
 

 

  
Abstract—In this paper a modification on Levenberg-Marquardt 

algorithm for MLP neural network learning is proposed. The 
proposed algorithm has good convergence. This method reduces the 
amount of oscillation in learning procedure. An example is given to 
show usefulness of this method. Finally a simulation verifies the 
results of proposed method. 
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variable learning rate.  

I. INTRODUCTION 
HE Error Back Propagation (EBP) algorithm [1]–[4] has 
been a signification improvement in neural network 

research, but it has a weak convergence rate. 
Many efforts have been made to speed up EBP algorithm 

[5]–[9]. All of these methods lead to little acceptable results. 
The Levenberg-Marquardt (LM) algorithm [4], [10]–[13] 
ensued from development of EBP algorithm dependent 
methods. It gives a good exchange between the speed of the 
Newton algorithm and the stability of the steepest descent 
method [11], that those are two basic theorems of LM 
algorithm. An attempt has been made to speed up LM 
algorithm with modified performance index and gradient 
computation [14], although it is unable to reduce error 
oscillation. Other effort with variable decay rate has been 
ensued to reduce error oscillation [15], but offered algorithm 
had low speed compared standard LM algorithm.  

In this paper a modification is made on Learning parameter 
resulted in to decrease together both learning iteration and 
oscillation. A modification method by varying the learning 
parameter has been made to speed up LM algorithm. In 
addition, the error oscillation has been decreased. 

Section II describes the LM algorithm. Section III the 
proposed form of the modification on learning parameter is 
introduced. In section IV a simulation is discussed.  

 

II.  THE LEVENBERG-MARQURADT METHOD REVIEW 
In the EBP algorithm, the performance index F(w) to be 
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minimized is defined as the sum of squared errors between the 
target outputs and the network's simulated outputs, namely: 

 
eewF T=)(  (1) 

 
Where w = [w1, w2, …., wN ] consists of all weights of the 

network, e is the error vector comprising the error for all the 
training examples. 

When training with the LM method, the increment of 
weights ∆w can be obtained as follows: 

 

[ ] eJIJJw TT 1−
+=∆ µ  (2) 

 
Where J is the Jacobian matrix, µ is the learning rate which 

is to be updated using the β depending on the outcome. In 
particular, µ is multiplied by decay rate β (0<β<1) whenever 

)(wF decreases, whereas µ is divided by β whenever )(wF  
increases in a new step. 

The standard LM training process can be illustrated in the 
following pseudo-codes, 

1. Initialize the weights and parameter µ (µ=.01 is 
appropriate). 

2. Compute the sum of the squared errors over all 
inputs )(wF . 

3. Solve (2) to obtain the increment of weights ∆w 
4. Recomputed the sum of squared errors )(wF  
Using w + ∆w as the trial w, and judge 
IF trial )()( wFwF < in step 2 THEN  

                     www ∆+=                     
              )1.( =⋅= ββµµ                    
                   Go back to step 2 
ELSE  

               β
µµ =                      

                go back to step 4 
END IF 

III.  MODIFICATION OF THE LM METHOD 

Considering performance index is eewF T=)( using the 
Newton method we have as: 
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KKKK gAWW ⋅−= −
+

1
1  (3) 

kwwk wFA =∇= )(2  (4) 

kwwk wFg =∇= )(  (5) 
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The gradient can write as: 
)(2)( weJxF T=∇  (7) 

 
Where  
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)(wJ  is called the Jacobian matrix. 

Next we want to find the Hessian matrix. The k, j elements 
of the Hessian matrix yields as:                                                   
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The Hessian matrix can then be expressed as follows: 
  

)()()(2)(2 WSWJWJWF T +⋅=∇  (10) 
Where 

∑
=

∇⋅=
N

i
ii wewewS

1

2 )()()(  (11) 

If we assume that )(wS  is small, we can approximate the 
Hessian matrix as: 

 
)()(2)(2 wJwJwF T≅∇  (12) 

 
Using (12) and (4) we obtain the Gauss-Newton method as: 
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 (13) 
The advantage of Gauss-Newton is that it does not require 

calculation of second derivatives. 
There is a problem the Gauss-Newton method is the matrix 

H=JTJ may not be invertible. This can be overcome by using 
the following modification. 

Hessian matrix can be written as: 
 

IHG µ+=  (14) 
Suppose that the eigenvalues and eigenvectors of H are {λ1, 

λ2,…….,λn} and {z1,z2,…….,zn}.Then: 
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 (15) 

 
Therefore the eigenvectors of G are the same as the 

eigenvectors of H, and the eigenvalues of G are (λi+µ). The 
matrix G is positive definite by increasing µ until (λi+µ)>0 for 
all i therefore the matrix will be invertible. 

This leads to Levenberg-Marquardt algorithm: 
 

[ ] )()()()( 1
1 KK

T
kK

T
KK wewJIwJwJww −

+ +−= µ   
 (16) 

[ ] )()()()( 1
KK

T
KK

T
K wewJIwJwJw −

+=∆ µ  
 (17) 

As known, learning parameter, µ is illustrator of steps of 
actual output movement to desired output. In the standard LM 
method, µ is a constant number.  This paper modifies LM 
method using µ as: 

eeT01.0=µ  (18) 
Where e is a k×1 matrix therefore eTe is a 1×1 therefore 

[JTJ+µI] is invertible. 
Therefore, if actual output is far than desired output or 

similarly, errors are large so, it converges to desired output 
with large steps. 

Likewise, when measurement of error is small then, actual 
output approaches to desired output with soft steps. Therefore 
error oscillation reduces greatly.  

 

IV.  SIMULATION RESULTS 
In this section we consider XOR gate as a case study. We 

simulate this gate with standard LM and modified LM. We 
use a Neural Network with two layers and the transfer 
function is as: 
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 (19) 

 
Fig.1 shows the error of Neural Network simulation with 

standard LM and Fig.2 shows the result of modified LM. As 
described in Table I, the iteration of learning and the 
oscillation is reduced in modified LM. 
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Fig.1 XOR with two hidden neurons for standard LM 
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Fig.2 XOR with two hidden neurons for modified LM 

 
Results of the standard LM and modified LM algorithms 

for XOR example are shown in Table I. 
 
 

TABLE I 
 COMPARISON OF METHODS 

Method 
Number of hidden 

neurons 
Number of 
iteration 

Standard LM 2 52 

Modified LM 2 41 
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