Search results for: Steady plane flows
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1109

Search results for: Steady plane flows

539 A New Routing Algorithm: MIRAD

Authors: Amir Gholami Pastaki, Ali Reza Sahab, Seyed Mehdi Sadeghi

Abstract:

LSP routing is among the prominent issues in MPLS networks traffic engineering. The objective of this routing is to increase number of the accepted requests while guaranteeing the quality of service (QoS). Requested bandwidth is the most important QoS criterion that is considered in literatures, and a various number of heuristic algorithms have been presented with that regards. Many of these algorithms prevent flows through bottlenecks of the network in order to perform load balancing, which impedes optimum operation of the network. Here, a modern routing algorithm is proposed as MIRAD: having a little information of the network topology, links residual bandwidth, and any knowledge of the prospective requests it provides every request with a maximum bandwidth as well as minimum end-to-end delay via uniform load distribution across the network. Simulation results of the proposed algorithm show a better efficiency in comparison with similar algorithms.

Keywords: new generation networks, QoS, traffic engineering, MPLS, QoS based routing, LSP

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1911
538 System Identification and Control the Azimuth Angle of the Platform of MLRS by PID Controller

Authors: Parkpoom Ch., Narongkorn D.

Abstract:

This paper presents the system identification by physical-s law method and designs the controller for the Azimuth Angle Control of the Platform of the Multi-Launcher Rocket System (MLRS) by Root Locus technique. The plant mathematical model was approximated using MATLAB for simulation and analyze the system. The controller proposes the implementation of PID Controller using Programmable Logic Control (PLC) for control the plant. PID Controllers are widely applicable in industrial sectors and can be set up easily and operate optimally for enhanced productivity, improved quality and reduce maintenance requirement. The results from simulation and experiments show that the proposed a PID Controller to control the elevation angle that has superior control performance by the setting time less than 12 sec, the rise time less than 1.6 sec., and zero steady state. Furthermore, the system has a high over shoot that will be continue development.

Keywords: Azimuth angle control, PID Controller, The platform of Multi-Launcher Rocket System.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2482
537 Analysis of Polymer Surface Modifications due to Discharges Initiated by Water Droplets under High Electric Fields

Authors: Michael G. Danikas, Ramanujam Sarathi, Pavlos Ramnalis, Stefanos L. Nalmpantis

Abstract:

This paper investigates the influence of various parameters on the behaviour of water droplets on polymeric surfaces under high electric fields. An inclined plane test was carried out to understand the droplet behaviour in strong electric field. Parameters such as water droplet conductivity, droplet volume, polymeric surface roughness and droplet positioning with respect to the electrodes were studied. The flashover voltage is affected by all aforementioned parameters. The droplet positioning is in some cases more vital than the droplet volume. Surface damages were analysed using Scanning Electron Microscopy (SEM) studies and by Energy dispersive X-ray Analysis (EDAX). It is observes that magnitude of discharge have direct influence on amount of surface da

Keywords: Water droplet, polymeric surface, hydrophobicity, partial discharges, SEM, EDAX.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2023
536 Utilization of Schnerr-Sauer Cavitation Model for Simulation of Cavitation Inception and Super Cavitation

Authors: Mohammadreza Nezamirad, Azadeh Yazdi, Sepideh Amirahmadian, Nasim Sabetpour, Amirmasoud Hamedi

Abstract:

In this study, the Reynolds-Stress-Navier-Stokes framework is utilized to investigate the flow inside the diesel injector nozzle. The flow is assumed to be multiphase as the formation of vapor by pressure drop is visualized. For pressure and velocity linkage, the coupled algorithm is used. Since the cavitation phenomenon inherently is unsteady, the quasi-steady approach is utilized for saving time and resources in the current study. Schnerr-Sauer cavitation model is used, which was capable of predicting flow behavior both at the initial and final steps of the cavitation process. Two different turbulent models were used in this study to clarify which one is more capable in predicting cavitation inception and super-cavitation. It was found that K-ε was more compatible with the Shnerr-Sauer cavitation model; therefore, the mentioned model is used for the rest of this study.

Keywords: CFD, RANS, cavitation, fuel, injector.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 533
535 Experimental Validation of Treatment Planning for Multiple Radiotherapy Fields by EDR2 Film Dosimeter

Authors: Vahid Fayaz , Asieh Tavakol

Abstract:

To investigate the applicability of the EDR-2 film for clinical radiation dosimetry, percentage depth-doses, profiles and distributions in open and dynamically wedged fields were measured using film and compared with data from a Treatment Planning system.The validity of the EDR2 film to measure dose in a plane parallel to the beam was tested by irradiating 10 cm×10 cm and 4 cm×4 cm fields from a Siemens, primus linac with a 6MV beam and a source-to-surface distance of 100 cm. The film was placed Horizontally between solid water phantom blocks and marked with pin holes at a depth of 10 cm from the incident beam surface. The film measurement results, in absolute dose, were compared with ion chamber measurements using a Welhoffer scanning water tank system and Treatment Planning system. Our results indicate a maximum underestimate of calculated dose of 8 % with Treatment Planning system.

Keywords: 6MV Photon , EDR-2 film, Radiotherapy, TreatmentPlanning system

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1511
534 Mechanical Quadrature Methods for Solving First Kind Boundary Integral Equations of Stationary Stokes Problem

Authors: Xin Luo, Jin Huang, Pan Cheng

Abstract:

By means of Sidi-Israeli’s quadrature rules, mechanical quadrature methods (MQMs) for solving the first kind boundary integral equations (BIEs) of steady state Stokes problem are presented. The convergence of numerical solutions by MQMs is proved based on Anselone’s collective compact and asymptotical compact theory, and the asymptotic expansions with the odd powers of the errors are provided, which implies that the accuracy of the approximations by MQMs possesses high accuracy order O (h3). Finally, the numerical examples show the efficiency of our methods.

Keywords: Stokes problem, boundary integral equation, mechanical quadrature methods, asymptotic expansions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1394
533 Description of Unsteady Flows in the Cuboid Container

Authors: K. Horáková, K. Fraňa, V. Honzejk

Abstract:

This part of study deals with description of unsteady isothermal melt flow in the container with cuboid shape. This melt flow is driven by rotating magnetic field. Input data (instantaneous velocities, grid coordinates and Lorentz forces) were obtained from in-house CFD code (called NS-FEM3D) which uses DDES method of computing. Description of the flow was performed by contours of Lorentz forces and caused velocity field. Taylor magnetic numbers of the flow were used 1.10^6, 5.10^6 and 1.10^7, flow was in 3D turbulent flow regime.

Keywords: In-house computing code, Lorentz forces, magnetohydrodynamics, rotating magnetic field.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1583
532 Model of Multi-Criteria Evaluation for Railway Lines

Authors: Juraj Camaj, Martin Kendra, Jaroslav Masek

Abstract:

The paper is focused to the evaluation railway tracks in the Slovakia by using Multi-Criteria method. Evaluation of railway tracks has important impacts for the assessment of investment in technical equipment. Evaluation of railway tracks also has an important impact for the allocation of marshalling yards. Marshalling yards are in transport model as centers for the operation assigned catchment area. This model is one of the effective ways to meet the development strategy of the European Community's railways. By applying this model in practice, a transport company can guarantee a higher quality of service and then expect an increase in performance. The model is also applicable to other rail networks. This model supplements a theoretical problem of train formation problem of new ways of looking at evaluation of factors affecting the organization of wagon flows.

Keywords: Railway track, multi-criteria methods, evaluation, transportation model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2206
531 Study of Anti-Symmetric Flexural Mode Propagation along Wedge Tip with a Crack

Authors: Manikanta Prasad Banda, Che Hua Yang

Abstract:

Anti-symmetric wave propagation along the particle motion of the wedge waves is known as anti-symmetric flexural (ASF) modes which travel along the wedge tips of the mid-plane apex with a small truncation. This paper investigates the characteristics of the ASF modes propagation with the wedge tip crack. The simulation and experimental results obtained by a three-dimensional (3-D) finite element model explained the contact acoustic non-linear (CAN) behavior in explicit dynamics in ABAQUS and the ultrasonic non-destructive testing (NDT) method is used for defect detection. The effect of various parameters on its high and low-level conversion modes are known for complex reflections and transmissions involved with direct reflections and transmissions. The results are used to predict the location of crack through complex transmission and reflection coefficients.

Keywords: ASF mode, crack detection, finite elements method, laser ultrasound technique, wedge waves.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 517
530 Neutral to Earth Voltage Analysis in Harmonic Polluted Distribution Networks with Multi- Grounded Neutrals

Authors: G. Ahmadi, S.M. Shahrtash

Abstract:

A multiphase harmonic load flow algorithm is developed based on backward/forward sweep to examine the effects of various factors on the neutral to earth voltage (NEV), including unsymmetrical system configuration, load unbalance and harmonic injection. The proposed algorithm composes fundamental frequency and harmonic frequencies power flows. The algorithm and the associated models are tested on IEEE 13 bus system. The magnitude of NEV is investigated under various conditions of the number of grounding rods per feeder lengths, the grounding rods resistance and the grounding resistance of the in feeding source. Additionally, the harmonic injection of nonlinear loads has been considered and its influences on NEV under different conditions are shown.

Keywords: NEV, Distribution System, Multi-grounded, Backward/Forward Sweep, Harmonic Analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2054
529 Ageing Assessment of Insulation Systems by Absorption/Resorption Currents

Authors: Petru V. Notingher, Stefan Busoi, Laurentiu M. Dumitran, Cristina Stancu, Gabriel Tanasescu, Emanuel Balescu

Abstract:

Degradation of polymeric insulation systems of electrical equipments increases the space charge density and the concentration of electrical dipoles. By consequence, the maximum values and the slopes of absorption/resorption (A/R) currents can change with insulation systems ageing. In this paper, an analysis of the nature of the A/R currents and the importance of their components, especially the polarization current and the current given by the space charge, is presented. The experimental study concerns the A/R currents measurements of plane samples (made from CALMICAGLAS tapes), virgin and thermally accelerated aged. The obtained results show that the ageing process produces an increase of the values and a decrease of shapes of the A/R currents. Finally, the possibility of estimating insulations ageing state and lifetime from A/R currents measurements is discussed.

Keywords: Insulation Systems, Absorption/Resorption Currents, Ageing, Lifetime.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1992
528 Analysis of SEIG for a Wind Pumping Plant Using Induction Motor

Authors: A. Abbou, H. Mahmoudi, M. Akherraz

Abstract:

In contrast to conventional generators, self-excited induction generators are found to be most suitable machines for wind energy conversion in remote and windy areas due to many advantages over grid connected machines. This papers presents a Self-Excited Induction Generator (SEIG) driven by wind turbine and supplying an induction motor which is coupled to a centrifugal pump. A method to describe the steady state performance based on nodal analysis is presented. Therefore the advanced knowledge of the minimum excitation capacitor value is required. The effects of variation of excitation capacitance on system and rotor speed under different loading conditions have been analyzed and considered to optimize induction motor pump performances.

Keywords: SEIG, Induction Motor, Centrifugal Pump, capacitance requirements, wind rotor speed.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2311
527 Influence of Flame-Holder on Existence Important Parameters in a Duct Combustion Simulator

Authors: M. M. Doustdar, M. Mojtahedpoor

Abstract:

The effects of flame-holder position, the ratio of flame holder diameter to combustion chamber diameter and injection angle on fuel propulsive droplets sizing and effective mass fraction have been studied by a cold flow. We named the mass of fuel vapor inside the flammability limit as the effective mass fraction. An empty cylinder as well as a flame-holder which are a simulator for duct combustion has been considered. The airflow comes into the cylinder from one side and injection operation will be done by four nozzles which are located on the entrance of cylinder. To fulfill the calculations a modified version of KIVA-3V code which is a transient, three-dimensional, multiphase, multi component code for the analysis of chemically reacting flows with sprays, is used.

Keywords: KIVA-3V, flame-holder, duct combustion, effective mass fraction, mean diameter of droplets.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1738
526 Multimachine Power System Stabilizers Design Using PSO Algorithm

Authors: H. Shayeghi, A. Safari, H. A. Shayanfar

Abstract:

In this paper, multiobjective design of multi-machine Power System Stabilizers (PSSs) using Particle Swarm Optimization (PSO) is presented. The stabilizers are tuned to simultaneously shift the lightly damped and undamped electro-mechanical modes of all machines to a prescribed zone in the s-plane. A multiobjective problem is formulated to optimize a composite set of objective functions comprising the damping factor, and the damping ratio of the lightly damped electromechanical modes. The PSSs parameters tuning problem is converted to an optimization problem which is solved by PSO with the eigenvalue-based multiobjective function. The proposed PSO based PSSs is tested on a multimachine power system under different operating conditions and disturbances through eigenvalue analysis and some performance indices to illustrate its robust performance.

Keywords: PSS Design, Particle Swarm Optimization, Dynamic Stability, Multiobjective Optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2638
525 Jet-Stream Airsail: Study of the Shape and the Behavior of the Connecting Cable

Authors: Christopher Frank, Yoshiki Miyairi

Abstract:

A Jet-stream airsail concept takes advantage of aerology in order to fly without propulsion. Weather phenomena, especially jet streams, are relatively permanent high winds blowing from west to east, located at average altitudes and latitudes in both hemispheres. To continuously extract energy from the jet-stream, the system is composed of a propelled plane and a wind turbine interconnected by a cable. This work presents the aerodynamic characteristics and the behavior of the cable that links the two subsystems and transmits energy from the turbine to the aircraft. Two ways of solving this problem are explored: numerically and analytically. After obtaining the optimal shape of the cross-section of the cable, its behavior is analyzed as a 2D problem solved numerically and analytically. Finally, a 3D extension could be considered by adding lateral forces. The results of this work can be further used in the design process of the overall system: aircraft-turbine.

Keywords: Jet-stream, cable, tether, aerodynamics, aircraft, airsail, wind.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1767
524 Hybrid Fuzzy Selecting-Control-by- Range Controllers of a Servopneumatic Fatigue System

Authors: Marco Soares dos Santos, Jorge Augusto Ferreira, Camila Nicola Boeri, Fernando Neto da Silva

Abstract:

The present paper proposes high performance nonlinear force controllers for a servopneumatic real-time fatigue test machine. A CompactRIO® controller was used, being fully programmed using LabVIEW language. Fuzzy logic control algorithms were evaluated to tune the integral and derivative components in the development of hybrid controllers, namely a FLC P and a hybrid FLC PID real-time-based controllers. Their behaviours were described by using state diagrams. The main contribution is to ensure a smooth transition between control states, avoiding discrete transitions in controller outputs. Steady-state errors lower than 1.5 N were reached, without retuning the controllers. Good results were also obtained for sinusoidal tracking tasks from 1/¤Ç to 8/¤Ç Hz.

Keywords: Hybrid Fuzzy Selecting, Control, Range Controllers, Servopneumatic Fatigue System.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1993
523 Hydrodynamic Characterisation of a Hydraulic Flume with Sheared Flow

Authors: Daniel Rowe, Christopher R. Vogel, Richard H. J. Willden

Abstract:

This study documents the hydrodynamic characteristics of a recirculating water flume in preparation for experimental testing of horizontal axis tidal stream turbine models. An Acoustic Doppler Velocimeter (ADV) was used to measure the flow at high temporal resolution at various locations throughout the flume, enabling the spatial uniformity and turbulence flow parameters to be investigated. The mean velocity profiles exhibited high levels of spatial uniformity at the design speed of the flume, 0.6 ms−1, with variations in the three-dimensional velocity components on the order of ±1% at the 95% confidence level, along with a modest streamwise acceleration through the measurement domain, a target 5m working section of the flume. A high degree of uniformity was also apparent for the turbulence intensity, with values ranging between 1-2% across the intended swept area of the turbine rotor. The integral scales of turbulence exhibited a far higher degree of variation throughout the water column, particularly in the streamwise and vertical scales. This behaviour is believed to be due to the high signal noise content leading to decorrelation in the sampling records. To achieve more realistic levels of vertical velocity shear in the flume, a simple procedure to practically generate target vertical shear profiles in open-channel flows is described. Here, we arranged a series of non-uniformly spaced parallel bars placed across the width of the flume and normal to the onset flow. By adjusting the resistance grading across the height of the working section, the downstream profiles could be modified accordingly, characterised by changes in the velocity profile power-law exponent, 1/n. Considering the significant temporal variation in a tidal channel, the choice of the exponent denominator, n = 6 and n = 9, effectively provides an achievable range around the much-cited value of n = 7 observed at many tidal sites. The resulting flow profiles, which we intend to use in future turbine tests, have been characterised in detail. The results indicate non-uniform vertical shear across the survey area and reveal substantial corner flows, arising from the differential shear between the target vertical and cross-stream shear profiles throughout the measurement domain. In vertically sheared flow, the rotor-equivalent turbulence intensity ranges between 3.0-3.8% throughout the measurement domain for both bar arrangements, while the streamwise integral length scale grows from a characteristic dimension on the order of the bar width, similar to the flow downstream of a turbulence-generating grid. The experimental tests are well-defined and repeatable and serve as a reference for other researchers who wish to undertake similar investigations.

Keywords: Acoustic Doppler velocimetry, experimental hydrodynamics, open-channel flow, shear profiles, tidal stream turbines.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 48
522 Analysis of Simple Mechanisms to Continuously Vary Mach Number in a Supersonic Wind Tunnel Facility

Authors: Prateek Kishore, T. M. Muruganandam

Abstract:

Supersonic wind tunnel nozzles are generally capable of producing a constant Mach number flow in the test section of the wind tunnel. As a result, most of the supersonic vehicles are widely designed using steady state flow characteristics which may have errors while facing unsteady situations. This study aims to explore the possibility of varying the Mach number of the flow during wind tunnel operation. The nozzle walls are restricted to be inflexible for cooling near the throat due to high stagnation temperature requirement of the flow to simulate the conditions as experienced by the vehicle. Two simple independent mechanisms, rotation and translation of nozzle walls have been analyzed and the nozzle ranges have been optimized to vary the Mach number from Mach 2 to Mach 5 using minimum number of nozzles in the wind tunnel.

Keywords: Method of characteristics, Nozzle, supersonic wind tunnel, variable Mach number.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1016
521 An Approach for Transient Response Calculation of large Nonproportionally Damped Structures using Component Mode Synthesis

Authors: Alexander A. Muravyov

Abstract:

A minimal complexity version of component mode synthesis is presented that requires simplified computer programming, but still provides adequate accuracy for modeling lower eigenproperties of large structures and their transient responses. The novelty is that a structural separation into components is done along a plane/surface that exhibits rigid-like behavior, thus only normal modes of each component is sufficient to use, without computing any constraint, attachment, or residual-attachment modes. The approach requires only such input information as a few (lower) natural frequencies and corresponding undamped normal modes of each component. A novel technique is shown for formulation of equations of motion, where a double transformation to generalized coordinates is employed and formulation of nonproportional damping matrix in generalized coordinates is shown.

Keywords: component mode synthesis, finite element models, transient response, nonproportional damping

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1799
520 Dielectric and Impedance Spectroscopy of Samarium and Lanthanum Doped Barium Titanate at Room Temperature

Authors: Sukhleen Bindra Narang, Dalveer Kaur, Kunal Pubby

Abstract:

Dielectric ceramic samples in the BaO-Re2O3-TiO2 ternary system were synthesized with structural formula Ba2- xRe4+2x/3Ti8O24 where Re= rare earth metal and Re= Sm and La where x varies from 0.0 to 0.6 with step size 0.1. Polycrystalline samples were prepared by the conventional solid state reaction technique. The dielectric, electrical and impedance analysis of all the samples in the frequency range 1KHz- 1MHz at room temperature (25°C) have been done to get the understanding of electrical conduction and dielectric relaxation and their correlation. Dielectric response of the samples at lower frequencies shows dielectric dispersion while at higher frequencies it shows dielectric relaxation. The ac conductivity is well fitted by the Jonscher law. The spectroscopic data in the impedance plane confirms the existence of grain contribution to the relaxation. All the properties are found out to be function of frequency as well as the amount of substitution.

Keywords: Dielectric ceramics, Dielectric constant, Loss tangent, AC conductivity, Impedance spectroscopy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2514
519 Experimental Study of Flow Effects of Solid Particles’ Size in Porous Media

Authors: S. Akridiss, E. El Tabach, K. Chetehouna, N. Gascoin, M. S. Kadiri

Abstract:

Transpiration cooling combined to regenerative cooling is a technique that could be used to cool the porous walls of the future ramjet combustion chambers; it consists of using fuel that will flow through the pores of the porous material consisting of the chamber walls, as coolant. However, at high temperature, the fuel is pyrolysed and generates solid coke particles inside the porous materials. This phenomenon can lead to a significant decrease of the material permeability and can affect the efficiency of the cooling system. In order to better understand this phenomenon, an experimental laboratory study was undertaken to determine the transport and deposition of particles in a sintered porous material subjected to steady state flow. The test bench composed of a high-pressure autoclave is used to study the transport of different particle size (35

Keywords: Experimental study, permeability, porous material, suspended particles.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 826
518 Numerical Investigation of Aerodynamic Analysis on Passenger Vehicle

Authors: Cafer Görkem Pınar, İlker Coşar, Serkan Uzun, Atahan Çelebi, Mehmet Ali Ersoy, Ali Pınarbaşı

Abstract:

In this study, it was numerically investigated that a 1:1 scale model of the Renault Clio MK4 SW brand vehicle aerodynamic analysis was performed in the commercial computational fluid dynamics (CFD) package program of ANSYS CFX 2021 R1 under steady, subsonic, and 3-D conditions. The model of vehicle used for the analysis was made independent of the number of mesh elements and the k-epsilon turbulence model was applied during the analysis. Results were interpreted as streamlines, pressure gradient, and turbulent kinetic energy contours around the vehicle at 50 km/h and 100 km/h speeds. In addition, the validity of the analysis was decided by comparing the drag coefficient of the vehicle with the values in the literature. As a result, the pressure gradient contours of the taillight of the Renault Clio MK4 SW vehicle were examined and the behavior of the total force at speeds of 50 km/h and 100 km/h was interpreted.

Keywords: CFD, k-epsilon, aerodynamics, drag coefficient, taillight.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 433
517 An Axisymmetric Finite Element Method for Compressible Swirling Flow

Authors: Raphael Zanella, Todd A. Oliver, Karl W. Schulz

Abstract:

This work deals with the finite element approximation of axisymmetric compressible flows with swirl velocity. We are interested in problems where the flow, while weakly dependent on the azimuthal coordinate, may have a strong azimuthal velocity component. We describe the approximation of the compressible Navier-Stokes equations with H1-conformal spaces of axisymmetric functions. The weak formulation is implemented in a C++ solver with explicit time marching. The code is first verified with a convergence test on a manufactured solution. The verification is completed by comparing the numerical and analytical solutions in a Poiseuille flow case and a Taylor-Couette flow case. The code is finally applied to the problem of a swirling subsonic air flow in a plasma torch geometry.

Keywords: Axisymmetric problem, compressible Navier- Stokes equations, continuous finite elements, swirling flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 331
516 The Pack-Bed Sphere Liquid Porous Burner

Authors: B. Krittacom, P. Amatachaya, W. Srimuang, K. Inla

Abstract:

The combustion of liquid fuel in the porous burner (PB) was experimented to investigate evaporation mechanism and combustion behavior. The diesel oil was used as fuel and the pebbles carefully chosen in the same size like the solid sphere homogeneously was adopted as the porous media. Two structures of the liquid porous burner, i.e. the PB without and with installation of porous emitter (PE), were performed. PE was installed by lower than PB with distance of 20 cm. The pebbles having porosity (φ) of 0.45 and 0.52 were, respectively, used in PB and PE. The fuel was supplied dropwise from the top through the PB and the combustion was occurred between PB and PE. Axial profiles of temperature along the burner length were measured to clarify the evaporation and combustion phenomena. The pollutant emission characteristics were monitored at the burner exit. From the experiment, it was found that the temperature profiles of both structures decreased with the three ways swirling air flows (QA) increasing. On the other hand, the temperature profiles increased with fuel heat input (QF). Obviously, the profile of the porous burner installed with PE was higher than that of the porous burner without PE

Keywords: Liquid fuel, Porous burner, Temperature profile.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1755
515 On the Efficiency of a Double-Cone Gravitational Motor and Generator

Authors: Barenten Suciu, Akio Miyamura

Abstract:

In this paper, following the study-case of an inclined plane gravitational machine, efficiency of a double-cone gravitational motor and generator is evaluated. Two types of efficiency ratios, called translational efficiency and rotational efficiency, are defined relative to the intended duty of the gravitational machine, which can be either the production of translational kinetic energy, or rotational kinetic energy. One proved that, for pure rolling movement of the double- cone, in the absence of rolling friction, the total mechanical energy is conserved. In such circumstances, as the motion of the double-cone progresses along rails, the translational efficiency decreases and the rotational efficiency increases, in such way that sum of the rotational and translational efficiencies remains unchanged and equal to 1. Results obtained allow a comparison of the gravitational machine with other types of motor-generators, in terms of the achievable efficiency.

Keywords: Truncated double-cone, friction, rolling and sliding, efficiency, gravitational motor and generator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 937
514 Three-Dimensional Numerical Simulation of Drops Suspended in Poiseuille Flow: Effect of Reynolds Number

Authors: A. Nourbakhsh

Abstract:

A finite difference/front tracking method is used to study the motion of three-dimensional deformable drops suspended in plane Poiseuille flow at non-zero Reynolds numbers. A parallel version of the code was used to study the behavior of suspension on a reasonable grid resolution (grids). The viscosity and density of drops are assumed to be equal to that of the suspending medium. The effect of the Reynolds number is studied in detail. It is found that drops with small deformation behave like rigid particles and migrate to an equilibrium position about half way between the wall and the centerline (the Segre-Silberberg effect). However, for highly deformable drops there is a tendency for drops to migrate to the middle of the channel, and the maximum concentration occurs at the centerline. The effective viscosity of suspension and the fluctuation energy of the flow across the channel increases with the Reynolds number of the flow.

Keywords: Suspensions, Poiseuille flow, Effective viscosity, Reynolds number.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1911
513 Waste Burial to the Pressure Deficit Areas in the Eastern Siberia

Authors: L. Abukova, O. Abramova, A. Goreva, Y. Yakovlev

Abstract:

Important executive decisions on oil and gas production stimulation in Eastern Siberia have been recently taken. There are unique and large fields of oil, gas, and gas-condensate in Eastern Siberia. The Talakan, Koyumbinskoye, Yurubcheno-Tahomskoye, Kovykta, Chayadinskoye fields are supposed to be developed first. It will result in an abrupt increase in environmental load on the nature of Eastern Siberia. In Eastern Siberia, the introduction of ecological imperatives in hydrocarbon production is still realistic. Underground water movement is the one of the most important factors of the ecosystems condition management. Oil and gas production is associated with the forced displacement of huge water masses, mixing waters of different composition, and origin that determines the extent of anthropogenic impact on water drive systems and their protective reaction. An extensive hydrogeological system of the depression type is identified in the pre-salt deposits here. Pressure relieve here is steady up to the basement. The decrease of the hydrodynamic potential towards the basement with such a gradient resulted in reformation of the fields in process of historical (geological) development of the Nepsko-Botuobinskaya anteclise. The depression hydrodynamic systems are characterized by extremely high isolation and can only exist under such closed conditions. A steady nature of water movement due to a strictly negative gradient of reservoir pressure makes it quite possible to use environmentally-harmful liquid substances instead of water. Disposal of the most hazardous wastes is the most expedient in the deposits of the crystalline basement in certain structures distant from oil and gas fields. The time period for storage of environmentally-harmful liquid substances may be calculated by means of the geological time scales ensuring their complete prevention from releasing into environment or air even during strong earthquakes. Disposal of wastes of chemical and nuclear industries is a matter of special consideration. The existing methods of storage and disposal of wastes are very expensive. The methods applied at the moment for storage of nuclear wastes at the depth of several meters, even in the most durable containers, constitute a potential danger. The enormous size of the depression system of the Nepsko-Botuobinskaya anteclise makes it possible to easily identify such objects at the depth below 1500 m where nuclear wastes will be stored indefinitely without any environmental impact. Thus, the water drive system of the Nepsko-Botuobinskaya anteclise is the ideal object for large-volume injection of environmentally harmful liquid substances even if there are large oil and gas accumulations in the subsurface. Specific geological and hydrodynamic conditions of the system allow the production of hydrocarbons from the subsurface simultaneously with the disposal of industrial wastes of oil and gas, mining, chemical, and nuclear industries without any environmental impact.

Keywords: Eastern Siberia, formation pressure, underground water, waste burial.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 997
512 Symmetrical In-Plane Resonant Gyroscope with Decoupled Modes

Authors: Shady Sayed, Samer Wagdy, Ahmed Badawy, Moutaz M. Hegaze

Abstract:

A symmetrical single mass resonant gyroscope is discussed in this paper. The symmetrical design allows matched resonant frequencies for driving and sensing vibration modes, which leads to amplifying the sensitivity of the gyroscope by the mechanical quality factor of the sense mode. It also achieves decoupled vibration modes for getting a low zero-rate output shift and more stable operation environment. A new suspension beams design is developed to get a symmetrical gyroscope with matched and decoupled modes at the same time. Finite element simulations are performed using ANSYS software package to verify the theoretical calculations. The gyroscope is fabricated from aluminum alloy 2024 substrate, the measured drive and sense resonant frequencies of the fabricated model are matched and equal 81.4 Hz with 5.7% error from the simulation results.

Keywords: Decoupled mode shapes, resonant sensor, symmetrical gyroscope, finite element simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1127
511 Maximum Power Point Tracking by ANN Controller for a Standalone Photovoltaic System

Authors: K. Ranjani, M. Raja, B. Anitha

Abstract:

In this paper, ANN controller for maximum power point tracking of photovoltaic (PV) systems is proposed and PV modeling is discussed. Maximum power point tracking (MPPT) methods are used to maximize the PV array output power by tracking continuously the maximum power point. ANN controller with hill-climbing algorithm offers fast and accurate converging to the maximum operating point during steady-state and varying weather conditions compared to conventional hill-climbing. The proposed algorithm gives a good maximum power operation of the PV system. Simulation results obtained are presented and compared with the conventional hill-climbing algorithm. Simulation results show the effectiveness of the proposed technique.

Keywords: Artificial neural network (ANN), hill-climbing, maximum power-point tracking (MPPT), photovoltaic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3148
510 Power Integrity Analysis of Power Delivery System in High Speed Digital FPGA Board

Authors: Anil Kumar Pandey

Abstract:

Power plane noise is the most significant source of signal integrity (SI) issues in a high-speed digital design. In this paper, power integrity (PI) analysis of multiple power planes in a power delivery system of a 12-layer high-speed FPGA board is presented. All 10 power planes of HSD board are analyzed separately by using 3D Electromagnetic based PI solver, then the transient simulation is performed on combined PI data of all planes along with voltage regulator modules (VRMs) and 70 current drawing chips to get the board level power noise coupling on different high-speed signals. De-coupling capacitors are placed between power planes and ground to reduce power noise coupling with signals.

Keywords: Channel simulation, electromagnetic simulation, power-aware signal integrity analysis, power integrity, PIPro.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2280