Search results for: testing of materials.
1985 Evaluating the Tool Wear Rate in Ultrasonic Machining of Titanium using Design of Experiments Approach
Authors: Jatinder Kumar, Vinod Kumar
Abstract:
Ultrasonic machining (USM) is a non-traditional machining process being widely used for commercial machining of brittle and fragile materials such as glass, ceramics and semiconductor materials. However, USM could be a viable alternative for machining a tough material such as titanium; and this aspect needs to be explored through experimental research. This investigation is focused on exploring the use of ultrasonic machining for commercial machining of pure titanium (ASTM Grade-I) and evaluation of tool wear rate (TWR) under controlled experimental conditions. The optimal settings of parameters are determined through experiments planned, conducted and analyzed using Taguchi method. In all, the paper focuses on parametric optimization of ultrasonic machining of pure titanium metal with TWR as response, and validation of the optimized value of TWR by conducting confirmatory experiments.Keywords: Ultrasonic machining, titanium, tool wear rate
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25051984 Characterization of Sintered Fe-Cr-Mn Powder Mixtures Containing Intermetallics
Authors: A. Yönetken, A. Erol, M. Cakmakkaya
Abstract:
Intermetallic materials are among advanced technology materials that have outstanding mechanical and physical properties for high temperature applications. Especially creep resistance, low density and high hardness properties stand out in such intermetallics. The microstructure, mechanical properties of %88Ni- %10Cr and %2Mn powders were investigated using specimens produced by tube furnace sintering at 900-1300°C temperature. A composite consisting of ternary additions, a metallic phase, Fe, Cr and Mn have been prepared under Ar shroud and then tube furnace sintered. XRD, SEM (Scanning Electron Microscope), were investigated to characterize the properties of the specimens. Experimental results carried out for composition %88Ni-%10Cr and %2Mn at 1300°C suggest that the best properties as 138,80HV and 6,269/cm3 density were obtained at 1300°C.Keywords: Composite, Intermetallic, High temperature, Sintering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24731983 Unsteady Temperature Distribution in a Finite Functionally Graded Cylinder
Authors: A. Amiri Delouei
Abstract:
In the current study, two-dimensional unsteady heat conduction in a functionally graded cylinder is studied analytically. The temperature distribution is in radial and longitudinal directions. Heat conduction coefficients are considered a power function of radius both in radial and longitudinal directions. The proposed solution can exactly satisfy the boundary conditions. Analytical unsteady temperature distribution for different parameters of functionally graded cylinder is investigated. The achieved exact solution is useful for thermal stress analysis of functionally graded cylinders. Regarding the analytical approach, this solution can be used to understand the concepts of heat conduction in functionally graded materials.
Keywords: Functionally graded materials, unsteady heat conduction, cylinder, Temperature distribution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12041982 Methods for Material and Process Monitoring by Characterization of (Second and Third Order) Elastic Properties with Lamb Waves
Abstract:
In accordance with the industry 4.0 concept, manufacturing process steps as well as the materials themselves are going to be more and more digitalized within the next years. The “digital twin” representing the simulated and measured dataset of the (semi-finished) product can be used to control and optimize the individual processing steps and help to reduce costs and expenditure of time in product development, manufacturing, and recycling. In the present work, two material characterization methods based on Lamb waves were evaluated and compared. For demonstration purpose, both methods were shown at a standard industrial product - copper ribbons, often used in photovoltaic modules as well as in high-current microelectronic devices. By numerical approximation of the Rayleigh-Lamb dispersion model on measured phase velocities second order elastic constants (Young’s modulus, Poisson’s ratio) were determined. Furthermore, the effective third order elastic constants were evaluated by applying elastic, “non-destructive”, mechanical stress on the samples. In this way, small microstructural variations due to mechanical preconditioning could be detected for the first time. Both methods were compared with respect to precision and inline application capabilities. Microstructure of the samples was systematically varied by mechanical loading and annealing. Changes in the elastic ultrasound transport properties were correlated with results from microstructural analysis and mechanical testing. In summary, monitoring the elastic material properties of plate-like structures using Lamb waves is valuable for inline and non-destructive material characterization and manufacturing process control. Second order elastic constants analysis is robust over wide environmental and sample conditions, whereas the effective third order elastic constants highly increase the sensitivity with respect to small microstructural changes. Both Lamb wave based characterization methods are fitting perfectly into the industry 4.0 concept.
Keywords: Lamb waves, industry 4.0, process control, elasticity, acoustoelasticity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10971981 Hydraulic Analysis on Microhabitat of Benthic Macroinvertebrates at Riparian Riffles
Authors: Jin-Hong Kim
Abstract:
Hydraulic analysis on microhabitat of Benthic Macro- invertebrates was performed at riparian riffles of Hongcheon River and Gapyeong Stream. As for the representative species, Ecdyonurus kibunensis, Paraleptophlebia cocorata, Chironomidae sp. and Psilotreta kisoensis iwata were chosen. They showed hydraulically different habitat types by flow velocity and particle diameters of streambed materials. Habitat conditions of the swimmers were determined mainly by the flow velocity rather than by flow depth or by riverbed materials. Burrowers prefer sand and silt, and inhabited at the riverbed. Sprawlers prefer cobble or boulder and inhabited for velocity of 0.05-0.15 m/s. Clingers prefer pebble or cobble and inhabited for velocity of 0.06-0.15 m/s. They were found to be determined mainly by the flow velocity.
Keywords: Benthic macroinvertebrates, riffles, clinger, swimmer, burrower, sprawler.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13341980 Induction of alpha-Amylase in Wheat Grain Cultivars as an Indicator of Resistance to Pre-harvest Sprouting
Authors: Aidar A. Khakimzhanov, Vladimir A. Kuzovlev, Nurgul S. Mamytova, Dinara A. Shansharova, Oleg V. Fursov
Abstract:
The influence of humidity and low temperature on the α- amylase activity and isoenzyme composition of grains of different wheat varieties have been studied. The identified samples of varieties have significant difference in the level of enzyme induction under the impact of high humidity and low temperature. It is proposed to use this methodological approach for testing genotypes and wheat breeding lines for resistance to pre-harvest sprouting (PHS).
Keywords: α-Amylase, isoenzymes, wheat, pre-harvest sprouting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18511979 Mathematical Modeling of a Sub-Wet Bulb Temperature Evaporative Cooling Using Porous Ceramic Materials
Authors: Meryem Kanzari, Rabah Boukhanouf, Hatem G. Ibrahim
Abstract:
Indirect Evaporative Cooling process has the advantage of supplying cool air at constant moisture content. However, such system can only supply air at temperatures above wet bulb temperature. This paper presents a mathematical model for a Sub-wet bulb temperature indirect evaporative cooling arrangement that can overcome this limitation and supply cool air at temperatures approaching dew point and without increasing its moisture content. In addition, the use of porous ceramics as wet media materials offers the advantage of integration into building elements. Results of the computer show the proposed design is capable of cooling air to temperatures lower than the ambient wet bulb temperature and achieving wet bulb effectiveness of about 1.17.
Keywords: Indirect evaporative cooling, porous ceramic, sub-wet bulb temperature.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 45051978 Integrating Dependent Material Planning Cycle into Building Information Management: A Building Information Management-Based Material Management Automation Framework
Authors: Faris Elghaish, Sepehr Abrishami, Mark Gaterell, Richard Wise
Abstract:
The collaboration and integration between all building information management (BIM) processes and tasks are necessary to ensure that all project objectives can be delivered. The literature review has been used to explore the state of the art BIM technologies to manage construction materials as well as the challenges which have faced the construction process using traditional methods. Thus, this paper aims to articulate a framework to integrate traditional material planning methods such as ABC analysis theory (Pareto principle) to analyse and categorise the project materials, as well as using independent material planning methods such as Economic Order Quantity (EOQ) and Fixed Order Point (FOP) into the BIM 4D, and 5D capabilities in order to articulate a dependent material planning cycle into BIM, which relies on the constructability method. Moreover, we build a model to connect between the material planning outputs and the BIM 4D and 5D data to ensure that all project information will be accurately presented throughout integrated and complementary BIM reporting formats. Furthermore, this paper will present a method to integrate between the risk management output and the material management process to ensure that all critical materials are monitored and managed under the all project stages. The paper includes browsers which are proposed to be embedded in any 4D BIM platform in order to predict the EOQ as well as FOP and alarm the user during the construction stage. This enables the planner to check the status of the materials on the site as well as to get alarm when the new order will be requested. Therefore, this will lead to manage all the project information in a single context and avoid missing any information at early design stage. Subsequently, the planner will be capable of building a more reliable 4D schedule by allocating the categorised material with the required EOQ to check the optimum locations for inventory and the temporary construction facilitates.
Keywords: Building information management, BIM, economic order quantity, fixed order point, BIM 4D, BIM 5D.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9081977 Environmental Impact Assessment of Ceramic Tile Materials Used in Jordan on Indoor Radon Level
Authors: Mefleh S. Hamideen
Abstract:
In this investigation, activity concentration of 226Ra, 232Th, and 40K, of some ceramic tile materials used in the local market of Jordan for interior decoration were determined by making use of High Purity Germanium (HPGe) detector. Twenty samples of different country of origin and sizes used in Jordan were analyzed. The concentration values of the last-mentioned radionuclides ranged from 30 Bq.kg-1 (Sample from Jordan) to 98 Bq.kg-1 (Sample from China) for 226Ra, 31 Bq.kg-1 (Sample from Italy) to 98 Bq.kg-1 (Sample from China) for 232Th, and 129 Bq.kg-1 (Sample from Spain) to 679 Bq.kg-1 (Sample from Italy) for 40K. Based on the calculated activity concentrations, some radiological parameters have been calculated to test the radiation hazards in the ceramic tiles. In this work, the following parameters: Total absorbed dose rate (DR), Annual effective dose rate (HR), Radium equivalent activity (Raeq), Radon emanation coefficient F (%) and Radon mass exhalation rate (Em) were calculated for all ceramic tiles and listed in the body of the work. Fortunately, the average calculated values of all parameters are less than the recommended values for each parameter. Consequently, almost all the examined ceramic materials appear to have low radon emanation coefficients. As a result of that investigation, no problems on people can appear by using those ceramic tiles in Jordan.
Keywords: radon emanation coefficient, radon mass exhalation rate, total annual effective dose, radon level
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5411976 Upsetting of Tri-Metallic St-Cu-Al and St-Cu60Zn-Al Cylindrical Billets
Authors: Isik Cetintav, Cenk Misirli, Yilmaz Can
Abstract:
This work investigates upsetting of the tri-metallic cylindrical billets both experimentally and analytically with a reduction ratio 30%. Steel, brass, and copper are used for the outer and outmost rings and aluminum for the inner core. Two different models have been designed to show material flow and the cavity took place over the two interfaces during forming after this reduction ratio. Each model has an outmost ring material as steel. Model 1 has an outer ring between the outmost ring and the solid core material as copper and Model 2 has a material as brass. Solid core is aluminum for each model. Billets were upset in press machine by using parallel flat dies. Upsetting load was recorded and compared for models and single billets. To extend the tests and compare with experimental procedure to a wider range of inner core and outer ring geometries, finite element model was performed. ABAQUS software was used for the simulations. The aim is to show how contact between outmost ring, outer ring and the inner core are carried on throughout the upsetting process. Results have shown that, with changing in height, between outmost ring, outer ring and inner core, the Model 1 and Model 2 had very good interaction, and the contact surfaces of models had various interface behaviour. It is also observed that tri-metallic materials have lower weight but better mechanical properties than single materials. This can give an idea for using and producing these new materials for different purposes.
Keywords: Tri-metallic, upsetting, copper, brass, steel, aluminum.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11381975 Modeling Electric Field Distribution on Insulator under Electron Bombardment in Vacuum
Authors: A.G.E. Sutjipto, Jufriadi, R. Muhida, Afzeri, E.Y. Adesta
Abstract:
Charging and discharging phenomenon on the surface of materials can be found in plasma display panel, spacecraft charging, high voltage insulator, etc. This report gives a simple explanation on this phenomenon. A scanning electron microscope was used not only as a tool to produce energetic electron beam to charge an insulator without metallic coating and to produce a surface discharging (surface breakdown/flashover) but also to observe the visible charging and discharging on the sample surface. A model of electric field distribution on the surface was developed in order to explain charging and discharging phenomena. Since charging and discharging process involves incubation time, therefore this process can be used to evaluate the insulation property of materials under electron bombardment.Keywords: Flashover, SEM, Electron Bombardment, Electric Field.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15351974 Fire Resistance of High Alumina Cement and Slag Based Ultra High Performance Fibre-Reinforced Cementitious Composites
Authors: A. Q. Sobia, M. S. Hamidah, I. Azmi, S. F. A. Rafeeqi
Abstract:
Fibre-reinforced polymer (FRP) strengthened reinforced concrete (RC) structures are susceptible to intense deterioration when exposed to elevated temperatures, particularly in the incident of fire. FRP has the tendency to lose bond with the substrate due to the low glass transition temperature of epoxy; the key component of FRP matrix. In the past few decades, various types of high performance cementitious composites (HPCC) were explored for the protection of RC structural members against elevated temperature. However, there is an inadequate information on the influence of elevated temperature on the ultra high performance fibre-reinforced cementitious composites (UHPFRCC) containing ground granulated blast furnace slag (GGBS) as a replacement of high alumina cement (HAC) in conjunction with hybrid fibres (basalt and polypropylene fibres), which could be a prospective fire resisting material for the structural components. The influence of elevated temperatures on the compressive as well as flexural strength of UHPFRCC, made of HAC-GGBS and hybrid fibres, were examined in this study. Besides control sample (without fibres), three other samples, containing 0.5%, 1% and 1.5% of basalt fibres by total weight of mix and 1 kg/m3 of polypropylene fibres, were prepared and tested. Another mix was also prepared with only 1 kg/m3 of polypropylene fibres. Each of the samples were retained at ambient temperature as well as exposed to 400, 700 and 1000 °C followed by testing after 28 and 56 days of conventional curing. Investigation of results disclosed that the use of hybrid fibres significantly helped to improve the ambient temperature compressive and flexural strength of UHPFRCC, which was found to be 80 and 14.3 MPa respectively. However, the optimum residual compressive strength was marked by UHPFRCC-CP (with polypropylene fibres only), equally after both curing days (28 and 56 days), i.e. 41%. In addition, the utmost residual flexural strength, after 28 and 56 days of curing, was marked by UHPFRCC– CP and UHPFRCC– CB2 (1 kg/m3 of PP fibres + 1% of basalt fibres) i.e. 39% and 48.5% respectively.
Keywords: Fibre reinforced polymer materials, ground granulated blast furnace slag, high-alumina cement, hybrid fibres.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11371973 Proposal of Solidification/Stabilisation Process of Chosen Hazardous Waste by Cementation
Authors: Bozena Dohnalkova
Abstract:
This paper presents a part of the project solving which is dedicated to the identification of the hazardous waste with the most critical production within the Czech Republic with the aim to study and find the optimal composition of the cement matrix that will ensure maximum content disposal of chosen hazardous waste. In the first stage of project solving – which represents this paper – a specific hazardous waste was chosen, its properties were identified and suitable solidification agents were chosen. Consequently solidification formulas and testing methodology was proposed.
Keywords: Cementation, solidification, waste, binder.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18661972 The Use of FBC Ash for Preparation of Types of Hydraulic Binders Similar to Portland Cement
Authors: Karel Dvořák, Karel Kulísek, Radek Magrla
Abstract:
The reduction of greenhouse gases emissions is highly discussed ecological theme at present. In addition to power industry also main production sectors of binders, i.e. cement, air and hydraulic lime are very sensitive to these questions. One of the possibilities how CO2 emissions can be reduced directly at clinker burnout is represented by partial substitution of lime with a material containing limy ions at absence of carbonate group. Fluidised fly ash is one of such potential raw materials where CaO can be found free and also bound in anhydrite, CaSO4. At application of FBC (fluidized bed combustion) fly ash with approximate 20% CaO content and its dosing ratio to high percent lime 1:2, corresponding stechiometrically to the preparation of raw material powder, approximately 0,37 t CO2 per 1 ton of one-component cement would be released at clinker burnout compared to 0,46 t CO2 when orthodox raw materials are used. The reduction of CO2 emissions thus could reach even 20%.
Keywords: FBC ash, cement, hydraulic binders.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18251971 Ultra-Low Loss Dielectric Properties of (Mg1-xNix)2(Ti0.95Sn0.05)O4 Microwave Ceramics
Authors: Bing-Jing Li, Sih-Yin Wang, Tse-Chun Yeh, Yuan-Bin Chen
Abstract:
Microwave dielectric ceramic materials of (Mg1-xNix)2(Ti0.95Sn0.05)O4 for x = 0.01, 0.03, 0.05, 0.07 and 0.09 were prepared and sintered at 1250–1400 ºC. The microstructure and microwave dielectric properties of the ceramic materials were examined and measured. The observations shows that the content of Ni2+ ions has little effect on the crystal structure, dielectric constant, temperature coefficient of resonant frequency (τf) and sintering temperatures of the ceramics. However, the quality values (Q×f) are greatly improved due to the addition of Ni2+ ions. The present study showed that the ceramic material prepared for x = 0.05 and sintered at 1325ºC had the best Q×f value of 392,000 GHz, about 23% improvement compared with that of Mg2(Ti0.95Sn0.05)O4.
Keywords: (Mg1-xNix)2(Ti0.95Sn0.05)O4, microwave dielectric ceramics, high quality factor, high frequency wireless communication.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20101970 Critical Properties of Charged Filter Membranes for Their Applications in Filtration
Authors: S. Bokka
Abstract:
Fiber filter membranes have a high surface area-to-volume ratio and high porosity making them ideal for various filtration and separation applications. Using the conventional filter membrane, a filtration efficiency of > 95% can be achieved. Specific applications such as air and fuel filtration require nearly 100% filtration efficiency, which is harder to achieve using conventional filter membranes. To achieve high filtration efficiencies additional costs are incurred due to increasing the cost of membrane and operating cost. Due to the simultaneous electrostatic attraction and mechanical capture, the electret filters have shown nearly 100% filtration efficiency. This article presents an overview of the charged filter membrane, its applications, and a discussion on factors contributing to increasing charge.
Keywords: Charged fiber membrane, piezoelectric materials, filtration, polymeric materials.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1621969 Sensitivity Analysis of Real-Time Systems
Authors: Benjamin Gorry, Andrew Ireland, Peter King
Abstract:
Verification of real-time software systems can be expensive in terms of time and resources. Testing is the main method of proving correctness but has been shown to be a long and time consuming process. Everyday engineers are usually unwilling to adopt formal approaches to correctness because of the overhead associated with developing their knowledge of such techniques. Performance modelling techniques allow systems to be evaluated with respect to timing constraints. This paper describes PARTES, a framework which guides the extraction of performance models from programs written in an annotated subset of C.Keywords: Performance Modelling, Real-time, SensitivityAnalysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15121968 Describing the Fine Electronic Structure and Predicting Properties of Materials with ATOMIC MATTERS Computation System
Authors: Rafal Michalski, Jakub Zygadlo
Abstract:
We present the concept and scientific methods and algorithms of our computation system called ATOMIC MATTERS. This is the first presentation of the new computer package, that allows its user to describe physical properties of atomic localized electron systems subject to electromagnetic interactions. Our solution applies to situations where an unclosed electron 2p/3p/3d/4d/5d/4f/5f subshell interacts with an electrostatic potential of definable symmetry and external magnetic field. Our methods are based on Crystal Electric Field (CEF) approach, which takes into consideration the electrostatic ligands field as well as the magnetic Zeeman effect. The application allowed us to predict macroscopic properties of materials such as: Magnetic, spectral and calorimetric as a result of physical properties of their fine electronic structure. We emphasize the importance of symmetry of charge surroundings of atom/ion, spin-orbit interactions (spin-orbit coupling) and the use of complex number matrices in the definition of the Hamiltonian. Calculation methods, algorithms and convention recalculation tools collected in ATOMIC MATTERS were chosen to permit the prediction of magnetic and spectral properties of materials in isostructural series.Keywords: Atomic matters, crystal electric field, spin-orbit coupling, localized states, electron subshell, fine electronic structure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12071967 Laboratory Investigations on the Utilization of Recycled Construction Aggregates in Asphalt Mixtures
Authors: Farzaneh Tahmoorian, Bijan Samali, John Yeaman
Abstract:
Road networks are increasingly expanding all over the world. The construction and maintenance of the road pavements require large amounts of aggregates. Considerable usage of various natural aggregates for constructing roads as well as the increasing rate at which solid waste is generated have attracted the attention of many researchers in the pavement industry to investigate the feasibility of the application of some of the waste materials as alternative materials in pavement construction. Among various waste materials, construction and demolition wastes, including Recycled Construction Aggregate (RCA) constitute a major part of the municipal solid wastes in Australia. Creating opportunities for the application of RCA in civil and geotechnical engineering applications is an efficient way to increase the market value of RCA. However, in spite of such promising potentials, insufficient and inconclusive data and information on the engineering properties of RCA had limited the reliability and design specifications of RCA to date. In light of this, this paper, as a first step of a comprehensive research, aims to investigate the feasibility of the application of RCA obtained from construction and demolition wastes for the replacement of part of coarse aggregates in asphalt mixture. As the suitability of aggregates for using in asphalt mixtures is determined based on the aggregate characteristics, including physical and mechanical properties of the aggregates, an experimental program is set up to evaluate the physical and mechanical properties of RCA. This laboratory investigation included the measurement of compressive strength and workability of RCA, particle shape, water absorption, flakiness index, crushing value, deleterious materials and weak particles, wet/dry strength variation, and particle density. In addition, the comparison of RCA properties with virgin aggregates has been included as part of this investigation and this paper presents the results of these investigations on RCA, basalt, and the mix of RCA/basalt.
Keywords: Asphalt, basalt, pavement, recycled aggregate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9691966 Penetration Analysis for Composites Applicable to Military Vehicle Armors, Aircraft Engines and Nuclear Power Plant Structures
Authors: Dong Wook Lee
Abstract:
This paper describes a method for analyzing penetration for composite material using an explicit nonlinear Finite Element Analysis (FEA). This method may be used in the early stage of design for the protection of military vehicles, aircraft engines and nuclear power plant structures made of composite materials. This paper deals with simple ballistic penetration tests for composite materials and the FEA modeling method and results. The FEA was performed to interpret the ballistic field test phenomenon regarding the damage propagation in the structure subjected to local foreign object impact.
Keywords: Computer Aided Engineering, CAE, Finite Element Analysis, FEA, impact analysis, penetration analysis, composite material.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6101965 Some Factors Affecting the Compressive Behaviour of Structural Masonry at Small Scales
Authors: A. Mohammed, T. G. Hughes
Abstract:
This paper presents part of a research into the small scale modelling of masonry. Small scale testing of masonry has been carried out by many authors, but few have attempted a systematic determination of the parameters that affect masonry at a small scale. The effect of increasing mortar strength and different sand gradings under compression were investigated. The results show masonry strength at small scale is influenced by increasing mortar strength and different sand gradings.Keywords: Compression, masonry, models, mortar, sand gradings
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25431964 Theoretical and Experimental Analysis of Hard Material Machining
Authors: Rajaram Kr. Gupta, Bhupendra Kumar, T. V. K. Gupta, D. S. Ramteke
Abstract:
Machining of hard materials is a recent technology for direct production of work-pieces. The primary challenge in machining these materials is selection of cutting tool inserts which facilitates an extended tool life and high-precision machining of the component. These materials are widely for making precision parts for the aerospace industry. Nickel-based alloys are typically used in extreme environment applications where a combination of strength, corrosion resistance and oxidation resistance material characteristics are required. The present paper reports the theoretical and experimental investigations carried out to understand the influence of machining parameters on the response parameters. Considering the basic machining parameters (speed, feed and depth of cut) a study has been conducted to observe their influence on material removal rate, surface roughness, cutting forces and corresponding tool wear. Experiments are designed and conducted with the help of Central Composite Rotatable Design technique. The results reveals that for a given range of process parameters, material removal rate is favorable for higher depths of cut and low feed rate for cutting forces. Low feed rates and high values of rotational speeds are suitable for better finish and higher tool life.
Keywords: Speed, feed, depth of cut, roughness, cutting force, flank wear.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19731963 Conceptual Design of the TransAtlantic as a Research Platform for the Development of “Green” Aircraft Technologies
Authors: Victor Maldonado
Abstract:
Recent concerns of the growing impact of aviation on climate change has prompted the emergence of a field referred to as Sustainable or “Green” Aviation dedicated to mitigating the harmful impact of aviation related CO2 emissions and noise pollution on the environment. In the current paper, a unique “green” business jet aircraft called the TransAtlantic was designed (using analytical formulation common in conceptual design) in order to show the feasibility for transatlantic passenger air travel with an aircraft weighing less than 10,000 pounds takeoff weight. Such an advance in fuel efficiency will require development and integration of advanced and emerging aerospace technologies. The TransAtlantic design is intended to serve as a research platform for the development of technologies such as active flow control. Recent advances in the field of active flow control and how this technology can be integrated on a sub-scale flight demonstrator are discussed in this paper. Flow control is a technique to modify the behavior of coherent structures in wall-bounded flows (over aerodynamic surfaces such as wings and turbine nozzles) resulting in improved aerodynamic cruise and flight control efficiency. One of the key challenges to application in manned aircraft is development of a robust high-momentum actuator that can penetrate the boundary layer flowing over aerodynamic surfaces. These deficiencies may be overcome in the current development and testing of a novel electromagnetic synthetic jet actuator which replaces piezoelectric materials as the driving diaphragm. One of the overarching goals of the TranAtlantic research platform include fostering national and international collaboration to demonstrate (in numerical and experimental models) reduced CO2/ noise pollution via development and integration of technologies and methodologies in design optimization, fluid dynamics, structures/ composites, propulsion, and controls.
Keywords: Aircraft Design, Sustainable “Green” Aviation, Active Flow Control, Aerodynamics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25311962 Effect of Particle Size on Alkali-Activation of Slag
Authors: E. Petrakis, V. Karmali, K. Komnitsas
Abstract:
In this study grinding experiments were performed in a laboratory ball mill using Polish ferronickel slag in order to study the effect of the particle size on alkali activation and the properties of the produced alkali activated materials (AAMs). In this regard, the particle size distribution and the specific surface area of the grinding products in relation to grinding time were assessed. The experimental results show that products with high compressive strength, e.g. higher than 60 MPa, can be produced when the slag median size decreased from 39.9 μm to 11.9 μm. Also, finer fractions are characterized by higher reactivity and result in the production of AAMs with lower porosity and better mechanical properties.
Keywords: Alkali activated materials, compressive strength, particle size distribution, slag.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6581961 A Failure Analysis Tool for HDD Analysis
Authors: C. Kumjeera, T. Unchim, B. Marungsri, A. Oonsivilai
Abstract:
The study of piezoelectric material in the past was in T-Domain form; however, no one has studied piezoelectric material in the S-Domain form. This paper will present the piezoelectric material in the transfer function or S-Domain model. S-Domain is a well known mathematical model, used for analyzing the stability of the material and determining the stability limits. By using S-Domain in testing stability of piezoelectric material, it will provide a new tool for the scientific world to study this material in various forms.
Keywords: Hard disk drive, failure analysis, tool, time
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27481960 The Effects of SCMs on the Mechanical Properties and Durability of Fibre Cement Plates
Authors: Ceren Ince, Berkay Z. Erdem, Shahram Derogar, Nabi Yuzer
Abstract:
Fibre cement plates, often used in construction, generally are made using quartz as an inert material, cement as a binder and cellulose as a fibre. This paper, first of all, investigates the mechanical properties and durability of fibre cement plates when quartz is both partly and fully replaced with diatomite. Diatomite does not only have lower density compared to quartz but also has high pozzolanic activity. The main objective of this paper is the investigation of the effects of supplementary cementing materials (SCMs) on the short and long term mechanical properties and durability characteristics of fibre cement plates prepared using diatomite. Supplementary cementing materials such as ground granulated blast furnace slug (GGBS) and fly ash (FA) are used in this study. Volume proportions of 10, 20, 30 and 40% of GGBS and FA are used as partial replacement materials to cement. Short and long term mechanical properties such as compressive and flexural strengths as well as sorptivity characteristics and mass were investigated. Consistency and setting time at each replacement levels of SCMs were also recorded. The effects of using supplementary cementing materials on the carbonation and sulphate resistance of fibre cement plates were then experimented. The results, first of all, show that the use of diatomite as a full or partial replacement to quartz resulted in a systematic decrease in total mass of the fibre cement plates. The reduction of mass was largely due to the lower density and finer particle size of diatomite compared to quartz. The use of diatomite did not only reduce the mass of these plates but also increased the compressive strength significantly as a result of its high pozzolanic activity. The replacement levels of both GGBS and FA resulted in a systematic decrease in short term compressive strength with increasing replacement levels. This was essentially expected as the total rate of hydration is much lower in GGBS and FA than that of cement. Long term results however, indicated that the compressive strength of fibre cement plates prepared using both GGBS and FA increases with time and hence the compressive strength of plates prepared using SCMs is either equivalent or more than the compressive strength of plates prepared using cement alone. Durability characteristics of fibre cement plates prepared using SCMs were enhanced significantly. Measurements of sopritivty characteristics were also indicated that the plates prepared using SCMs has much lower water absorption capacities compared to plates prepared cement alone. Much higher resistance to carbonation and sulphate attach were observed with plates prepared using SCMs. The results presented in this paper show that the use of SCMs does not only support the production of more sustainable construction materials but also enhances the mechanical properties and durability characteristics of fibre cement plates.Keywords: Diatomite, fibre, strength, supplementary cementing materials.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22331959 Ontology-Navigated Tutoring System for Flipped-Mastery Model
Authors: Masao Okabe
Abstract:
Nowadays, in Japan, variety of students get into a university and one of the main roles of introductory courses for freshmen is to make such students well prepared for subsequent intermediate courses. For that purpose, the flipped-mastery model is not enough because videos usually used in a flipped classroom is not adaptive and does not fit all freshmen with different academic performances. This paper proposes an ontology-navigated tutoring system called EduGraph. Using EduGraph, students can prepare for and review a class, in a more flexibly personalizable way than by videos. Structuralizing learning materials by its ontology, EduGraph also helps students integrate what they learn as knowledge, and makes learning materials sharable. EduGraph was used for an introductory course for freshmen. This application suggests that EduGraph is effective.
Keywords: Adaptive e-learning, flipped classroom, mastery learning, ontology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9941958 Comparative Analysis of Vibration between Laminated Composite Plates with and without Holes under Compressive Loads
Authors: Bahi-Eddine Lahouel, Mohamed Guenfoud
Abstract:
In this study, a vibration analysis was carried out of symmetric angle-ply laminated composite plates with and without square hole when subjected to compressive loads, numerically. A buckling analysis is also performed to determine the buckling load of laminated plates. For each fibre orientation, the compression load is taken equal to 50% of the corresponding buckling load. In the analysis, finite element method (FEM) was applied to perform parametric studies, the effects of degree of orthotropy and stacking sequence upon the fundamental frequencies and buckling loads are discussed. The results show that the presence of a constant compressive load tends to reduce uniformly the natural frequencies for materials which have a low degree of orthotropy. However, this reduction becomes non-uniform for materials with a higher degree of orthotropy.Keywords: Vibration, Buckling, Cutout, Laminated composite, FEM
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20531957 Replacement of Power Transformers basis on Diagnostic Results and Load Forecasting
Authors: G. Gavrilovs, O. Borscevskis
Abstract:
This paper describes interconnection between technical and economical making decision. The reason of this dealing could be different: poor technical condition, change of substation (electrical network) regime, power transformer owner budget deficit and increasing of tariff on electricity. Establishing of recommended practice as well as to give general advice and guidance in economical sector, testing, diagnostic power transformers to establish its conditions, identify problems and provide potential remedies.Keywords: Diagnostic results, load forecasting, power supplysystem, replacement of power transformer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20651956 The Benefits of Regional Brand for Companies
Authors: H. Starzyczna, M. Stoklasa, K. Matusinska
Abstract:
This article deals with the benefits of regional brands for companies in the Czech Republic. Research was focused on finding out the expected and actual benefits of regional brands for companies. The data were obtained by questionnaire survey and analysed by IBM SPSS. Representative sample of 204 companies was created. The research analysis disclosed the expected benefits that the regional brand should bring to companies. But the actual benefits are much worse. The statistical testing of hypotheses revealed that the benefits depend on the region of origin, which surprised both us and the regional coordinators.
Keywords: Brand, regional brands, product protective branding programs, brand benefits.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1460