

Abstract—In this paper a modification on Levenberg-Marquardt

algorithm for MLP neural network learning is proposed. The
proposed algorithm has good convergence. This method reduces the
amount of oscillation in learning procedure. An example is given to
show usefulness of this method. Finally a simulation verifies the
results of proposed method.

Keywords—Levenberg-Marquardt, modification, neural network,

variable learning rate.

I. INTRODUCTION
HE Error Back Propagation (EBP) algorithm [1]–[4] has
been a signification improvement in neural network

research, but it has a weak convergence rate.
Many efforts have been made to speed up EBP algorithm

[5]–[9]. All of these methods lead to little acceptable results.
The Levenberg-Marquardt (LM) algorithm [4], [10]–[13]
ensued from development of EBP algorithm dependent
methods. It gives a good exchange between the speed of the
Newton algorithm and the stability of the steepest descent
method [11], that those are two basic theorems of LM
algorithm. An attempt has been made to speed up LM
algorithm with modified performance index and gradient
computation [14], although it is unable to reduce error
oscillation. Other effort with variable decay rate has been
ensued to reduce error oscillation [15], but offered algorithm
had low speed compared standard LM algorithm.

In this paper a modification is made on Learning parameter
resulted in to decrease together both learning iteration and
oscillation. A modification method by varying the learning
parameter has been made to speed up LM algorithm. In
addition, the error oscillation has been decreased.

Section II describes the LM algorithm. Section III the
proposed form of the modification on learning parameter is
introduced. In section IV a simulation is discussed.

II. THE LEVENBERG-MARQURADT METHOD REVIEW
In the EBP algorithm, the performance index F(w) to be

Amir Abolfazl suratgar is Assistant professor in the Electrical Engineering

Department, University of Arak, Arak, Iran. (phone: +98-861-22 25 946; fax:
+98-861-22 25 946; e-mail: a-surtagar@ araku.ac.ir).

Mohammad Bagher Tavakoli is Msc. Student of Electrical Engineering
Department of Azad University, Arak, Iran (e-mail: m-tavakoli@ iau-
arak.ac.ir).

Abbas Hoseinabadi is Msc. Student of Electrical Engineering Department
of Azad University, Arak, Iran (e-mail: a-hoseinabadi@ iau-arak.ac.ir).

minimized is defined as the sum of squared errors between the
target outputs and the network's simulated outputs, namely:

eewF T=)((1)

Where w = [w1, w2, …., wN] consists of all weights of the

network, e is the error vector comprising the error for all the
training examples.

When training with the LM method, the increment of
weights ∆w can be obtained as follows:

[] eJIJJw TT 1−
+=∆ µ (2)

Where J is the Jacobian matrix, µ is the learning rate which

is to be updated using the β depending on the outcome. In
particular, µ is multiplied by decay rate β (0<β<1) whenever

)(wF decreases, whereas µ is divided by β whenever)(wF
increases in a new step.

The standard LM training process can be illustrated in the
following pseudo-codes,

1. Initialize the weights and parameter µ (µ=.01 is
appropriate).

2. Compute the sum of the squared errors over all
inputs)(wF .

3. Solve (2) to obtain the increment of weights ∆w
4. Recomputed the sum of squared errors)(wF
Using w + ∆w as the trial w, and judge
IF trial)()(wFwF < in step 2 THEN

 www ∆+=
)1.(=⋅= ββµµ
 Go back to step 2
ELSE

 β
µµ =

 go back to step 4
END IF

III. MODIFICATION OF THE LM METHOD

Considering performance index is eewF T=)(using the
Newton method we have as:

Amir Abolfazl Suratgar, Mohammad Bagher Tavakoli, and Abbas Hoseinabadi

Modified Levenberg-Marquardt Method for
Neural Networks Training

T

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:6, 2007

1745International Scholarly and Scientific Research & Innovation 1(6) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

6,
 2

00
7

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/7

47
9.

pd
f

KKKK gAWW ⋅−= −
+

1
1 (3)

kwwk wFA =∇=)(2 (4)

kwwk wFg =∇=)((5)

[]

∑
= ∂

∂
=

∂
∂

=∇

N

i

i
i

j
j

wj
we

we

w
wFwF

1

)(
).(2

)()(
 (6)

The gradient can write as:
)(2)(weJxF T=∇ (7)

Where

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

=

N

KPKPKP

N

N

w
e

w
e

w
e

w
e

w
e

w
e

w
e

w
e

w
e

wJ

LL

M

LL

LL

21

21

2

21

1

21

11

2

11

1

11

)((8)

)(wJ is called the Jacobian matrix.

Next we want to find the Hessian matrix. The k, j elements
of the Hessian matrix yields as:

[]

}
)(

).(

)()(
{2

)()(

2

1

2

,
2

jk

i
i

N

i
j

i

k

i

jk
jk

ww
we

we

w
we

w
we

ww
wFwF

∂∂
∂

+

∂
∂

∂
∂

=

∂∂
∂

=∇

∑ =
 (9)

The Hessian matrix can then be expressed as follows:

)()()(2)(2 WSWJWJWF T +⋅=∇ (10)
Where

∑
=

∇⋅=
N

i
ii wewewS

1

2)()()((11)

If we assume that)(wS is small, we can approximate the
Hessian matrix as:

)()(2)(2 wJwJwF T≅∇ (12)

Using (12) and (4) we obtain the Gauss-Newton method as:

[]
[])()()()(

)()(2)()(2
1

1
1

kk
T

kk
T

k

kk
T

kk
T

k

k

wewJwJwJW

wewJwJwJW

W

−

−

+

⋅−≅

⋅−

=

 (13)
The advantage of Gauss-Newton is that it does not require

calculation of second derivatives.
There is a problem the Gauss-Newton method is the matrix

H=JTJ may not be invertible. This can be overcome by using
the following modification.

Hessian matrix can be written as:

IHG µ+= (14)
Suppose that the eigenvalues and eigenvectors of H are {λ1,

λ2,…….,λn} and {z1,z2,…….,zn}.Then:

[]

ii

iii

ii

ii

z
zz
zHz
zIHGz

)(µλ
µλ
µ

µ

+=
+=
+=

+=

 (15)

Therefore the eigenvectors of G are the same as the

eigenvectors of H, and the eigenvalues of G are (λi+µ). The
matrix G is positive definite by increasing µ until (λi+µ)>0 for
all i therefore the matrix will be invertible.

This leads to Levenberg-Marquardt algorithm:

[])()()()(1
1 KK

T
kK

T
KK wewJIwJwJww −

+ +−= µ
 (16)

[])()()()(1
KK

T
KK

T
K wewJIwJwJw −

+=∆ µ
 (17)

As known, learning parameter, µ is illustrator of steps of
actual output movement to desired output. In the standard LM
method, µ is a constant number. This paper modifies LM
method using µ as:

eeT01.0=µ (18)
Where e is a k×1 matrix therefore eTe is a 1×1 therefore

[JTJ+µI] is invertible.
Therefore, if actual output is far than desired output or

similarly, errors are large so, it converges to desired output
with large steps.

Likewise, when measurement of error is small then, actual
output approaches to desired output with soft steps. Therefore
error oscillation reduces greatly.

IV. SIMULATION RESULTS
In this section we consider XOR gate as a case study. We

simulate this gate with standard LM and modified LM. We
use a Neural Network with two layers and the transfer
function is as:

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:6, 2007

1746International Scholarly and Scientific Research & Innovation 1(6) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

6,
 2

00
7

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/7

47
9.

pd
f

1
)exp(1

2)(−
−+

=
net

netf
 (19)

Fig.1 shows the error of Neural Network simulation with

standard LM and Fig.2 shows the result of modified LM. As
described in Table I, the iteration of learning and the
oscillation is reduced in modified LM.

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

iterations

er
ro

r

Fig.1 XOR with two hidden neurons for standard LM

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

iterations

er
ro

r

Fig.2 XOR with two hidden neurons for modified LM

Results of the standard LM and modified LM algorithms

for XOR example are shown in Table I.

TABLE I
 COMPARISON OF METHODS

Method
Number of hidden

neurons
Number of
iteration

Standard LM 2 52

Modified LM 2 41

V. ACKNOWLEDGMENT

The authors would like to thanks Azad University of Arak
for their financial supports of this paper.

REFERENCES
[1] Rumelhart, D. E., Hinton, G. E. and Williams, R. J, “Learning internal

representations by error propagation,” In Parallel Distributed
Processing, Cambridge, MA: MIT Press, vol 1, pp. 318-362.

[2] Rumelhart, D. E., Hinton, G. E. and Wiliams, R. J, “Learning
representations by back-propagating errors,” Nature, vol. 323, pp. 533-
536, 1986.

[3] Werbos, P. J. “Back-propagation: Past and future,” Proceeding of
International Conference on Neural Networks, San Diego, CA, 1, pp.
343-354, 1988.

[4] .M. T .Hagan and M. B. Menhaj, “Training feed forward network with
the Marquardt algorithm,” IEEE Trans. on Neural Net., vol. 5, no. 6,
pp.989-993, 1994.

[5] Bello, M. G. “Enhanced training algorithms, and integrated
training/architecture selection for multi layer perceptron networks,”
IEEE Trans. on Neural Net., vol. 3, pp. 864-875, 1992.

[6] Samad, T. “Back-propagation improvements based on heuristic
arguments,” Proceedings of International Joint Conference on Neural
Networks, Washington, 1, pp. 565-568, 1990.

[7] Solla, S. A., Levin, E. and Fleisher, M. “Accelerated learning in layered
neural networks,” Complex Systems, 2, pp. 625-639, 1988.

[8] Miniani, A. A. and Williams, R. D. “Acceleration of back-propagation
through learning rate and momentum adaptation,” Proceedings of
International Joint Conference on Neural Networks, San Diego, CA, 1,
676-679, 1990.

[9] Jacobs, R. A., “Increased rates of convergence through learning rate
adaptation,” Neural Networks, vol. 1, no. 4, pp. 295-308, 1988.

[10] Andersen, T. J. and Wilamowski, B.M. “A Modified Regression
Algorithm for Fast One Layer Neural Network Training,” World
Congress of Neural Networks, Washington DC, USA, vol. 1, pp. 687-
690, July 17-21, 1995.

[11] Battiti, R., “First- and second-order methods for learning between
steepest descent and Newton’s method,” Neural Computation, vol. 4, no.
2, pp. 141-166, 1992.

[12] Charalambous, C., “Conjugate gradient algorithm for efficient training
of artificial neural networks,” IEE Proceedings, vol. 139, no. 3, pp. 301-
310, 1992.

[13] Shah, S. and Palmieri, F. “MEKA - A fast, local algorithm for training
feed forward neural networks,” Proceedings of International Joint
Conference on Neural Networks, San Diego, CA, 3, pp. 41-46, 1990.

[14] B. M. Wilamowski , Y. Chen, and A. Malinowski, “Efficient algorithm
for training neural networks with one hidden layer,” In Proc. IJCNN,
vol.3, pp.1725-728, 1999.

[15] T. Cong Chen, D. Jian Han, F. T. K. Au, L. G. Than, “Acceleration of
Levenberg-Marquardt training of neural networks with variable decay
rate,” IEEE Trans. on Neural Net., vol. 3, no. 6, pp. 1873 - 1878, 2003.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:6, 2007

1747International Scholarly and Scientific Research & Innovation 1(6) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

6,
 2

00
7

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/7

47
9.

pd
f

