Modeling Electric Field Distribution on Insulator under Electron Bombardment in Vacuum
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33090
Modeling Electric Field Distribution on Insulator under Electron Bombardment in Vacuum

Authors: A.G.E. Sutjipto, Jufriadi, R. Muhida, Afzeri, E.Y. Adesta

Abstract:

Charging and discharging phenomenon on the surface of materials can be found in plasma display panel, spacecraft charging, high voltage insulator, etc. This report gives a simple explanation on this phenomenon. A scanning electron microscope was used not only as a tool to produce energetic electron beam to charge an insulator without metallic coating and to produce a surface discharging (surface breakdown/flashover) but also to observe the visible charging and discharging on the sample surface. A model of electric field distribution on the surface was developed in order to explain charging and discharging phenomena. Since charging and discharging process involves incubation time, therefore this process can be used to evaluate the insulation property of materials under electron bombardment.

Keywords: Flashover, SEM, Electron Bombardment, Electric Field.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1080546

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1535

References:


[1] K.T. Sirait, 18th International Conference on Lightning, Munchen, pp. 16-20, Sept.1985.
[2] Y. Yamano, A. Ohashi, K. Kato, H. Okubo, and Y. Hakamata, Y.," "Charging Characteristics on Dielectric Surface by Different Charging Processes in Vacuum", IEEE Trans. Diel. Elect.Insul., Vol.6, No.4, pp.464-468, 1999.
[3] W. Kalbreier and B. Goddard; "Radiation-triggered breakdown phenomena in high energy e+e- colliders", IEEE Trans. Elec. Insul., vol. 28 (4), pp. 444-453, 1993.
[4] G.M. Sessler, M.T. Figueiredo, G.F Leal. and Frreira, IEEE Trans. on Dielectr. Electr. Insul., vol.11(2), pp.192-202, 2004.
[5] Y.S. Liu, G.J. Zhang, W.B. Zhao, and Z. Yan, Appl. Surf. Sci., vol. 230(1-4), pp.12-17, 2004.
[6] H.C. Miller, IEEE Trans. Electr. Insul., Vol. 24(5), pp. 765-788, 1989.
[7] A. Neuber, M. Butcher, L.L. Hatfield, H. Krompholz, J. Appl. Phys., Vol. 85, p. 3084, 1999.
[8] Y.S. Choi, H.J. Kim, and B.J. Shin, EEE Trans. Electron Devices, vol. 51(8), pp. 1241-1244, 2004.
[9] K.G. Balmain, and W. Hirt, IEEE Trans. On Nuclear Science, Vol. NS- 27(6), pp.1770-1775, 1980.
[10] K.G. Balmain, and W. Hirt, IEEE Trans. Electr. Insul., Vol. EI. 18(5), pp. 498-503, 1983.
[11] C. Le Gressus, and G. Blaise, IEEE Trans. on Electr. Insulation, vol. 27(3), pp. 472-481, 1992.
[12] A.G.E. Sutjipto, T. Okamoto, and M. Takata, Key Eng. Mater., vol. 181- 182, pp.231-234, 2000.
[13] A.G.E. Sutjipto, T. Okamoto, and M. Takata, Trans. Mater. Res. Soc. Jpn., vol. 25(1), pp. 193-196, 2000.
[14] J. Cazaux, J. Appl. Phys., vol. 85(2), pp.1137-1147, 1999.
[15] A.G.E. Sutjipto, R. Muhida, and M. Takata, Proceeding of 8th International Conference on Properties and Application of Dielectric Materials, pp.216-219, 2006.
[16] A.G.E. Sutjipto, and M. Takata, Journal of Materials Science, Springer, vol. 42, pp.6036-6040, 2007.
[17] A.G.E. Sutjipto, Canadian Journal of Pure and Applied Sciences, vol. 1(1), pp. 73-77, 2007.
[18] A.G.E. Sutjipto, Key Engineering Materials, vol. 345-346, p. 1609, 2007.
[19] H. Niedrig, J. Appl. Phys., vol. 53R15, 1982.
[20] J. Cazaux, J. Appl. Phys., vol. 59(5), pp.1418-1430, 1986.