
 

 

  
Abstract—A finite difference/front tracking method is used to 

study the motion of three-dimensional deformable drops suspended in 

plane Poiseuille flow at non-zero Reynolds numbers. A parallel 

version of the code was used to study the behavior of suspension on a 

reasonable grid resolution (grids). The viscosity and density of drops 

are assumed to be equal to that of the suspending medium. The effect 

of the Reynolds number is studied in detail. It is found that drops 

with small deformation behave like rigid particles and migrate to an 

equilibrium position about half way between the wall and the 

centerline (the Segre-Silberberg effect). However, for highly 

deformable drops there is a tendency for drops to migrate to the 

middle of the channel, and the maximum concentration occurs at the 

centerline. The effective viscosity of suspension and the fluctuation 

energy of the flow across the channel increases with the Reynolds 

number of the flow. 

  

Keywords—Suspensions, Poiseuille flow, Effective viscosity, 

Reynolds number.  

I. INTRODUCTION 

HE flow of suspensions of deformable particles, such as 

drops, cells and capsules has been a matter of interest for 

many years. The flow of slurries, microfluidic systems, oil 

recovery by chemical flooding, advanced materials 

processing, waste treatments and food processing is typical 

application of these flows. In these applications, it is often 

necessary to predict or manipulate the rheology of 

suspensions. The rheological properties of suspensions depend 

on a number of parameters including the volume fraction, 

initial spatial distribution, particle size distribution, the 

structural constitution and associated mechanical properties of 

the interfaces. The dynamic interaction of these factors 

determines the suspension microstructure, from which the 

macroscopic rheological properties develop. Predicting the 

rheological behavior of suspensions has been a long-standing 

challenge in continuum and statistical mechanics.  

The migration of dilute suspensions of neutrally buoyant 

solid particles in pipe flow was first observed by Segre and 

Silberberg [2], [3] at finite Reynolds numbers. They found that 

the particles migrate away from both the wall and the 

centerline and accumulate at a certain equilibrium position 

about 0.6 times the tube radius. The remarkable Segre-

Silberberg effect has been verified by many experimental 

works. For example, Golsmith & Mason [4] observed that a 
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rigid particle stayed at its initial radial position at very small 

Reynolds numbers and migrated to intermediate positions at 

finite Reynolds numbers. While experiments of Goldsmith and 

Mason used mostly a single drop and dilute suspensions, 

Kowalewski [1] conducted experiments on concentrated 

suspension of drops and measured the concentration and 

velocity profiles of droplet suspensions flowing through a 

tube. An experimental study of the migration of dilute 

suspensions of particles in Poiseuille flow in a wide range of 

Reynolds numbers (67-1700) was performed by Matas et al. 

[5] They extended the results of Segre and Silberberg and 

showed that the tubular pinch effect in which particles 

accumulate is moved toward the wall as the Reynolds number 

increases.  

Several authors have simulated detailed motion of random 

and ordered suspensions numerically. Zhou & Pozrikidis [6] 

simulated the pressure-driven flow of a periodic suspension of 

drops by a boundary integral method and showed that when 

the viscosity of drops is the same as that of the suspending 

fluid, the drops migrate towards the centerline of the channel. 

A single drop with a viscosity ratio of 10 moves to an 

equilibrium position at about halfway between the wall and 

the centerline. Nott & Brady [7] simulated the pressure-driven 

flow of a non-Brownian suspension at zero Reynolds number 

using Stokesian Dynamics. They indicated that the particles 

gradually migrate towards the centre of the channel, resulting 

an in homogeneous concentration profile and a blunting of the 

velocity profile. Simulations of a concentrated suspension of 

several three-dimensional drops in a linear shear flow have 

been conducted by Loewenberg & Hinch [8]. They observed a 

shear thinning behavior for the suspension, and in contrast to 

rigid particles, the viscosity of the emulsion weakly increased 

with volume fraction. Three-dimensional numerical 

simulations on the motion of a large number of deformable 

cells in micro channels were presented by Doddi & Bagchi [9] 

by an immersed boundary method. They analyzed the three 

dimensional trajectories and velocity fluctuations of individual 

cells in the suspension. Results of dynamic simulations of the 

pressure-driven flow of a two-dimensional suspension in a 

channel confined between two parallel walls were considered 

by Li & Pozrikidis [10]. They illustrated the effect of the 

Capillary number and viscosity ratio on the distribution of 

drops across the channel width and the effective viscosity of 

suspension. 

Feng, Ho & Joseph [11], [12] conducted a two-dimensional 

finite element simulation of the motion of a solid particle in a 
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Couette and a Poiseuille flow at finite Reynolds numbers. 

They observed that a neutrally buoyant particle exhibits the 

Segre-Silberberg effect in Poiseuille flow. Mortazavi & 

Tryggvasson [13] used a finite-difference / front tracking 

method to study the motion of two- and three-dimensional 

drops suspended in pressure-driven channel flow at finite 

Reynolds numbers. They observed that in the limit of a small 

Reynolds number, the motion of the drop depends strongly on 

the viscosity ratio. At a higher Reynolds number, the drop 

moves to an equilibrium position about halfway between the 

centerline and the wall or it undergoes oscillatory motion. The 

motion of a neutrally buoyant three-dimensional drop between 

two parallel plates has been simulated by Nourbakhsh & 

Mortazavi [14]. They found that a neutrally buoyant drop 

migrates to an equilibrium lateral position about halfway 

between the wall and the centerline at finite Reynolds 

numbers. Bayareh and Mortazavi [15] presented results of 

simulation of cross-stream migration of a drop in simple shear 

flow at finite Reynolds numbers. They showed that a drop 

migrates to the centerline of the channel in a shear flow. The 

motion of two-dimensional deformable drops suspended in a 

linear shear flow at non-zero Reynolds numbers was studied 

by Mortazavi et al [16]. They studied the lateral migration of a 

drop and observed that at a relatively high Reynolds number 

and small deformation, the drop migrates to an equilibrium 

position, which is a little off the channel centerline. They also 

simulated the suspension of 36 drops and found that 

suspension of drops at finite Reynolds numbers exhibits a 

shear thinning behavior. Bayareh and Mortazavi [17] 

simulated the collision of two equal-size drops in an 

immiscible phase undergoing a shear flow. The size and 

vertical distribution of drops in dispersed liquid-liquid pipeline 

flows were studied experimentally by Lovick & Angeli [18]. 

They measured drop velocities at different locations in a pipe 

cross section and observed that the mixture velocity did not 

affect the drop size of either phase significantly. 

Here, we present simulations of suspensions of three-

dimensional deformable drops in a periodic channel at finite 

Reynolds numbers. The simulations yield information on the 

effects of the Reynolds number. 27 drops are suspended in a 3 

by 3 by 3 arrangements inside the channel. Drops are initially 

organized as a regular array and their relative positions are 

slightly perturbed. The relative size of drops are 121.0=ζ  

and 138.0=ζ  for volume fractions; 2.0=φ  and 3.0=φ  

respectively.  

II. GOVERNING EQUATIONS AND NUMERICAL METHOD  

A. Problem Setup 

The geometry of the flow is shown in Fig. 1. The motion of 

drops is studied in a channel that is bounded by two flat plates 

in the z direction. The height, depth and length of the channel 

are the same. In absence of drops, the flow is a fully-

developed parabolic flow and is driven by a constant pressure 

gradient. We decompose the pressure gradient in the channel 

as [13]: 

 )1(                                   ppp o
′∇+∇=∇  

 

where op∇  is the external specified pressure gradient and 

p′∇  is the perturbation pressure gradient to be computed as 

part of the solution. Gravity is neglected and buoyancy effects 

are absent.  

 

 

 

Fig. 1 The geometry for the simulation of drops in a channel 

B. Governing Equations  

The governing equations for the flow of multi-fluid systems 

are the Navier-Stokes equations. In conservative form they 

are: 
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where, u is the velocity, p  is the pressure, ρ  and µ  are the 

discontinuous density and viscosity fields respectively. σ  is 

the surface tension coefficient, f is a body force and the 

surface tension force is added at the interface. The term 
βδ  

is a two- or three-dimensional δ function constructed by 

repeated multiplication of one-dimensional δ functions. κ  is 

the curvature for two-dimensional flow and twice the mean 

curvature for three-dimensional flows. n is a unit vector 

normal to the front, x is the position in Eulerian coordinate, 

and x ′  is a Lagrangian representation of the interface. 

The Navier-Stokes equations are solved by a second-order 

projection method using centred differences on a fixed 

staggered grid. Both the drop and the ambient fluid are taken 

to be incompressible, so the velocity field is divergence free: 

 

)3(                                        0. =∇u  
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Equation (3), when combined with the momentum equation, 

leads to a non-separable elliptic equation for the pressure. If 

the density is constant, the elliptic pressure equation is solved 

by fast Poisson solver (FISHPACK), but when the density of 

the drop is different from the suspending fluid, the equation is 

solved by a multigrid method [19]. 

Equations of state for the density and the viscosity are: 

 

)4       (                         
0=

Dt

Dρ ،  
0=

Dt

Dµ  

   

Equation (4) states that the density and the viscosity of a fluid 

particle remain constant.  

C. Boundary Conditions  

The boundary condition on the plates is the no-slip 

condition. The domain is periodic in the x- and y-directions. 

Normal stress shows a jump across the interface by surface 

tension and tangential stresses are continuous across the 

surface of drop. 

D. Dimensionless Parameters 

The governing non-dimensional numbers are as follows: the 

ratio of the viscosity of the drop fluid to the suspending 

medium
 oi µµλ /= , the density ratio

 oi ρρα /=  (the viscosity 

and density of the drop liquid are denoted by 
iµ  and 

iρ , 

respectively, and the suspending fluid has viscosity 
oµ  and 

density oρ ), the ratio of the radius of the drop to channel 

height Ha /=ζ , the volume fraction φ , the bulk Reynolds 

number is defined in terms of the undisturbed channel 

centerline velocity ( cU ), and the channel height,
 

ocob HU µρ /Re = , the particle Reynolds number is defined 

as HaU cp µρ /Re 2= , the Capillary number describes the 

ratio of the viscous stress to the interfacial tension, 

σµ /UCa oc= .  

The effective viscosity of suspension is defined as 

QQpoeff /µµ = , where 
pQ  is the volume flow rate through 

the channel without drops ( 3/2 HUQ cp = ), and Q  is the 

actual flow rate through the channel subject to the same 

pressure gradient. 

E. Numerical Method 

Different numerical methods are developed for simulating 

flows with interfaces. These methods can be divided into two 

groups, depending on the type of grids used: moving grid and 

fixed grid. Two important approaches of fixed-grid methods 

are the volume-of-fluid (VOF) and level-set method. The 

volume-of-fluid method uses a marker function. The main 

difficulty in using VOF method is the maintenance of a sharp 

boundary between two phases and the computation of the 

surface tension. The level-set method defines the interface by 

a level-set function, but this approach has some difficulties in 

preserving the mass conservation. There are recent efforts in 

conserving mass in level-set method (see for example [20]. 

Here, a finite difference/front tracking method is used. This 

approach was described in detail by Unverdi & Tryggvason 

[21], [22], Tryggvason et al. [23] and only a brief outline is 

given here. The Navier-Stokes equations are solved by a 

second-order projection method using centred differences on a 

fixed, staggered grid. To keep the boundary between the drop 

and the ambient fluid sharp, and to accurately compute the 

surface tension, the boundary is represented by connected 

marker points (the front) that are advected by the flow 

velocity, interpolated from the fixed grid. To maintain the 

front resolution, new marker points are inserted when the 

distance between points becomes too large. Points are also 

deleted if the distance between two points becomes smaller 

than a prescribed value. The singularities at the front (density 

and viscosity gradients and surface tension) are approximated 

on the fixed grid by smooth functions with a compact support. 

The density and viscosity fields are reconstructed at each time 

step by integrating the smooth grid delta function, after the 

front has been moved, and the body force due to surface 

tension is added to the nodal values of the discrete Navier-

Stokes equations. As drops move and deform, the density and 

the viscosity need to be updated. This is done by solving a 

Poisson equation for an indicator function )(xI  such that: 

 

)()()( oio xx Iρρρρ −+=                             (5) 

   

)()()( oio xx Iµµµµ −+=                             (6) 

           

A new version of the code written for parallel machines was 

used in the current study. The parallelization method combines 

a domain decomposition approach for the field or Eulerian 

quantities and a master-slave approach for the front, where 

each front has a master processor that gathers data from the 

other (slave) processors which share this front. Unlike the 

serial code, there is not one single linked list for all the fronts; 

rather, each front is represented by its own linked list.   

III. RESULTS 

A. Resolution Test and Validation: 

We investigate the depending of the results to grid 

resolution by considering three grid resolutions ( 646464 ×× , 

128128128 ××  and 256256256 ××  grid points). 27 drops with a 

relative size of 121.0=ζ  are initially released inside the 

channel. Drops are placed in a regular array (3 by 3 by 3) and 

their relative positions are slightly perturbed. The flow 

parameters are: 20Reb = , 05.0=Ca , 1== λα  and 2.0=φ . 

Fig. 2 shows the relative viscosity of suspension versus time at 

three grid resolutions. There is a slight change in the relative 

viscosity when the grid is refined from the coarse grid to 

intermediate one. However, the difference between the relative 

viscosity for the two fine grids is almost negligible. This is an 

indication of the convergence of the results as the grid is 

refined.  
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Fig. 2 The relative viscosity versus non-dimensional time at three 

different grid resolutions 

 

To validate the results of the current study, a case with low 

Reynolds number is considered, and it is compared with that 

considered by Doddi & Bagchi [9] for zero Reynolds number. 

The steady state velocity profile is plotted in Fig. 3. Other 

flow conditions ( 20Re =b
) as well as the Newtonian velocity 

profile are also plotted for comparison. 
 

 

Fig. 3 Average velocity profiles and the corresponding Newtonian 

velocity profile 

The steady state velocity profile obtained in the present 

study for 1Re =b
 and 6.0=Ca  is close to that found by Doddi 

& Bagchi [9] at zero Reynolds number. 

B. Effect of the Reynolds Number 

We present results that show the effect of the Reynolds 

number on the concentration of drops across the channel and 

the effective viscosity of suspension. Two Capillary numbers 

are examined ( 05.0=Ca , 0.8). Fig. 4 shows the concentration 

of drops across the channel for three Reynolds numbers (

10Re =b
, 20 and 40). For almost rigid drops ( 05.0=Ca ), two 

peaks are observed close the channel walls.  

 

 

(a) 

 

 

(b) 

Fig. 4 The density distribution of drops across the channel for the 

simulation of 27 drops with three different Reynolds numbers 

 

The flow is dominated by inertia and deformation plays no 

significant role. The peaks get larger as the Reynolds number 

is raised. For highly deformable drops ( 8.0=Ca ) the 

maximum peak is at the centerline. Also the peaks increase in 

magnitude as the Reynolds number increases (Fig. 4 (b)) 

which is an inertia effect.  

The relative viscosity of suspension is plotted in Fig. 5 for 

different Reynolds numbers and Capillary numbers. The 

effective viscosity increases with the Reynolds number. This 
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is mainly due to interaction between drops that is pronounced 

as the Reynolds number increases. The figure also shows a 

case with low Reynolds number ( 1Re =b
) which is an 

indication of small inertia limit.  

 

 

Fig. 5 The relative viscosity versus non-dimensional time at different 

Reynolds numbers 

 

The fluctuation energy of the flow is plotted across the 

channel width for different Reynolds numbers in Fig. 6. The 

fluctuation energy was computed from:  

 

(7)  

 

Here 
jiu ,
 is axial velocity, 

jiv ,
 and 

jiw ,
 are the velocity 

components in the y- and z-directions respectively, and 

)(zu avg
 is the average axial velocity at a distance z  from the 

lower wall. M and N are the number of grid points in x- and y-

directions respectively. This fluctuation energy is averaged 

over time after an initial transition period. Following Nott & 

Brady [7], the fluctuation energies are scaled using the square 

of the average shear velocity )/( Hau avg
. The fluctuation 

energy is larger in the wall regions where the shear rate is 

large. It gets minimum at the center of channel where the 

shear rate is almost zero, and the interaction between drops is 

weak. As expected the fluctuation energy increases as the 

Reynolds number is raised. Since the flow is simulated at 

finite Reynolds numbers, the inertia of the flow is included in 

the simulations. As a result, we observe an increase in the 

fluctuation energy (suspension temperature) with the Reynolds 

number.  

We also present the Reynolds stresses developed in the flow 

of suspension. The Reynolds stresses are plotted as a function 

of time in Fig. 7. The Reynolds stresses are scaled by the 

square of the average shear velocity )/( Hau avg
. The 

Reynolds stresses is plotted for different Reynolds numbers. 

Results show that the Reynolds stress has reached a nearly 

stationary state. The normal component of the Reynolds 

stresses (Rxx) obtains positive mean values. It also enhances 

as the Reynolds number increases.   
 

 Fig. 6 The variation of the fluctuation energy across the channel 

width for simulations with different Reynolds numbers 

 

 

Fig. 7 The Reynolds stress as a function of non-dimensional time for 

different Reynolds numbers 

IV. CONCLUSION 

In the present study, a finite difference / front tracking 

method has been used for simulation of the motion of several 

three-dimensional drops suspended in plane Poiseuille flow, 

accounting for the effect of inertia. Very few works exist that 

attempt to consider interaction of multiple drops in a dense 

suspension.  

The simulations for a system of 27 drops in a periodic 

channel showed that nearly spherical drops gradually migrate 

to a location between the channel axis and the walls (the 

Segre-Silberberg effect), resulting in a considerably 

inhomogeneous distribution and a blunting velocity profile at 
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steady state. The presence of drops causes a blunting of 

velocity profile across the channel. The fluctuation energy of 

the flow across the channel (suspension temperature) was also 

computed for different flow conditions. It is of interest 

because it is closely related to the diffusivity of suspension. 

The fluctuation energy is lowest in the middle of channel 

where the shear rate is small and the interaction between drops 

is weak. It increases as one moves away from the channel 

centerline and becomes maximum close to the walls. It 

vanishes in the wall regions where no drops are present.    

The effect of the Reynolds number was investigated by 

considering four Reynolds numbers (1, 10, 20, 40) and two 

Capillary numbers (0.05,0.8). At a low Capillary number 

(0.05), the flow is dominated by inertia and the peaks in the 

density distribution of drops in the wall regions enhance as the 

Reynolds number is raised. Also for a large Capillary number 

(0.8), the large peak at the middle of channel enhances with 

Reynolds number. The fluctuation energy of the flow across 

the channel increases as the Reynolds number increases. The 

variation of the Reynolds stress with the Reynolds number 

was also investigated. The normal component (Rxx) obtains 

positive values and it increases as the Reynolds number is 

raised.  
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