

Authors: E. Petrakis, V. Karmali, K. Komnitsas

Abstract:

In this study grinding experiments were performed in a laboratory ball mill using Polish ferronickel slag in order to study the effect of the particle size on alkali activation and the properties of the produced alkali activated materials (AAMs). In this regard, the particle size distribution and the specific surface area of the grinding products in relation to grinding time were assessed. The experimental results show that products with high compressive strength, e.g. higher than 60 MPa, can be produced when the slag median size decreased from 39.9 μm to 11.9 μm. Also, finer fractions are characterized by higher reactivity and result in the production of AAMs with lower porosity and better mechanical properties.

Keywords: Alkali activated materials, compressive strength, particle size distribution, slag.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 377
28 The Emotional Language and Temperamental Traits

Authors: Barbara Gawda, Ewa Szepietowska, Agnieszka Gawda

Abstract:

The aim of this study is to describe the associations between the temperamental traits and the narrative emotional expression. The Temperament Questionnaire was used: The FCB-TI of Zawadzki & Strelau. A sample of 85 persons described three emotional situations: love. hate, and anxiety. This study analyzes the verbal form of expression by means of a written account of emotions. The relationship between the narratives of love, hate and anxiety and temperament characteristics were studied. Results indicate that vigorousness (VI), perseverance (PE), sensory sensitivity (SS), emotional reactivity (ER), endurance (EN) and activeness (AC) have a significant impact on the emotional expression in narratives. The temperamental traits are linked to the form of emotional language. It means that temperament has an impact on cognitive representations of emotions.

Keywords: Emotional narratives, Cognitive representation, Love, Hate, Anxiety, Temperament.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2317
27 Global and Local Structure of Supported Pd Catalysts

Authors: V. Rednic, N. Aldea, P. Marginean, D. Macovei, C. M. Teodorescu, E. Dorolti, F. Matei

Abstract:

The supported Pd catalysts were analyzed by X-ray diffraction and X-ray absorption spectroscopy in order to determine their global and local structure. The average particle size of the supported Pd catalysts was determined by X-ray diffraction method. One of the main purposes of the present contribution is to focus on understanding the specific role of the Pd particle size determined by X-ray diffraction and that of the support oxide. Based on X-ray absorption fine structure spectroscopy analysis we consider that the whole local structure of the investigated samples are distorted concerning the atomic number but the distances between atoms are almost the same as for standard Pd sample. Due to the strong modifications of the Pd cluster local structure, the metal-support interface may influence the electronic properties of metal clusters and thus their reactivity for absorption of the reactant molecules.

Keywords: metal-support interaction, supported metal catalysts, synchrotron radiation, X-ray absorption spectroscopy, X-raydiffraction

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1307
26 Preparation and Characterization of MoO3/Al2O3 Catalyst for Oxidative Desulfurization of Diesel using H2O2: Effect of Drying Method and Mo Loading

Authors: Azam Akbari, Mohammadreza Omidkhah, Jafar Toufighi Darian

Abstract:

The mesoporous MoO3/γ-Al2O3 catalyst was prepared by incipient wetness impregnation method aiming to investigate the effect of drying method and molybdenum content on the catalyst property and performance towards the oxidation of benzothiophene (BT), dibenzothiophene (DBT) and 4,6-dimethyle dibenzothiophene (4,6-DMDBT) with H2O2 for deep oxidative desulfurization of diesel fuel. The catalyst was characterized by XRD, BET, BJH and SEM method. The catalyst with 10wt.% and 15wt.% Mo content represent same optimum performance for DBT and 4,6-DMDBT removal, but a catalyst with 10wt.% Mo has higher efficiency than 15wt.% Mo for BT conversion. The SEM images show that use of rotary evaporator in drying step reaches a more homogenous impregnation. The oxidation reactivity of different sulfur compounds was studied which followed the order of DBT>4,6-DMDBT>>BT.

Keywords: desulfurization, oxidation, MoO3/Al2O3 catalyst

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2712
25 The Thermochemical Conversion of Lactic Acid in Subcritical and Supercritical Water

Authors: Shyh-Ming Chern, Hung-Chi Tu

Abstract:

One way to utilize biomass is to thermochemically convert it into gases and chemicals. For conversion of biomass, glucose is a particularly popular model compound for cellulose, or more generally for biomass. The present study takes a different approach by employing lactic acid as the model compound for cellulose. Since lactic acid and glucose have identical elemental composition, they are expected to produce similar results as they go through the conversion process. In the current study, lactic acid was thermochemically converted to assess its reactivity and reaction mechanism in subcritical and supercritical water, by using a 16-ml autoclave reactor. The major operating parameters investigated include: The reaction temperature, from 673 to 873 K, the reaction pressure, 10 and 25 MPa, the dosage of oxidizing agent, 0 and 0.5 chemical oxygen demand, and the concentration of lactic acid in the feed, 0.5 and 1.0 M. Gaseous products from the conversion were generally found to be comparable to those derived from the conversion of glucose.

Keywords: Lactic acid, subcritical water, supercritical water, thermochemical conversion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 645
24 Effect of pH and Ionic Exchange on the Reactivity of Bioglass/Chitosan Composites Used as a Bone Graft Substitute

Authors: Samira Jebahi, Hassane Oudadesse, Eric Wers, Jiheun Elleuch, Hafedh Elfekih, Hassib Keskes, Xuan Vuong Bui, Abdelfatteh Elfeki

Abstract:

Chitosan (CH) material reinforced by bioactive glass (46S6) was fabricated. 46S6 containing 17% wt% CH was studied in vitro and in vivo. Physicochemical techniques, such as Fourier transform infrared spectroscopy (FT-IR), coupled plasma optical emission spectrometry (ICP-OES) analysis were used. The behavior of 46S6CH17 was studied by measuring the in situ pH in a SBF solution. The 46S6CH17 was implanted in the rat femoral condyl. In vitro 46S6CH17 gave an FTIR - spectrum in which three absorption bands with the maxima at 565, 603 and 1039cm-1 after 3 days of soaking in physiological solution. They are assigned to stretching vibrations of PO4^3- group in phosphate crystalline. Moreover, the pH measurement was decreased in the SBF solution. The stability of the calcium phosphate precipitation depended on the pH value. In vivo, a rise in the Ca and phosphate P ions concentrations in the implanted microenvironment was determined.

Keywords: Bioglass, Chitosan, pH measurement, Hydroxyapatite Carbonateted Layer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2644
23 Investigating the Geopolymerization Process of Aluminosilicates and Its Impact on the Compressive Strength of the Produced Geopolymers

Authors: Heba Z. Fouad, Tarek M. Madkour, Safwan A. Khedr

Abstract:

This paper investigates multiple factors that impact the formation of geopolymers and their compressive strength to be utilized in construction as an environmentally-friendly material. Bentonite and Kaolinite were thermally calcinated at 750 °C to obtain Metabentonite and Metakaolinite with higher reactivity. Both source materials were activated using a solution of sodium hydroxide (NaOH). Thereafter, samples were cured at different temperatures. The samples were analyzed chemically using a host of spectroscopic techniques. The bulk density and compressive strength of the produced geopolymer pastes were studied. Findings indicate that the ratio of NaOH solution to source material affects the compressive strength, being optimal at 0.54. Moreover, controlled heat curing was proven effective to improve compressive strength. The existence of characteristic Fourier Transform Infrared Spectroscopy (FTIR) peaks at approximately 1020 cm-1 and 460 cm-1 which correspond to the asymmetric stretching vibration of Si-O-T and bending vibration of Si-O-Si, hence, confirming the formation of the target geopolymer.

Keywords: alcination of metakaolinite, compressive strength, FTIR analysis, geopolymer, green cement

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18
22 An Infrared Investigation on Surface Species over Iron-Based Catalysts: Implications for Oxygenates Formation

Authors: Wanyu Mao, Hongfang Ma, Haitao Zhang, WeixinQian, Weiyong Ying

Abstract:

The nature of adsorbed species on catalytic surface over an industrial precipitated iron-based high temperature catalyst during FTS was investigated by in-situ DRIFTS and chemical trapping. The formulation of the mechanism of oxygenates formation and key intermediates were also discussed. Numerous oxygenated precursors and crucial intermediates were found by in-situ DRIFTS, such as surface acetate, acetyl and methoxide. The results showed that adsorbed molecules on surface such as methanol or acetaldehyde could react with basic sites such as lattice oxygen or free surface hydroxyls. Adsorbed molecules also had reactivity of oxidizing. Moreover, acetyl as a key intermediate for oxygenates was observed by investigation of CH3OH + CO and CH3I + CO + H2. Based on the nature of surface properties, the mechanism of oxygenates formation on precipitated iron-based high temperature catalyst was discussed.

Keywords: Iron-based catalysts, intermediates, oxygenates, in-situ DRIFTS, chemical trapping.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1342
21 Effect of Fly Ash Fineness on Sorption Properties of Geopolymers Based On Liquid Glass

Authors: M. Zelinkova, M. Ondova

Abstract:

Fly ash (FA) thanks to the significant presence of SiO2 and Al2O3 as the main components is a potential raw material for geopolymers production. Mechanical activation is a method for improving FA reactivity and also the porosity of final mixture; those parameters can be analysed through sorption properties. They have direct impact on the durability of fly ash based geopolymer mortars. In the paper, effect of FA fineness on sorption properties of geopolymers based on sodium silicate, as well as relationship between fly ash fineness and apparent density, compressive and flexural strength of geopolymers are presented. The best results in the evaluated area reached the sample H1, which contents the highest portion of particle under 20μm (100% of GFA). The interdependence of individual tested properties was confirmed for geopolymer mixtures corresponding to those in the cement based mixtures: higher is portion of fine particles < 20μm, higher is strength, density and lower are sorption properties. The compressive strength as well as sorption parameters of the geopolymer can be reasonably controlled by grinding process and also ensured by the higher share of fine particle (to 20μm) in total mass of the material.

Keywords: Alkali activation, geopolymers, fly ash, particle fineness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1832
20 Assessment of Carbon Dioxide Separation by Amine Solutions Using Electrolyte Non-Random Two-Liquid and Peng-Robinson Models: Carbon Dioxide Absorption Efficiency

Authors: Arash Esmaeili, Zhibang Liu, Yang Xiang, Jimmy Yun, Lei Shao

Abstract:

A high pressure carbon dioxide (CO2) absorption from a specific gas in a conventional column has been evaluated by the Aspen HYSYS simulator using a wide range of single absorbents and blended solutions to estimate the outlet CO2 concentration, absorption efficiency and CO2 loading to choose the most proper solution in terms of CO2 capture for environmental concerns. The property package (Acid Gas-Chemical Solvent) which is compatible with all applied solutions for the simulation in this study, estimates the properties based on an electrolyte non-random two-liquid (E-NRTL) model for electrolyte thermodynamics and Peng-Robinson equation of state for the vapor and liquid hydrocarbon phases. Among all the investigated single amines as well as blended solutions, piperazine (PZ) and the mixture of piperazine and monoethanolamine (MEA) have been found as the most effective absorbents respectively for CO2 absorption with high reactivity based on the simulated operational conditions.

Keywords: Absorption, amine solutions, Aspen HYSYS, carbon dioxide, simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 144
19 Characterization of Cement Mortar Based on Fine Quartz

Authors: K. Arroudj, M. Lanez, M. N. Oudjit

Abstract:

The introduction of siliceous mineral additions in cement production allows, in addition to the ecological and economic gain, improvement of concrete performance. This improvement is mainly due to the fixing of Portlandite, released during the hydration of cement, by fine siliceous, forming denser calcium silicate hydrates and therefore a more compact cementitious matrix. This research is part of the valuation of the Dune Sand (DS) in the cement industry in Algeria. The high silica content of DS motivated us to study its effect, at ground state, on the properties of mortars in fresh and hardened state. For this purpose, cement pastes and mortars based on ground dune sand (fine quartz) has been analyzed with a replacement to cement of 15%, 20% and 25%. This substitution has reduced the amount of heat of hydration and avoids any risk of initial cracking. In addition, the grinding of the dune sand provides amorphous thin populations adsorbed at the surface of the crystal particles of quartz. Which gives to ground quartz pozzolanic character. This character results an improvement of mechanical strength of mortar (66 MPa in the presence of 25% of ground quartz).

Keywords: Mineralogical structure, Pozzolanic reactivity, quartz, mechanical strength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 780
18 Evaluation of Newly Developed Dot-ELISA Test for Identification of Naja-naja sumantrana and Calloselasma rhodostoma Venom Antigens

Authors: A.S. Sikarwar, S. Ambu, T .H. Wong

Abstract:

Snake bite cases in Malaysia most often involve the species Naja-naja and Calloselasma rhodostoma. In keeping with the need for a rapid snake venom detection kit in a clinical setting, plate and dot-ELISA test for the venoms of Naja-naja sumatrana, Calloselasma rhodostoma and the cobra venom fraction V antigen was developed. Polyclonal antibodies were raised and further used to prepare the reagents for the dot-ELISA test kit which was tested in mice, rabbit and virtual human models. The newly developed dot- ELISA kit was able to detect a minimum venom concentration of 244ng/ml with cross reactivity of one antibody type. The dot-ELISA system was sensitive and specific for all three snake venom types in all tested animal models. The lowest minimum venom concentration detectable was in the rabbit model, 244ng/ml of the cobra venom fraction V antigen. The highest minimum venom concentration was in mice, 1953ng/ml against a multitude of venoms. The developed dot-ELISA system for the detection of three snake venom types was successful with a sensitivity of 95.8% and specificity of 97.9%.

Keywords: ELISA, Venom, SVDK, Naja-naja sumatrana , Calloselasma rhodostoma.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1882
17 Characterization and Geochemical Modeling of Cu and Zn Sorption Using Mixed Mineral Systems Injected with Iron Sulfide under Sulfidic-Anoxic Conditions I: Case Study of Cwmheidol Mine Waste Water, Wales, United Kingdom

Authors: D. E. Egirani, J. E. Andrews, A. R. Baker

Abstract:

This study investigates sorption of Cu and Zn contained in natural mine wastewater, using mixed mineral systems in sulfidic-anoxic condition. The mine wastewater was obtained from disused mine workings at Cwmheidol in Wales, United Kingdom. These contaminants flow into water courses. These water courses include River Rheidol. In this River fishing activities exist. In an attempt to reduce Cu-Zn levels of fish intake in the watercourses, single mineral systems and 1:1 mixed mineral systems of clay and goethite were tested with the mine waste water for copper and zinc removal at variable pH. Modelling of hydroxyl complexes was carried out using phreeqc method. Reactions using batch mode technique was conducted at room temperature. There was significant differences in the behaviour of copper and zinc removal using mixed mineral systems when compared  to single mineral systems. All mixed mineral systems sorb more Cu than Zn when tested with mine wastewater.

Keywords: Cu- Zn, hydroxyl complexes, kinetics, mixed mineral systems, reactivity

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 674