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Abstract—This work deals with the finite element approximation
of axisymmetric compressible flows with swirl velocity. We are
interested in problems where the flow, while weakly dependent on
the azimuthal coordinate, may have a strong azimuthal velocity
component. We describe the approximation of the compressible
Navier-Stokes equations with H1-conformal spaces of axisymmetric
functions. The weak formulation is implemented in a C++ solver with
explicit time marching. The code is first verified with a convergence
test on a manufactured solution. The verification is completed by
comparing the numerical and analytical solutions in a Poiseuille flow
case and a Taylor-Couette flow case. The code is finally applied to the
problem of a swirling subsonic air flow in a plasma torch geometry.

Keywords—Axisymmetric problem, compressible Navier-
Stokes equations, continuous finite elements, swirling flow.

I. INTRODUCTION

WE present a finite element method for the compressible

Navier-Stokes equations with assumed axisymmetry.

The target application is an inductively coupled plasma (ICP)

torch, or simply “plasma torch” in this article. An ICP torch

is a tube-like system where the injected gas (e.g. air or argon)

is subjected to an alternating magnetic field generated by an

induction coil. Assuming the feed gas has become partially

ionized, the electric field generated by the alternating magnetic

field accelerates the electrons, which subsequently heat the

gas. The performance of such a device can be sensitive to

the fluid flow, which is the subject of investigation here. The

geometry of the torch is roughly symmetric with respect to the

centerline of the tube. An axisymmetric model allows to gain

insights about the torch physics [1], [2] and is much more

efficient in terms of computational time than a 3D model.

We are particularly interested in a device used for material

testing at high temperature [3]. The azimuthal velocity needs

to be accounted for because the gas is injected tangentially to

create a strong swirling flow inside the tube. We therefore do

not neglect this component in our method as it is sometimes

done in the literature. A finite volume method solving the

axisymmetric compressible Euler equations, with this specific

application in mind, was presented in [4]. In this work, we

consider the viscous terms of the equations and use the finite

element method. The weak formulation is established with

a similar approach as the work [5] on the axisymmetric

compressible Euler equations.
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After this first introductory section, the article is organized

as follows. The second section details the equations of the

problem. The third section describes the numerical method, in

particular the derivation of the axisymmetric weak formulation

and the time integration method. The fourth, fifth and sixth

sections present the different test cases used to verify the

implementation. The last section is dedicated to the simulation

of a subsonic air flow in an experimental plasma torch, which

illustrates the utility of the method.

II. GOVERNING EQUATIONS

The conservation equations of mass, momentum and energy

write

∂ρ

∂t
+∇·(ρu) = 0, (1)

∂ρu

∂t
+∇·(ρu⊗ u) = ∇·[σ] + ρg, (2)

∂ρE

∂t
+∇· (ρEu) = ∇·([σ] · u) + ρg · u−∇·q, (3)

where ρ is the mass density, u is the velocity, p is the pressure,

[σ] is the stress tensor, g = −gez is the acceleration due to

gravity, E is the total energy per unit mass and q is the heat

flux vector. The stress tensor is written as [σ] = −p[1] + [τ ],
where p is the pressure and [τ ] is the viscous stress tensor.

The total energy per unit mass is given by E = e+ u2

2 , where

e is the internal energy per unit mass.
We denote by T the temperature and by h = e + p

ρ the

enthalpy per unit mass. The gas is assumed ideal so that we

have

p = ρRT, (4)

where R is the specific gas constant. We also have

e = cvT and h = cpT, (5)

where cv is the specific heat at constant volume and cp is the

specific heat at constant pressure. We denote by γ = cp/cv the

ratio of the specific heats. The specific heats can be expressed

as a function of R and γ:

cv =
R

γ − 1
and cp =

γR

γ − 1
. (6)

The viscous stress tensor is given by a Newtonian law

[τ ] = 2η

(
1

2

(
∇u+ (∇u)T

)
− 1

3
∇·u[I]

)
, (7)

where η is the dynamic viscosity. The dynamic viscosity is

temperature dependent through a power law

η = ηref

(
T

Tref

)npl

, (8)
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Fig. 1 Example of cylindrical domain of computation Ω and the associated
meridian section Ω2D . A point M ∈ Ω is located by its cylindrical

coordinates (r, θ, z), with (r, z) ∈ Ω2D and θ ∈ [0, 2π)

where ηref , Tref and npl are constants. The heat flux vector

is given by a Fourier law

q = −λ∇T, (9)

where λ is the thermal conductivity. The thermal conductivity

is given by

λ =
ηcp
Pr

, (10)

where Pr is the Prandtl number, assumed constant.

We use the cylindrical coordinates (r, θ, z). We denote

by ur, uθ and uz the radial, azimuthal and axial velocity

components, respectively. We do not expand the equations in

cylindrical coordinates for the sake of brevity. The equations

under the axisymmetry assumption are obtained by applying
∂
∂θ = 0 to the equations in cylindrical coordinates.

III. NUMERICAL METHOD

We first present the space approximation of the problem

and then the time integration method, along with details on

the implementation.

A. Axisymmetric Weak Formulation
We denote by Ω the axisymmetric computational domain

and by ∂Ω its boundary. We denote by Ω2D the half meridian

section, say at θ = 0, of Ω and by ∂Ω2D its boundary. We note

∂Ω2D
ext = ∂Ω2D ∩ ∂Ω. An illustration is presented in Fig. 1.

Let Th be a mesh of Ω2D with characteristic mesh size h.

We denote by K a cell of Th. Let p ∈ N
∗ be the order of

the polynomial approximation. We define the approximation

space for scalar functions

V =
{
v ∈ C0

(
Ω;R

)
; ∃v2D ∈ V 2D;

v(r, θ, z) = v2D(r, z), ∀(r, θ, z)
}
, (11)

where

V 2D =
{
v ∈ C0

(
Ω2D;R

)
; v|K ∈ Pp, ∀K ∈ Th

}
. (12)

We also define the approximation space for vector functions

V = V 3. While ρ and ρE reside in V , ρu resides in

V. We introduce the test spaces V0,ρ, V0 and V0,ρE for

ρ, ρu and ρE respectively, which are appropriately defined

taking into account the Dirichlet boundaries. This section

is independent of the boundary conditions considered. The

boundary conditions are detailed for each treated case in the

following sections. Note that the axisymmetry assumption

always imposes to enforce ur = uθ = 0 at r = 0.

An important result used in the following is that, for every

axisymmetric function f defined in Ω, we can write∫
Ω

fdV = 2π

∫
Ω2D

frdS (13)

and ∫
∂Ω

fdS = 2π

∫
∂Ω2D

ext

frdL, (14)

where dV , dS and dL designate an elementary volume, an

elementary surface and an elementary length, respectively.

This means that an integral over Ω of an axisymmetric

integrand can be reduced to an integral over Ω2D (and

analogous result for an integral over ∂Ω).

The weak formulation is obtained by multiplying by test

functions (1)-(3) and by then integrating over Ω. Because the

trial and test functions are axisymmetric, we can apply (13)

and (14) to the result. We denote by tf > 0 the final time.

The weak formulation is expressed: find ρ ∈ C1([0, tf ];V ),
ρu ∈ C1([0, tf ];V) and ρE ∈ C1([0, tf ];V ) satisfying the

boundary conditions such that∫
Ω2D

dρ

dt
vrdS =

∫
Ω2D

ρu · ∇vrdS

−
∫
∂Ω2D

ext

vρu · nrdL, ∀v ∈ V0,ρ;
(15)

∫
Ω2D

dρu

dt
· vrdS =

∫
Ω2D

(ρu⊗ u) : ∇vrdS

−
∫
∂Ω2D

ext

((ρu⊗ u) · v) · nrdL

−
∫
Ω2D

[σ] : ∇vrdS

+

∫
∂Ω2D

ext

([σ] · v) · nrdL

+

∫
Ω2D

ρg · vrdS, ∀v ∈ V0;

(16)

∫
Ω2D

dρE

dt
vrdS =

∫
Ω2D

ρEu · ∇vrdS

−
∫
∂Ω2D

ext

vρEu · nrdL

−
∫
Ω2D

([σ] · u− q) · ∇vrdS

+

∫
∂Ω2D

ext

v([σ] · u− q) · nrdL

+

∫
Ω2D

ρu · gvrdS, ∀v ∈ V0,ρE .

(17)
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The boundary terms may vanish due to either the quantities

enforced or the fact that the test function is zero at the

boundary (Dirichlet boundary). Because the trial and test

functions only depend on the (r, z) coordinates, this weak

formulation can be implemented as that of a 2D problem.

Note the presence of the r factor in every term. Note also

that the gradient of a scalar or vector function in cylindrical

coordinates has a different formula compared to in Cartesian

coordinates.

B. Time Integration
Let ndof be the number of degrees of freedom per variable

and U ∈ C1([0, tf ];R
5ndof ) be the time-dependent vector

containing the degrees of freedom of all variables. The weak

formulation (15)-(17) can be put under the form of a vector

ODE: ⎧⎨
⎩MdU

dt
(t) = R(U(t)), ∀t ∈ [0, tf ],

U(0) = U0,
(18)

where M ∈ R
5ndof×5ndof is the mass matrix, R is a nonlinear

function of the degrees of freedom which describes the flux

terms and the gravity terms and U0 ∈ R
5ndof contains the

degrees of freedom of the initial condition projected in V 5.

Note that the r factor in every term of (15)-(17) needs to be

taken into account in the mass matrix and the right-hand side

definitions. Note also that the mass matrix and the right-hand

side are modified to take into account the Dirichlet conditions.

An explicit method is used to solve the system (18).

Runge-Kutta methods of different orders are used. The

algorithm is implemented in a C++ code based on the MFEM

library for finite elements [6].

IV. TEST ON A MANUFACTURED SOLUTION

The solver is verified with a convergence test on a

manufactured solution. The computational domain is a

cylinder

Ω = {(r, θ, z) ∈ R
3; 0 ≤ r < 0.5, 0 ≤ θ < 2π, 0 < z < 1}.

(19)

The manufactured solution is defined by⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ρ(r, z, t) = 1 + 50r2(0.5− r)2 sin(2πz) cos(200πt),

ur(r, z, t) = r2 sin(2πr) sin(2πz) cos(200πt),

uθ(r, z, t) = r2 sin(2πr) sin(2πz) cos(200πt),

uz(r, z, t) = r2(cos(πr) sin(2πz) cos(200πt)− 1) + 0.25,

T (r, z, t) = 1 + r2 cos(πr) sin(2πz) cos(200πt).
(20)

The lateral surface is treated as an isothermal wall where u =
0 and T = 1 is enforced strongly. The top and bottom surfaces

are treated as periodic boundaries. An artificial diffusion term

is added in (1) because it is necessary to obtain the expected

rates at long time. Adequate source terms are implemented in

(1)-(3) so that the manufactured solution is solution.

The parameters considered are R = 0.6, γ = 1.5, ηref =
0.1, Tref = 2, npl = 0.8, Pr = 0.7 and g = 1.5. We

do not specify the units as the parameters do not refer to

an actual physical configuration. We are only interested in

TABLE I
MANUFACTURED SOLUTION TEST

h ‖U − Uex‖L2(Ω) COC

0.1 0.013685373

0.05 0.0035482733 1.947

0.025 0.00089366856 1.989

0.0125 0.00022454565 1.993

Fixed small time step τ = 5× 10−5. Errors at final time tf = 0.01

verifying the code. No units are used in the other test cases

(Poiseuille flow and Taylor-Couette flow) for the same reason.

We use a rectangular mesh and an order of approximation

p = 1. The time integration is performed by using a 2nd order

Runge-Kutta method.

We fix the time step to a very small value so that the

error is dominated by the spatial error. We note U =
(ρ, ρur, ρuθ, ρuz, ρE). We observe the evolution of the error

‖U−Uex‖L2(Ω) at final time with the mesh size (the subscript

ex designates the exact solution). The results are reported in

Tab. I. The computed order of convergence (COC) is p+1 = 2
and is therefore consistent with the approximation order.

V. POISEUILLE FLOW IN A TUBE

The solver is applied to a gravity-induced Poiseuille flow

in a vertical channel. In order to compare the numerical result

with an analytical solution, we treat the incompressible case.

A source term is implemented in the energy equation so that

the final temperature and the final density are uniform.

The computational domain is the cylinder given in (19). The

lateral surface is treated as an isothermal wall where u = 0
and T = T0 is enforced strongly. The top and bottom surfaces

are treated as periodic boundaries.

The fluid is initially at rest: ρ = ρ0, u = 0 and T = T0 at

t = 0. We simulate the problem until a steady state is reached.

The analytical solution is ρ = ρ0, T = T0 and u = uz(r)ez ,

with

uz(r) = −ρ0g

4η
(R2

0 − r2), (21)

where R0 is the radius of the cylinder.

The parameters considered are R0 = 0.5, ρ0 = 1.1, T0 =
1, R = 0.6, γ = 1.5, npl = 0, Pr = 0.7 and g = 0.9.

The elements are squares of size h = 0.025. The order of

approximation is p = 1. The time integration is performed

by using a 2nd order Runge-Kutta method with a time step

τ = 2.5× 10−4.

The numerical solution obtained for uz , at mid-height and

at final time is confronted to the analytical solution in Fig. 2

for various ηref = η. The numerical result is very close to the

analytical one.

VI. TAYLOR-COUETTE FLOW

The solver is applied to a Taylor-Couette flow. The flow is

driven by the rotation of two concentric walls. Contrary to the

Poiseuille flow, this flow has an azimuthal component. Again,
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Fig. 2 Poiseuille flow. Numerical (symbols) versus analytical (line) profile
of the axial velocity for different viscosities. Mid-height profile z = 0.5.

Final time tf = 10

in order to compare the numerical result with an analytical

solution, we treat the incompressible case. A source term is

implemented in the energy equation so that the final density

is uniform.

The computational domain is an annulus

Ω = {(r, θ, z) ∈ R
3; 0.5 < r < 1, 0 ≤ θ < 2π, 0 < z < 1}.

(22)

The lateral surfaces are treated as isothermal walls where a

velocity and a temperature which are consistent with the initial

condition are enforced strongly. The top and bottom surfaces

are treated as periodic boundaries.

We denote by R1 and R2 the internal and external radii of

the annulus, respectively. We denote by Ω1 and Ω2 the rotation

velocities of the internal and external walls, respectively. We

introduce the parameters

A =
Ω2R

2
2 − Ω1R

2
1

R2
2 −R2

1

and B =
(Ω1 − Ω2)R

2
1R

2
2

R2
2 −R2

1

. (23)

The fluid is initially at rest: ρ = ρ0, u = uθ(r)eθ, with

uθ(r) =

⎧⎨
⎩
0 if R1 < r < R2,

Ar +
B

r
if r = R1 or R2,

(24)

and

T = T0+

B2(r2 −R2
1) + r2R2

1

(
A2(r2 −R2

1) + 4AB log
(

r
R1

))
2r2R2

1cv(γ − 1)
(25)

at t = 0. We simulate the problem until a steady state is

reached. The analytical solution is ρ = ρ0, T given by (25)

and u = uθ(r)eθ, with

uθ(r) = Ar +
B

r
. (26)

The parameters considered are R1 = 0.5, R2 = 1, ρ0 = 1.1,

T0 = 1, R = 0.6, γ = 1.5, ηref = η = 0.1, npl = 0 and

g = 0. The elements are squares of size h = 0.025. The order

0.2

0.3
0.4

0.5

0.6
0.7
0.8

0.9

1

0.5 0.6 0.7 0.8 0.9 1

Ω2 = 0.25

Ω2 = 0.5

Ω2 = 1

u
θ

r
Fig. 3 Taylor-Couette flow. Numerical (symbols) versus analytical (line)
profile of the azimuthal velocity for different rotation velocities of the
exterior wall. The rotation velocity of the interior wall is Ω1 = 0.5.

Mid-height profile z = 0.5. Final time tf = 10

of approximation is p = 1. The time integration is performed

by using a 2nd order Runge-Kutta method with a time step

τ = 2.5× 10−4.

The numerical solution obtained for uθ, at mid-height and

at final time is confronted to the analytical solution in Fig. 3

for various Ω2 while Ω1 is fixed. Again, the numerical result

is very close to the analytical one.

VII. SWIRLING FLOW IN A PLASMA TORCH

We simulate an air flow in an experimental plasma torch

geometry close to [3]. The torch is a tube-like system with

a length of approximately 35 cm and a maximum diameter

of approximately 5.6 cm. The air is injected laterally from

the bottom by 4 channels of small and square section equally

spaced. The air is introduced with a non-zero angle with

respect to the normal of the lateral wall, which produces the

swirl. The air escapes the system through a nozzle at the

top. Schematics with accurate dimensions are presented in

Figs. 4-6. The injected mass flow is 40 slpm, considering a

standard air density at 25◦C.

The main challenge is the axisymmetric modeling of the

system considering that the inlets are not arranged in an

axisymmetric manner. We model the inlets by an axisymmetric

inlet, i.e. an inlet that goes all around the bottom of the torch,

whose height is approximately the same as that of the actual

inlets.

We denote by p0 and T0 the ambient pressure and

temperature. The wall is treated as an isothermal wall where

T = T0 and u = 0 is enforced strongly. At the inlet, we

enforce u and T = T0. The axial profile of the radial velocity

at the inlet is quadratic and such that the injected mass flow is

matched. The axial profile of the azimuthal velocity at the inlet

is flat and such that the peak azimuthal velocity approximately

matches the tangential velocity in the actual system. Denoting

by Rcap the radius of the endcap and by Hin the height of the

axisymmetric inlet, the velocity profiles at the inlet are given
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Fig. 4 Schematic of the experimental torch and coordinate reference

Fig. 5 Top view of the inlet channels and exit angle

by

ur(Rcap, z) = −
(
1−

(
2z

Hin
− 1

)2
)
u0
r, ∀z ∈ (0, Hin),

(27)

Fig. 6 Inlet channel cross-section

uθ(Rcap, z) = u0
θ, ∀z ∈ (0, Hin), (28)

and

uz(Rcap, z) = 0, ∀z ∈ (0, H), (29)

where

u0
r =

3Qv

4πHinRcap
(30)

and

u0
θ =

Qv

4a2
sin

( απ

180

)
, (31)

with Qv the injected volume flow, a the inlet side and α the

exit angle. The injected volume flow is given by

Qv =
Qm

ρ0
, (32)

where Qm = 40ρstd/(60× 1000) is the injected mass flow in

kg·s−1, with ρstd the standard air density, and ρ0 = p0/(RT0)
is the ambient air density. At the outlet, we enforce p = p0. We

use a strong inlet enforcement and a weak outlet enforcement

because this combination produces the most stable solution.

The fluid is initially at rest: ρ = ρ0, u = 0 except at the

inlet where u is given by (27)-(29) and T = T0 at t = 0.

We simulate the system over a time range which allows to

observe a regime where the time-averaged fields are almost

constant. The time limit is tf = 4.3 s. This time corresponds

to approximately 3 flow throughs, one flow through being the

time necessary for a fluid particle injected at the inlet to reach

the outlet. Note that at this flow rate and geometry, one flow

through is approximately 1.3 s.

We present in Table II the parameters considered in this study. 
The gravity effect is taken into account in this study. There 
is a factor 2 on the air viscosity used for stability purpose 
(but which should be reduced to 1 in the future). The mesh 
is triangular with h varying between 0.06 mm, where the 
velocity magnitude is the highest (the region close to the inlet), 
and 1.5 mm. The mesh contains 32313 nodes. The order of 
approximation is p = 1. The time integration is performed 
by using a 3rd order Runge-Kutta method with a time step
τ = 1.25 × 10−7 s. The azimuthal flow generates an inflow

at the outlet. To avoid the crash of the simulation due to this

effect, we artificially increase the viscosity close to the outlet

by a factor of ≈ 50.

We present in Fig. 7 the time evolution of the kinetic energy.

The kinetic energy reaches a pseudo-plateau between 1 and

1.5 s, where it only slightly varies around an average value.

This time approximately corresponds to a flow through.

We present in Fig. 8 the components of the velocity at final

time. The azimuthal component of the velocity is the strongest

component. While decaying in amplitude, it propagates from
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TABLE II
TORCH SIMULATION PARAMETERS

Parameter Value Unit

Rcap 0.0265 m

Hin 1.7× 10−3 m

a 1.2× 10−3 m

α 49 degrees

p0 1.01325× 105 Pa

T0 298.15 K

ρstd 1.184 kg · m−3

g 9.81 m · s−2

R 287 J · kg−1 · K−1

γ 1.4 -

ηref 3.69× 10−5 Pa · s

Tref 300 K

npl 0.76 -

Pr 0.707 -

0
0.002
0.004
0.006
0.008
0.01
0.012
0.014
0.016
0.018

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

K
in
et
ic

en
er
gy

(J
)

Time (s)
Fig. 7 Torch simulation. Kinetic energy as a function of time

the inlet to the top of the torch. The flow is essentially

concentrated close to the wall in the bottom part of the torch,

with a central region with velocities of lower magnitude.

Above the narrower section at mid-height, downstream, the

velocity field is more uniform in the whole tube.

These observations are confirmed by the profiles of the

time-averaged velocity components presented in Fig. 9. The

time-averaging is performed from t = 4 s to t = 4.3 s with

a high frequency (104 s−1) compared to the time variations

of the solution. We present one velocity profile in the bottom

compartment (at z = 0.075 m) and one in the top compartment

(at z = 0.23 m). The azimuthal component is the component

with the strongest maximum magnitude in both compartments.

While the highest velocities are concentrated close to the wall

in the bottom compartment, the velocity profiles are more

uniform in the top compartment. Note that the flow is not

purely upward since the time-averaged axial velocity presents

areas of negative values, especially in the top compartment.

The flow is structured in layers, with vertical regions of

(a) Radial, ur (b) Azimuthal, uθ (c) Axial, uz

Fig. 8 Velocity components in the pseudo-permanent regime (unit: m/s,
t = 4.3 s)

upward flow alternating with regions of downward flow.

In terms of characteristic numbers, the Mach number

reaches approximately 0.26 where the velocity magnitude is

the strongest, i.e. in the region close to the inlet. Based on the

initial density, the velocity at the inlet, the air properties and

the torch diameter, the Reynolds number (taking into account

sound speed) is of order 105 − 106.

VIII. CONCLUSION

We have presented a finite element method to approximate

the compressible Navier-Stokes equations, under axisymmetry

assumption but taking into account the azimuthal velocity, in

order to simulate the flow in a plasma torch geometry. The

components of the solution (density, momentum components

and energy) are approximated in spaces of continuous

axisymmetric functions. The problem is approximated in time

with explicit methods. The solving algorithm is implemented

in a C++ code, which is first verified with a convergence

test against a manufactured solution. The error follows the

expected rate when the mesh size is reduced. The code is

shown to be able to simulate two classical axisymmetric flows:

the Poiseuille flow in a tube and the Taylor-Couette flow,

which completes the verification. The final test on an actual
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Fig. 9 Radial profiles of the time-averaged velocity components (t = 4.3 s)

experimental torch setup confirms the interest of our method

due to the plausible velocity fields obtained. The velocity fields

show a strong swirling flow, subsonic and high-Reynolds,

structured in vertical layers of upward and downward flow.
Further torch simulations should be performed with the

actual viscosity of air (a factor 2 is used in the article).

This task may require updating the numerical method to

increase its stability (e.g. implementing the streamline–upwind

Petrov/Galerkin method). Comparisons with experiments as

well as simulating the jet, and therefore avoiding the artificial

viscosity close to the outlet, are also part of future work.

ACKNOWLEDGMENT

This material is based upon work supported by

the Department of Energy, National Nuclear Security

Administration under Award Number DE-NA0003969.

REFERENCES

[1] J. Mostaghimi and M. I. Boulos, Two-Dimensional Electromagnetic Field
Effects in Induction Plasma Modelling, Plasma Chemistry and Plasma
Processing 9(1), pp. 25-44, 1989.

[2] S. Clain, D. Rochette, R. Touzani, M. Lino da Silva, D. Vacher and
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