Search results for: cold plasma-surface modification
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 544

Search results for: cold plasma-surface modification

514 Argon/Oxygen Plasma Surface Modification of Biopolymers for Improvement of Wettability and Wear Resistance

Authors: Binnur Sagbas

Abstract:

Artificial joint replacements such as total knee and total hip prosthesis have been applied to the patients who affected by osteoarthritis. Although different material combinations are used for these joints, biopolymers are most commonly preferred materials especially for acetabular cup and tibial component of hip and knee joints respectively. The main limitation that shortens the service life of these prostheses is wear. Wear is complicated phenomena and it must be considered with friction and lubrication. In this study, micro wave (MW) induced argon+oxygen plasma surface modification were applied on ultra-high molecular weight polyethylene (UHMWPE) and vitamin E blended UHMWPE (VE-UHMWPE) biopolymer surfaces to improve surface wettability and wear resistance of the surfaces. Contact angel measurement method was used for determination of wettability. Ball-on-disc wear test was applied under 25% bovine serum lubrication conditions. The results show that surface wettability and wear resistance of both material samples were increased by plasma surface modification.

Keywords: Artificial joints, plasma surface modification, UHMWPE, vitamin E, wear.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1580
513 Creep Constitutive Equation for 2- Materials of Weldment-304L Stainless Steel

Authors: Amir Hossein Daei Sorkhabi, Farid Vakili Tahami

Abstract:

In this paper, creep constitutive equations of base (Parent) and weld materials of the weldment for cold-drawn 304L stainless steel have been obtained experimentally. For this purpose, test samples have been generated from cold drawn bars and weld material according to the ASTM standard. The creep behavior and properties have been examined for these materials by conducting uniaxial creep tests. Constant temperatures and constant load uni-axial creep tests have been carried out at two high temperatures, 680 and 720 oC, subjected to constant loads, which produce initial stresses ranging from 240 to 360 MPa. The experimental data have been used to obtain the creep constitutive parameters using numerical optimization techniques.

Keywords: Creep, Constitutive equation, Cold-drawn 304L stainless steel, Weld, Base material

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2724
512 Stabilization of Nonnecessarily Inversely Stable First-Order Adaptive Systems under Saturated Input

Authors: M. De la Sen, O. Barambones

Abstract:

This paper presents an indirect adaptive stabilization scheme for first-order continuous-time systems under saturated input which is described by a sigmoidal function. The singularities are avoided through a modification scheme for the estimated plant parameter vector so that its associated Sylvester matrix is guaranteed to be non-singular and then the estimated plant model is controllable. The modification mechanism involves the use of a hysteresis switching function. An alternative hybrid scheme, whose estimated parameters are updated at sampling instants is also given to solve a similar adaptive stabilization problem. Such a scheme also uses hysteresis switching for modification of the parameter estimates so as to ensure the controllability of the estimated plant model.

Keywords: Hybrid dynamic systems, discrete systems, saturated input, control, stabilization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1372
511 An Energy Integration Approach on UHDE Ammonia Process

Authors: Alnouss M. Ahmed, Al-Nuaimi A. Ibrahim

Abstract:

In this paper, the energy performance of a selected UHDE Ammonia plant is optimized by conducting heat integration through waste heat recovery and the synthesis of a heat exchange network (HEN). Minimum hot and cold utility requirements were estimated through IChemE spreadsheet. Supporting simulation was carried out using HYSYS software. The results showed that there is no need for heating utility while the required cold utility was found to be around 268,714 kW. Hence a threshold pinch case was faced. Then, the hot and cold streams were matched appropriately. Also, waste heat recovered resulted with savings in HP and LP steams of approximately 51.0% and 99.6%, respectively. An economic analysis on proposed HEN showed very attractive overall payback period not exceeding 3 years. In general, a net saving approaching 35% was achieved in implementing heat optimization of current studied UHDE Ammonia process.

Keywords: Ammonia, Energy Optimization, Heat Exchange Network and Techno-Economic Analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4503
510 Evaluation of a Dual-Fluid Cold-Gas Thruster Concept

Authors: J. D. Burges, M. J. Hall, E. G. Lightsey

Abstract:

A new dual-fluid concept was studied that could eventually find application for cold-gas propulsion for small space satellites or other constant flow applications. In basic form, the concept uses two different refrigerant working fluids, each having a different saturation vapor pressure. The higher vapor pressure refrigerant remains in the saturation phase and is used to pressurize the lower saturation vapor pressure fluid (the propellant) which remains in the compressed liquid phase. A demonstration thruster concept based on this principle was designed and built to study its operating characteristics. An automotive-type electronic fuel injector was used to meter and deliver the propellant. Ejected propellant mass and momentum were measured for several combinations of refrigerants and hydrocarbon fluids. The thruster has the advantage of delivering relatively large total impulse at low tank pressure within a small volume.

Keywords: cold-gas, nano-satellite, R134a, thruster

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4225
509 Influence of Deep Cold Rolling and Low Plasticity Burnishing on Surface Hardness and Surface Roughness of AISI 4140 Steel

Authors: P. R. Prabhu, S. M. Kulkarni, S. S. Sharma

Abstract:

Deep cold rolling (DCR) and low plasticity burnishing (LPB) process are cold working processes, which easily produce a smooth and work-hardened surface by plastic deformation of surface irregularities. The present study focuses on the surface roughness and surface hardness aspects of AISI 4140 work material, using fractional factorial design of experiments. The assessment of the surface integrity aspects on work material was done, in order to identify the predominant factors amongst the selected parameters. They were then categorized in order of significance followed by setting the levels of the factors for minimizing surface roughness and/or maximizing surface hardness. In the present work, the influence of main process parameters (force, feed rate, number of tool passes/overruns, initial roughness of the work piece, ball material, ball diameter and lubricant used) on the surface roughness and the hardness of AISI 4140 steel were studied for both LPB and DCR process and the results are compared. It was observed that by using LPB process surface hardness has been improved by 167% and in DCR process surface hardness has been improved by 442%. It was also found that the force, ball diameter, number of tool passes and initial roughness of the workpiece are the most pronounced parameters, which has a significant effect on the work piece-s surface during deep cold rolling and low plasticity burnishing process.

Keywords: Deep cold rolling, burnishing, surface roughness, surface hardness, design of experiments, AISI4140 steel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3733
508 The Numerical Study of Low Level Jets Formation in South Eastern of Iran

Authors: Mehdi Salehi Barough, Saviz Sehat Kashani, A.A. Bidokhti, A.Ranjbar

Abstract:

The presence of cold air with the convergent topography of the Lut valley over the valley-s sloping terrain can generate Low Level Jets (LLJ). Moreover, the valley-parallel pressure gradients and northerly LLJ are produced as a result of the large-scale processes. In the numerical study the regional MM5 model was run leading to achieve an appropriate dynamical analysis of flows in the region for summer and winter. The results of this study show the presence of summer synoptical systems cause the formation of north-south pressure gradients in the valley which could be led to the blowing of winds with the velocity more than 14 ms-1 and vulnerable dust and wind storms lasting more than 120 days. Whereas the presence of cold air masses in the region in winter, cause the average speed of LLJs decrease. In this time downslope flows are noticeable in creating the night LLJs.

Keywords: Cold advection, Low Level Jet, MM5 Model, Pressure gradient

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1489
507 Development of AA2024 Matrix Composites Reinforced with Micro Yttrium through Cold Compaction with Superior Mechanical Properties

Authors: C. H. S. Vidyasagar, D. B. Karunakar

Abstract:

In this present work, five different composite samples with AA2024 as matrix and varying amounts of yttrium (0.1-0.5 wt.%) as reinforcement are developed through cold compaction. The microstructures of the developed composite samples revealed that the yttrium reinforcement caused grain refinement up to 0.3 wt.% and beyond which the refinement is not effective. The microstructure revealed Al2Cu precipitation which strengthened the composite up to 0.3 wt.% yttrium reinforcement. Upon further increase in yttrium reinforcement, the intermetallics and the precipitation coarsen and their corresponding strengthening effect decreases. The mechanical characterization revealed that the composite sample reinforced with 0.3 wt.% yttrium showed highest mechanical properties like 82 HV of hardness, 276 MPa Ultimate Tensile Strength (UTS), 229 MPa Yield Strength (YS) and an elongation (EL) of 18.9% respectively. However, the relative density of the developed composites decreased with the increase in yttrium reinforcement.

Keywords: Mechanical properties, AA 2024 matrix, yttrium reinforcement, cold compaction, precipitation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 598
506 Design of a Fuzzy Feed-forward Controller for Monitor HAGC System of Cold Rolling Mill

Authors: S. Khosravi, A. Afshar, F. Barazandeh

Abstract:

In this study we propose a novel monitor hydraulic automatic gauge control (HAGC) system based on fuzzy feedforward controller. This is used in the development of cold rolling mill automation system to improve the quality of cold strip. According to features/ properties of entry steel strip like its average yield stress, width of strip, and desired exit thickness, this controller realizes the compensation for the exit thickness error. The traditional methods of adjusting the roller position, can-t tolerate the variance in the entry steel strip. The proposed method uses a mathematical model of the system together with the expert knowledge to perform this adjustment while minimizing the effect of the stated problem. In order to improve the speed of the controller in rejecting disturbances introduced by entry strip thickness variations, expert knowledge is added as a feed-forward term to the HAGC system. Simulation results for the application of the proposed controller to a real cold mill show that the exit strip quality is highly improved.

Keywords: Fuzzy feed-forward controller, monitor HAGC system, dynamic mathematical model, entry strip thickness deviation compensation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2171
505 Disinfestation of Wheat Using Liquid Nitrogen Aeration

Authors: Haiyan. Li, Jitendra. Paliwal, Digvir S. Jayas, Noel D. G. White

Abstract:

A study was undertaken to investigate the effect of liquid nitrogen aeration on mortalities of adult Cryptolestes furrugineus, rusty grain beetles, in a prototype cardboard grain bin equipped with an aeration system. The grain bin was filled with Hard Red Spring wheat and liquid nitrogen was introduced from the bottom of the bin. The survival of both cold acclimated and unacclimated C. furrugineus was tested. The study reveals that cold acclimated insects had higher survival than unacclimated insects under similar cooling conditions. In most cases, mortalities of as high as 100% were achieved at the bottom 100 cm of the grain bin for unacclimated insects for most of the trials. Insect survival increased as the distance from the bottom of the grain bin increased. There was no adverse effect of liquid nitrogen aeration on wheat germination.

Keywords: Cold acclimated, liquid nitrogen aeration, mortalities, rusty grain beetles.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1487
504 Numerical Analysis of Cold-Formed Steel Shear Wall Panels Subjected to Cyclic Loading

Authors: H. Meddah, M. Berediaf-Bourahla, B. El-Djouzi, N. Bourahla

Abstract:

Shear walls made of cold formed steel are used as lateral force resisting components in residential and low-rise commercial and industrial constructions. The seismic design analysis of such structures is often complex due to the slenderness of members and their instability prevalence. In this context, a simplified modeling technique across the panel is proposed by using the finite element method. The approach is based on idealizing the whole panel by a nonlinear shear link element which reflects its shear behavior connected to rigid body elements which transmit the forces to the end elements (studs) that resist the tension and the compression. The numerical model of the shear wall panel was subjected to cyclic loads in order to evaluate the seismic performance of the structure in terms of lateral displacement and energy dissipation capacity. In order to validate this model, the numerical results were compared with those from literature tests. This modeling technique is particularly useful for the design of cold formed steel structures where the shear forces in each panel and the axial forces in the studs can be obtained using spectrum analysis.

Keywords: Cold-formed steel, cyclic loading, modeling technique, nonlinear analysis, shear wall panel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1223
503 Numerical Evaluation of Shear Strength for Cold-Formed Steel Shear Wall Panel

Authors: Rouaz Idriss, Bourahla Nour-Eddine, Kahlouche Farah, Rafa Sid Ali

Abstract:

The stability of structures made of light-gauge steel depends highly on the contribution of Shear Wall Panel (SWP) systems under horizontal forces due to wind or earthquake loads. Steel plate sheathing is often used with these panels made of cold formed steel (CFS) to improve its shear strength. In order to predict the shear strength resistance, two methods are presented in this paper. In the first method, the steel plate sheathing is modeled with plats strip taking into account only the tension and compression force due to the horizontal load, where both track and stud are modeled according to the geometrical and mechanical characteristics of the specimen used in the experiments. The theoretical background and empirical formulations of this method are presented in this paper. However, the second method is based on a micro modeling of the cold formed steel Shear Wall Panel “CFS-SWP” using Abaqus software. A nonlinear analysis was carried out with an in-plan monotonic load. Finally, the comparison between these two methods shows that the micro modeling with Abaqus gives better prediction of shear resistance of SWP than strips method. However, the latter is easier and less time consuming than the micro modeling method.

Keywords: Cold Formed Steel Shear Wall Panel, CFS-SWP, micro modeling, nonlinear analysis, strip method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1482
502 Modified Levenberg-Marquardt Method for Neural Networks Training

Authors: Amir Abolfazl Suratgar, Mohammad Bagher Tavakoli, Abbas Hoseinabadi

Abstract:

In this paper a modification on Levenberg-Marquardt algorithm for MLP neural network learning is proposed. The proposed algorithm has good convergence. This method reduces the amount of oscillation in learning procedure. An example is given to show usefulness of this method. Finally a simulation verifies the results of proposed method.

Keywords: Levenberg-Marquardt, modification, neural network, variable learning rate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4996
501 Experimental Investigation of Cold-Formed Steel-Timber Board Composite Floor Systems

Authors: Samar Raffoul, Martin Heywood, Dimitrios Moutaftsis, Michael Rowell

Abstract:

This paper comprises an experimental investigation into the structural performance of cold formed steel (CFS) and timber board composite floor systems. The tests include a series of small-scale pushout tests and full-scale bending tests carried out using a refined loading system to simulate uniformly distributed constant load. The influence of connection details (screw spacing and adhesives) on floor performance was investigated. The results are then compared to predictions from relevant existing models for composite floor systems. The results of this research demonstrate the significant benefits of considering the composite action of the boards in floor design. Depending on connection detail, an increase in flexural stiffness of up to 40% was observed in the floor system, when compared to designing joists individually.

Keywords: Cold formed steel joists, composite action, flooring systems, shear connection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 822
500 Tensile Behavior of Spheroidizing Heat Treated High Carbon Steel

Authors: Seok Hong Min, Tae Kwon Ha

Abstract:

Spheroidization heat treatment was conducted on the  SK85 high carbon steel sheets with various initial microstructures  obtained after cold rolling by various reduction ratios at a couple of  annealing temperatures. On the high carbon steel sheet with fine  pearlite microstructure, obtained by soaking at 800oC for 2hr in a box furnace and then annealing at 570oC for 5min in a salt bath furnace followed by water quenching, cold rolling was conducted by reduction ratios of 20, 30, and 40%. Heat treatment for spheroidization was carried out at 600 and 720oC for the various time intervals from 0.1 to 32 hrs. Area fraction of spheroidized cementite was measured with an image analyzer as a function of cold reduction ratios and duration times. Tensile tests were carried out at room temperature on the spheoidized high carbon steel.

 

Keywords: High carbon steel, SK85, pearlite, cementite, shperoidization, tensile behavior.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4081
499 Program Camouflage: A Systematic Instruction Hiding Method for Protecting Secrets

Authors: Yuichiro Kanzaki, Akito Monden, Masahide Nakamura, Ken-ichi Matsumoto

Abstract:

This paper proposes an easy-to-use instruction hiding method to protect software from malicious reverse engineering attacks. Given a source program (original) to be protected, the proposed method (1) takes its modified version (fake) as an input, (2) differences in assembly code instructions between original and fake are analyzed, and, (3) self-modification routines are introduced so that fake instructions become correct (i.e., original instructions) before they are executed and that they go back to fake ones after they are executed. The proposed method can add a certain amount of security to a program since the fake instructions in the resultant program confuse attackers and it requires significant effort to discover and remove all the fake instructions and self-modification routines. Also, this method is easy to use (with little effort) because all a user (who uses the proposed method) has to do is to prepare a fake source code by modifying the original source code.

Keywords: Copyright protection, program encryption, program obfuscation, self-modification, software protection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1462
498 Experimental Investigation on Cold-formed Steel Wall Plate System

Authors: A. L. Y. Ng, W. H. Hii

Abstract:

A series of tests on cold-formed steel (CFS) wall plate system subjected to uplift force at the mid span of the wall plate is presented. The aim of the study was to study the behaviour and identify the modes of failure of CFS wall plate system. Two parameters were considered in these studies: 1) different dimension of U-bracket at the supports and 2) different sizes of lipped C-channel. The lipped C-channels used were C07508, C07512 and C10012. The dimensions of the leg of U-bracket were 50x35 mm and 50x60 mm respectively, where 25 mm clearance was provided to the connections for specimens with clearance. Results show that specimens with and without clearance experienced the same mode of failure. Failure began with the yielding of the connectors followed by distortional buckling of the wall plate. However, when C075 sections were used as wall plate, the system behaved differently. There was a large deformation in the wall plate and failure began in the distortional buckling of the wall plate followed by bearing of the connecting plates at the supports (U-bracket). The ultimate strength of the system also decreased dramatically when C075 sections were used.

Keywords: Cold-formed steel, wall plate system, distortional buckling, full scale laboratory test.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2099
497 Experimental Investigation on Cold-Formed Steel Foamed Concrete Composite Wall under Compression

Authors: Zhifeng Xu, Zhongfan Chen

Abstract:

A series of tests on cold-formed steel foamed concrete (CSFC) composite walls subjected to axial load were proposed. The primary purpose of the experiments was to study the mechanical behavior and identify the failure modes of CSFC composite walls. Two main factors were considered in this study: 1) specimen with pouring foamed concrete or without and 2) different foamed concrete density ranks (corresponding to different foamed concrete strength). The interior space between two pieces of straw board of the specimen W-2 and W-3 were poured foamed concrete, and the specimen W-1 does not have foamed concrete core. The foamed concrete density rank of the specimen W-2 was A05 grade, and that of the specimen W-3 was A07 grade. Results showed that the failure mode of CSFC composite wall without foamed concrete was distortional buckling of cold-formed steel (CFS) column, and that poured foamed concrete includes the local crushing of foamed concrete and local buckling of CFS column, but the former prior to the later. Compared with CSFC composite wall without foamed concrete, the ultimate bearing capacity of spec imens poured A05 grade and A07 grade foamed concrete increased 1.6 times and 2.2 times respectively, and specimen poured foamed concrete had a low vertical deformation. According to these results, the simplified calculation formula for the CSFC wall subjected to axial load was proposed, and the calculated results from this formula are in very good agreement with the test results.

Keywords: Cold-formed steel, composite wall, foamed concrete, axial behavior test.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1296
496 Design Modification of Lap Joint of Fiber Metal Laminates (CARALL)

Authors: Shaher Bano, Samia Fida, Asif Israr

Abstract:

The synergistic effect of properties of metals and fibers reinforced laminates has diverted attention of the world towards use of robust composite materials known as fiber-metal laminates in many high performance applications. In this study, modification of an adhesively bonded joint as a single lap joint of carbon fibers based CARALL FML has done to increase interlaminar shear strength of the joint. The effect of different configurations of joint designs such as spews, stepped and modification in adhesive by addition of nano-fillers was studied. Both experimental and simulation results showed that modified joint design have superior properties as maximum force experienced stepped joint was 1.5 times more than the simple lap joint. Addition of carbon nano-tubes as nano-fillers in the adhesive joint increased the maximum force due to crack deflection mechanism.

Keywords: Adhesive joint, carbon reinforced aluminium laminate, CARALL, fiber metal laminates, spews.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1054
495 Solving a System of Nonlinear Functional Equations Using Revised New Iterative Method

Authors: Sachin Bhalekar, Varsha Daftardar-Gejji

Abstract:

In the present paper, we present a modification of the New Iterative Method (NIM) proposed by Daftardar-Gejji and Jafari [J. Math. Anal. Appl. 2006;316:753–763] and use it for solving systems of nonlinear functional equations. This modification yields a series with faster convergence. Illustrative examples are presented to demonstrate the method.

Keywords: Caputo fractional derivative, System of nonlinear functional equations, Revised new iterative method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2301
494 Modification of Rk Equation of State for Liquid and Vapor of Ammonia by Genetic Algorithm

Authors: S. Mousavian, F. Mousavian, V. Nikkhah Rashidabad

Abstract:

Cubic equations of state like Redlich–Kwong (RK)  EOS have been proved to be very reliable tools in the prediction of  phase behavior. Despite their good performance in compositional  calculations, they usually suffer from weaknesses in the predictions  of saturated liquid density. In this research, RK equation was  modified. The result of this study show that modified equation has  good agreement with experimental data.

 

Keywords: Equation of state, modification, ammonia, genetic algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2723
493 Finite Element Analysis of Cooling Time and Residual Strains in Cold Spray Deposited Titanium Particles

Authors: Thanh-Duoc Phan, Saden H. Zahiri, S. H. Masood, Mahnaz Jahedi

Abstract:

In this article, using finite element analysis (FEA) and an X-ray diffractometer (XRD), cold-sprayed titanium particles on a steel substrate is investigated in term of cooling time and the development of residual strains. Three cooling-down models of sprayed particles after deposition stage are simulated and discussed: the first model (m1) considers conduction effect to the substrate only, the second model (m2) considers both conduction as well as convection effect to the environment, and the third model (m3) which is the same as the second model but with the substrate heated to a near particle temperature before spraying. Thereafter, residual strains developed in the third model is compared with the experimental measurement of residual strains, which involved a Bruker D8 Advance Diffractometer using CuKa radiation (40kV, 40mA) monochromatised with a graphite sample monochromator. For deposition conditions of this study, a good correlation was found to exist between the FEA results and XRD measurements of residual strains.

Keywords: cold gas dynamic spray, X-ray diffraction, explicit finite element analysis, residual strain, titanium, particle impact, deformation behavior.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1726
492 Applicability of Overhangs for Energy Saving in Existing High-Rise Housing in Different Climates

Authors: Qiong He, S. Thomas Ng

Abstract:

Upgrading the thermal performance of building envelope of existing residential buildings is an effective way to reduce heat gain or heat loss. Overhang device is a common solution for building envelope improvement as it can cut down solar heat gain and thereby can reduce the energy used for space cooling in summer time. Despite that, overhang can increase the demand for indoor heating in winter due to its function of lowering the solar heat gain. Obviously, overhang has different impacts on energy use in different climatic zones which have different energy demand. To evaluate the impact of overhang device on building energy performance under different climates of China, an energy analysis model is built up in a computer-based simulation program known as DesignBuilder based on the data of a typical high-rise residential building. The energy simulation results show that single overhang is able to cut down around 5% of the energy consumption of the case building in the stand-alone situation or about 2% when the building is surrounded by other buildings in regions which predominantly rely on space cooling though it has no contribution to energy reduction in cold region. In regions with cold summer and cold winter, adding overhang over windows can cut down around 4% and 1.8% energy use with and without adjoining buildings, respectively. The results indicate that overhang might not an effective shading device to reduce the energy consumption in the mixed climate or cold regions.

Keywords: Overhang, energy analysis, computer-based simulation, high-rise residential building, mutual shading, climate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1410
491 Mercury Removing Capacity of Multiwall Carbon Nanotubes as Detected by Cold Vapor Atomic Absorption Spectroscopy: Kinetic & Equilibrium Studies

Authors: Yasser M. Moustafa, Rania E. Morsi, Mohammed Fathy

Abstract:

Multiwall carbon nanotubes, prepared by chemical vapor deposition, have an average diameter of 60-100 nm as shown by High Resolution Transmittance Electron Microscope, HR-TEM. The Multiwall carbon nanotubes (MWCNTs) were further characterized using X-ray Diffraction and Raman Spectroscopy. Mercury uptake capacity of MWCNTs was studied using batch adsorption method at different concentration ranges up to 150 ppm. Mercury concentration (before and after the treatment) was measured using cold vapor atomic absorption spectroscopy. The effect of time, concentration, pH and adsorbent dose were studied. MWCNT were found to perform complete absorption in the sub-ppm concentrations (parts per billion levels) while for high concentrations, the adsorption efficiency was 92% at the optimum conditions; 0.1 g of the adsorbent at 150 ppm mercury (II) solution. The adsorption of mercury on MWCNTs was found to follow the Freundlich adsorption isotherm and the pseudo-second order kinetic model.

Keywords: Cold Vapor Atomic Absorption Spectroscopy, Hydride System, Mercury Removing, Multi Wall Carbon Nanotubes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2386
490 A Study on Manufacturing of Head-Part of Pipes Using a Rotating Manufacturing Process

Authors: J. H. Park, S. K. Lee, Y. W. Kim, D. C. Ko

Abstract:

A large variety of pipe flange is required in marine and construction industry. Pipe flanges are usually welded or screwed to the pipe end and are connected with bolts. This approach is very simple and widely used for a long time; however, it results in high development cost and low productivity, and the productions made by this approach usually have safety problem at the welding area. In this research, a new approach of forming pipe flange based on cold forging and floating die concept is presented. This innovative approach increases the effectiveness of the material usage and save the time cost compared with conventional welding method. To ensure the dimensional accuracy of the final product, the finite element analysis (FEA) was carried out to simulate the process of cold forging, and the orthogonal experiment methods were used to investigate the influence of four manufacturing factors (pin die angle, pipe flange angle, rpm, pin die distance from clamp jig) and predicted the best combination of them. The manufacturing factors were obtained by numerical and experimental studies and it shows that the approach is very useful and effective for the forming of pipe flange, and can be widely used later.

Keywords: Cold forging, FEA, finite element analysis, Forge- 3D, rotating forming, tubes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1607
489 Effects of Preparation Conditions on the Properties of Crumb Rubber Modified Binder

Authors: Baha Vural Kök, Mehmet Yilmaz, Mustafa Akpolat, Cihat Sav

Abstract:

Various types of additives are used frequently in order to improve the rheological and mechanical properties of bituminous mixtures. Small devices instead of full scale machines are used for bitumen modification in the laboratory. These laboratory scale devices vary in terms of their properties such as mixing rate, mixing blade and the amount of binder. In this study, the effect of mixing rate and time during the bitumen modification processes on conventional and rheological properties of pure and crumb rubber modified binder were investigated. Penetration, softening point, rotational viscosity (RV) and dynamic shear rheometer (DSR) tests were applied to pure and CR modified bitumen. It was concluded that the penetration and softening point test did not show the efficiency of CR obtained by different mixing conditions. Besides, oxidation that occurred during the preparation processes plays a great part in the improvement effects of the modified binder.

Keywords: Bitumen, crumb rubber, modification, rheological properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 937
488 Radio-Frequency Plasma Discharge Equipment for Conservation Treatments of Paper Supports

Authors: Emil G. Ioanid, Viorica Frunză, Dorina Rusu, Ana Maria Vlad, Catalin Tanase, Simona Dunca

Abstract:

The application of cold Radio-Frequency (RF) plasma in the conservation of cultural heritage became important in the last decades due to the positive results obtained in decontamination treatments. This paper presents an equipment especially designed for cold RF plasma application on paper documents, developed within a research project. The equipment consists in two modules: the first one is designed for decontamination and cleaning treatments of any type of paper supports, while the second one can be used for coating friable papers with adequate polymers, for protection purposes. All these operations are carried out in cold radio-frequency plasma, working in gaseous nitrogen, at low pressure. In order to optimize the equipment parameters ancient paper samples infested with microorganisms have been treated in nitrogen plasma and the decontamination effects, as well as changes in surface properties (color, pH) were assessed. The microbiological analysis revealed complete decontamination at 6 minutes treatment duration; only minor modifications of the surface pH were found and the colorimetric analysis showed a slight yellowing of the support.

Keywords: Cultural heritage, nitrogen plasma, paper support.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2563
487 The Modification of the Mixed Flow Pump with Respect to Stability of the Head Curve

Authors: Roman Klas, František Pochylý, Pavel Rudolf

Abstract:

This paper is focused on the CFD simulation of the radiaxial pump (i.e. mixed flow pump) with the aim to detect the reasons of Y-Q characteristic instability. The main reasons of pressure pulsations were detected by means of the analysis of velocity and pressure fields within the pump combined with the theoretical approach. Consequently, the modifications of spiral case and pump suction area were made based on the knowledge of flow conditions and the shape of dissipation function. The primary design of pump geometry was created as the base model serving for the comparison of individual modification influences. The basic experimental data are available for this geometry. This approach replaced the more complicated and with respect to convergence of all computational tasks more difficult calculation for the compressible liquid flow. The modification of primary pump consisted in inserting the three fins types. Subsequently, the evaluation of pressure pulsations, specific energy curves and visualization of velocity fields were chosen as the criterion for successful design. 

Keywords: CFD, radiaxial pump, spiral case, stability

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1520
486 BTEX (Benzene, Toluene, Ethylbenzene and Xylene) Degradation by Cold Plasma

Authors: Anelise Leal Vieira Cubas, Marina de Medeiros Machado, Marília de Medeiros Machado

Abstract:

The volatile organic compounds - BTEX (Benzene, Toluene, Ethylbenzene, and Xylene) petroleum derivatives, have high rates of toxicity, which may carry consequences for human health, biota and environment. In this directon, this paper proposes a method of treatment of these compounds by using corona discharge plasma technology. The efficiency of the method was tested by analyzing samples of BTEX after going through a plasma reactor by gas chromatography method. The results show that the optimal residence time of the sample in the reactor was 8 minutes.

Keywords: BTEX, Degradation, Cold plasma.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2698
485 The IVAIRE Study: Relative Performance of Energy and Heat Recovery Ventilators in Cold Climates

Authors: D. Aubin, D. Won, H. Schleibinger, P. Lajoie, D. Gauvin, J.-M. Leclerc

Abstract:

This paper describes the results obtained in a two-year randomized intervention field study investigating the impact of ventilation rates on indoor air quality (IAQ) and the respiratory health of asthmatic children in Québec City, Canada. The focus of this article is on the comparative effectiveness of heat recovery ventilators (HRVs) and energy recovery ventilators (ERVs) at increasing ventilation rates, improving IAQ, and maintaining an acceptable indoor relative humidity (RH). In 14% of the homes, the RH was found to be too low in winter. Providing more cold and dry outside air to under-ventilated homes in winter further reduces indoor RH. Thus, low-RH homes in the intervention group were chosen to receive ERVs (instead of HRVs) to increase the ventilation rate. The installation of HRVs or ERVs led to a near doubling of the ventilation rates in the intervention group homes which led to a significant reduction in the concentration of several key of pollutants. The ERVs were also effective in maintaining an acceptable indoor RH since they avoided excessive dehumidification of the home by recovering moisture from the exhaust airstream through the enthalpy core, otherwise associated with increased cold supply air rates.

Keywords: Asthma, field study, indoor air quality, ventilation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 692