Search results for: Compressive strength
840 Effect of T6 and Re-Aging Heat Treatment on Mechanical Properties of 7055 Aluminum Alloy
Authors: M. Esmailian, M. Shakouri, A. Mottahedi, S. G. Shabestari
Abstract:
Heat treatable aluminum alloys such as 7075 and 7055, because of high strength and low density, are used widely in aircraft industry. For best mechanical properties, T6 heat treatment has recommended for this regards, but this temper treatment is sensitive to corrosion induced and Stress Corrosion Cracking (SCC) damage. For improving this property, the over-aging treatment (T7) applies to this alloy, but it decreases the mechanical properties up to 30 percent. Hence, to increase the mechanical properties, without any remarkable decrease in SCC resistant, Retrogression and Re-Aging (RRA) heat treatment is used. This treatment performs in a relatively short time. In this paper, the RRA heat treatment was applied to 7055 aluminum alloy and then effect of RRA time on the mechanical properties of 7055 has been investigated. The results show that the 40-minute time is suitable time for retrogression of 7055 aluminum alloy and ultimate strength increases up to 625MPa.Keywords: 7055 Aluminum alloy, Mechanical properties, SCC resistance, Heat Treatment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3060839 Survey on Nano-fibers from Acetobacter Xylinum
Authors: A. Ashjaran, M. E. Yazdanshenas, A. Rashidi, R. Khajavi, A. Rezaee
Abstract:
fibers of pure cellulose can be made from some bacteria such as acetobacter xylinum. Bacterial cellulose fibers are very pure, tens of nm across and about 0.5 micron long. The fibers are very stiff and, although nobody seems to have measured the strength of individual fibers. Their stiffness up to 70 GPa. Fundamental strengths should be at least greater than those of the best commercial polymers, but best bulk strength seems to about the same as that of steel. They can potentially be produced in industrial quantities at greatly lowered cost and water content, and with triple the yield, by a new process. This article presents a critical review of the available information on the bacterial cellulose as a biological nonwoven fabric with special emphasis on its fermentative production and applications. Characteristics of bacterial cellulose biofabric with respect to its structure and physicochemical properties are discussed. Current and potential applications of bacterial cellulose in textile, nonwoven cloth, paper, films synthetic fiber coating, food, pharmaceutical and other industries are also presented.
Keywords: Microbial cellulose, Biofabric, Microorganisms Acetobacter xylinum, Polysaccharide
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1701838 Production of Biocomposites Using Chars Obtained by Co-Pyrolysis of Olive Pomace with Plastic Wastes
Authors: Esra Yel, Tabriz Aslanov, Merve Sogancioglu, Suheyla Kocaman, Gulnare Ahmetli
Abstract:
The disposal of waste plastics has become a major worldwide environmental problem. Pyrolysis of waste plastics is one of the routes to waste minimization and recycling that has been gaining interest. In pyrolysis, the pyrolysed material is separated into gas, liquid (both are fuel) and solid (char) products. All fractions have utilities and economical value depending upon their characteristics. The first objective of this study is to determine the co-pyrolysis product fractions of waste HDPE- (high density polyethylene) and LDPE (low density polyethylene)-olive pomace (OP) and to determine the qualities of the solid product char. Chars obtained at 700 °C pyrolysis were used in biocomposite preparation as additive. As the second objective, the effects of char on biocomposite quality were investigated. Pyrolysis runs were performed at temperature 700 °C with heating rates of 5 °C/min. Biocomposites were prepared by mixing of chars with bisphenol-F type epoxy resin in various wt%. Biocomposite properties were determined by measuring electrical conductivity, surface hardness, Young’s modulus and tensile strength of the composites. The best electrical conductivity results were obtained with HDPE-OP char. For HDPE-OP char and LDPE-OP char, compared to neat epoxy, the tensile strength values of the composites increased by 102% and 78%, respectively, at 10% char dose. The hardness measurements showed similar results to the tensile tests, since there is a correlation between the hardness and the tensile strength.Keywords: Pyrolysis, olive pomace, char, biocomposite, PE plastics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1908837 Structural Behaviour of Partially Filled Steel Grid Composite Deck
Authors: Hyun-Seop Shin, Chin-Hyung Lee, Ki-Tae Park
Abstract:
In order to apply partially filled steel grid composite deck as the horizontal supporting structure of various kinds of infrastructures, the variation of its flexural strength according to design parameters such as cross and longitudinal bars constituting the steel grid and the type of shear connection is evaluated and compared experimentally. The result shows that the design sensitivity of the deck to the spacing of the cross bars is insignificant in the case of structure with low risk of punching failure or without load distribution problem. By means of shear connection composed by transverse rebar and longitudinal bar without additional shear stud bolts, the complete interaction between steel grid and concrete slab is able to be achieved and the composite deck can develop its bending resistance capacity.Keywords: bending strength, composite action, shear connection, steel grid composite deck
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1622836 Feasibility of Ground Alkali-Active Sandstone Powder for Use in Concrete as Mineral Admixture
Authors: Xia Chen, Hua-Quan Yang, Shi-Hua Zhou
Abstract:
Alkali-active sandstone aggregate was ground by vertical and ball mill into particles with residue over 45 μm less than 12%, and investigations have been launched on particles distribution and characterization of ground sandstone powder, fluidity, heat of hydration, strength as well as hydration products morphology of pastes with incorporation of ground sandstone powder. Results indicated that ground alkali-active sandstone powder with residue over 45 μm less than 8% was easily obtainable, and specific surface area was more sensitive to characterize its fineness with extension of grinding length. Incorporation of sandstone powder resulted in higher water demand and lower strength, advanced hydration of C3A and C2S within 3days and refined pore structure. Based on its manufacturing, characteristics and influence on properties of pastes, it was concluded that sandstone powder was a good selection for use in concrete as mineral admixture.Keywords: Concrete, mineral admixture, hydration, structure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 716835 Preparation of Metallic Copper Nanoparticles by Reduction of Copper Ions in Aqueous Solution and Their Metal-Metal Bonding Properties
Authors: Y. Kobayashi, T. Shirochi, Y. Yasuda, T. Morita
Abstract:
This paper describes a method for preparing metallic Cu nanoparticles in aqueous solution, and a metal-metal bonding technique using the Cu particles.Preparation of the Cu particle colloid solution was performed in water at room temperature in air using a copper source (0.01 M Cu(NO3)2), a reducing reagent (0.2 - 1.0 M hydrazine), and stabilizers (0.5×10-3 M citric acid and 5.0×10-3 M cetyltrimethylammonium bromide). The metallic Cu nanoparticles with sizes of ca. 60nm were prepared at all the hydrazine concentrations examined. A stage and a plate of metallic Cu were successfully bonded under annealing at 400oC and pressurizing at 1.2 MPa for 5min in H2 gas with help of the metallic Cu particles. A shear strength required for separating the bonded Cu substrates reached the maximum value at a hydrazine concentration of 0.8M, and it decreased beyond the concentration. Consequently, the largest shear strength of 22.9 MPa was achieved at the 0.8 M hydrazine concentration.
Keywords: Aqueous solution, Bonding, Colloid, Copper, Nanoparticle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5660834 Impact Modified Oil Palm Empty Fruit Bunch Fiber/Poly(Lactic) Acid Composite
Authors: Mohammad D. H. Beg, John O. Akindoyo, Suriati Ghazali, Abdullah A. Mamun
Abstract:
In this study, composites were fabricated from oil palm empty fruit bunch fiber and poly(lactic) acid by extrusion followed by injection moulding. Surface of the fiber was pre-treated by ultrasound in an alkali medium and treatment efficiency was investigated by scanning electron microscopy (SEM) analysis and Fourier transforms infrared spectrometer (FTIR). Effect of fiber treatment on composite was characterized by tensile strength (TS), tensile modulus (TM) and impact strength (IS). Furthermore, biostrong impact modifier was incorporated into the treated fiber composite to improve its impact properties. Mechanical testing showed an improvement of up to 23.5% and 33.6% respectively for TS and TM of treated fiber composite above untreated fiber composite. On the other hand incorporation of impact modifier led to enhancement of about 20% above the initial IS of the treated fiber composite.
Keywords: Fiber treatment, impact modifier, natural fibers, ultrasound.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3277833 Lateral Torsional Buckling of Steel Thin-Walled Beams with Lateral Restraints
Authors: Ivan Balázs, Jindřich Melcher
Abstract:
Metal thin-walled members have been widely used in building industry. Usually they are utilized as purlins, girts or ceiling beams. Due to slenderness of thin-walled cross-sections these structural members are prone to stability problems (e.g. flexural buckling, lateral torsional buckling). If buckling is not constructionally prevented their resistance is limited by buckling strength. In practice planar members of roof or wall cladding can be attached to thin-walled members. These elements reduce displacement of thin-walled members and therefore increase their buckling strength. If this effect is taken into static assessment more economical sections of thin-walled members might be utilized and certain savings of material might be achieved. This paper focuses on problem of determination of critical load of steel thin-walled beams with lateral continuous restraint which is crucial for lateral torsional buckling assessment.Keywords: Beam, buckling, numerical analysis, stability, steel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2915832 Parameters Affecting the Elasto-Plastic Behavior of Outrigger Braced Walls to Earthquakes
Authors: T. A. Sakr, Hanaa E. Abd-El- Mottaleb
Abstract:
Outrigger-braced wall systems are commonly used to provide high rise buildings with the required lateral stiffness for wind and earthquake resistance. The existence of outriggers adds to the stiffness and strength of walls as reported by several studies. The effects of different parameters on the elasto-plastic dynamic behavior of outrigger-braced wall systems to earthquakes are investigated in this study. Parameters investigated include outrigger stiffness, concrete strength, and reinforcement arrangement as the main design parameters in wall design. In addition to being significantly affect the wall behavior, such parameters may lead to the change of failure mode and the delay of crack propagation and consequently failure as the wall is excited by earthquakes. Bi-linear stress-strain relation for concrete with limited tensile strength and truss members with bi-linear stress-strain relation for reinforcement were used in the finite element analysis of the problem. The famous earthquake record, El-Centro, 1940 is used in the study. Emphasize was given to the lateral drift, normal stresses and crack pattern as behavior controlling determinants. Results indicated significant effect of the studied parameters such that stiffer outrigger, higher grade concrete and concentrating the reinforcement at wall edges enhance the behavior of the system. Concrete stresses and cracking behavior are too much enhanced while less drift improvements are observed.
Keywords: Structures, High rise, Outrigger, Shear Wall, Earthquake, Nonlinear.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2355831 The Use of Local Knowledge and its Transferfor Community Self-Protection Development in Flood Prone Residential Area
Authors: Siyanee Hirunsalee, Hidehiko Kanegae
Abstract:
This paper aims to study at the use of local knowledge to develop community self-protection in flood prone residential area, Ayutthaya Island has been chosen as a case study. This study tries to examine the strength of local knowledge which is able to develop community self-protection and cope with flood disaster. In-depth, this paper focuses on the influence of social network on knowledge transfer. After conducted the research, authors reviewed the strength of local knowledge and also mentioned the obstacles of community to use and also transfer local knowledge. Moreover, the result of the study revealed that local knowledge is not always transferred by the strongest-tie social network (family or kinship) as we used to believe. Surprisingly, local knowledge could be also transferred by the weaker-tie social network (teacher/ monk) with the better effectiveness in some knowledge.Keywords: Community Self-Protection Development, FloodRisk Reduction, Knowledge Transfer, Local Knowledge
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1701830 Thermal Analysis of a Vertical Kiln Dryer for Drying Sunflower Seeds in the Oil Mill “Banat”, Nova Crnja, Serbia
Authors: Aleksandar Dedić, Duško Salemović, Matilda Lazić, Dragan Halas
Abstract:
The aim of the paper was the thermal balance control of vertical kiln dryer indirect type (VSU-36) for drying sunflower seed, produced by “Cer” - Cacak, capacity 39 [t/h]. The balance control was executed because the dryer was damaged by NATO bombing in 1999, and it was planned for its reconstruction. The structural and geometric characteristics of the dryer were known, and it was necessary to determine the parameters of wet air as a drying agent and the sunflower seeds. The thermal balance control was the basis for the replacement of damaged parts of the dryer during its reconstruction. After that, it was necessary to perform the subsequent calculation of strength. The accuracy of strength had a large influence on the cost-effectiveness and safety of a single drying chamber. Also, the work provides guidelines for the regimes of drying grain crops with an explanation of the specificity of drying sunflowers.
Keywords: Sunflower seeds, regimes of drying, vertical kiln dryer, thermal analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35829 A Wavelet-Based Watermarking Method Exploiting the Contrast Sensitivity Function
Authors: John N. Ellinas, Panagiotis Kenterlis
Abstract:
The efficiency of an image watermarking technique depends on the preservation of visually significant information. This is attained by embedding the watermark transparently with the maximum possible strength. The current paper presents an approach for still image digital watermarking in which the watermark embedding process employs the wavelet transform and incorporates Human Visual System (HVS) characteristics. The sensitivity of a human observer to contrast with respect to spatial frequency is described by the Contrast Sensitivity Function (CSF). The strength of the watermark within the decomposition subbands, which occupy an interval on the spatial frequencies, is adjusted according to this sensitivity. Moreover, the watermark embedding process is carried over the subband coefficients that lie on edges where distortions are less noticeable. The experimental evaluation of the proposed method shows very good results in terms of robustness and transparency.
Keywords: Image watermarking, wavelet transform, human visual system, contrast sensitivity function.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2092828 On the Fatigue Behavior of a Triphasic Composite
Authors: G. Minak, D. Ghelli, A. Zucchelli
Abstract:
This paper presents the results of an experimental characterization of a glass fibre-epoxy composite. The behavior of the traditional two-phase composite has been compared with the one of a new three-phase composite where the epoxy matrix was modified by addition of a 3% weight fraction of montmorillonite nano-particles. Two different types of nano-clays, Cloisite® 30B and RXG7000, produced by Southern Clay Products Inc., have been considered. Three-point bending tests, both monotonic and cyclic, were carried out. A strong reduction of the ultimate flexural strength upon nano-modification has been observed in quasi-static tests. Fatigue tests yielded a smaller strength loss. In both quasi-static and fatigue tests a more pronounced tendency to delamination has been noticed in three-phase composites, especially in the case of 30B nano-clay, with respect to the standard two-phase glass fiber composite.
Keywords: Bending fatigue, epoxy resin, glass fiber, montmorillonite.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2455827 Carrageenan Properties Extracted From Eucheuma cottonii, Indonesia
Authors: Sperisa Distantina, Wiratni , Moh. Fahrurrozi, Rochmadi
Abstract:
The effect of extraction solvent upon properties of carrageenan from Eucheuma cottonii was studied. The distilled water and KOH solution (concentration 0.1- 0.5N) were used as the solvent. Extraction process was carried out in water bath equipped by stirrer with constant speed of 275 rpm with a constant ratio of seaweed weight to solvent volume ( 1:50 g/mL) at 86oC for 45 minutes. The extract was then precipitated in 3 volume of 90% ethanol, oven dried at 60oC. Based on experimental data, alkali significantly influenced yield and properties of extracted carrageenan. The extracted carrageenan was found to have essentially identical FTIR spectra to the reference samples of kappa-carrageenan. Increasing the KOH concentration led to carrageenan containing less sulfate content and intrinsic viscosity. The gel strength increased along with the increasing of KOH concentration. The decreasing of intrinsic viscosity value indicates that a polymer degradation occurs during alkali extraction.Keywords: gel strength, sulfate, intrinsic viscosity, Eucheumacottonii
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6064826 Experimental and Numerical Study of Ultra-High-Performance Fiber-Reinforced Concrete Column Subjected to Axial and Eccentric Loads
Authors: Chengfeng Fang, Mohamed Ali Sadakkathulla, Abdul Sheikh
Abstract:
Ultra-high-performance fiber reinforced concrete (UHPFRC) is a specially formulated cement-based composite characterized with an ultra-high compressive strength (fc’ = 240 MPa) and a low water-cement ratio (W/B= 0.2). With such material characteristics, UHPFRC is favored for the design and constructions of structures required high structural performance and slender geometries. Unlike conventional concrete, the structural performance of members manufactured with UHPFRC has not yet been fully studied, particularly, for UHPFRC columns with high slenderness. In this study, the behaviors of slender UHPFRC columns under concentric or eccentric load will be investigated both experimentally and numerically. Four slender UHPFRC columns were tested under eccentric loads with eccentricities, of 0 mm, 35 mm, 50 mm, and 85 mm, respectively, and one UHPFRC beam was tested under four-point bending. Finite element (FE) analysis was conducted with concrete damage plasticity (CDP) modulus to simulating the load-middle height or middle span deflection relationships and damage patterns of all UHPFRC members. Simulated results were compared against the experimental results and observation to gain the confidence of FE model, and this model was further extended to conduct parametric studies, which aim to investigate the effects of slenderness regarding failure modes and load-moment interaction relationships. Experimental results showed that the load bearing capacities of the slender columns reduced with an increase in eccentricity. Comparisons between load-middle height and middle span deflection relationships as well as damage patterns of all UHPFRC members obtained both experimentally and numerically demonstrated high accuracy of the FE simulations. Based on the available FE model, the following parametric study indicated that a further increase in the slenderness of column resulted in significant decreases in the load-bearing capacities, ductility index, and flexural bending capacities.
Keywords: Eccentric loads, ductility index, RC column, slenderness, UHPFRC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 976825 Effect of Injection Moulding Process Parameter on Tensile Strength Using Taguchi Method
Authors: Gurjeet Singh, M. K. Pradhan, Ajay Verma
Abstract:
The plastic industry plays very important role in the economy of any country. It is generally among the leading share of the economy of the country. Since metals and their alloys are very rarely available on the earth. Therefore, to produce plastic products and components, which finds application in many industrial as well as household consumer products is beneficial. Since 50% plastic products are manufactured by injection moulding process. For production of better quality product, we have to control quality characteristics and performance of the product. The process parameters plays a significant role in production of plastic, hence the control of process parameter is essential. In this paper the effect of the parameters selection on injection moulding process has been described. It is to define suitable parameters in producing plastic product. Selecting the process parameter by trial and error is neither desirable nor acceptable, as it is often tends to increase the cost and time. Hence, optimization of processing parameter of injection moulding process is essential. The experiments were designed with Taguchi’s orthogonal array to achieve the result with least number of experiments. Plastic material polypropylene is studied. Tensile strength test of material is done on universal testing machine, which is produced by injection moulding machine. By using Taguchi technique with the help of MiniTab-14 software the best value of injection pressure, melt temperature, packing pressure and packing time is obtained. We found that process parameter packing pressure contribute more in production of good tensile plastic product.
Keywords: Injection moulding, tensile strength, Taguchi method, poly-propylene.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3769824 Forming of Nanodimentional Structure Parts in Carbon Steels
Authors: A. Korchunov, M. Chukin, N. Koptseva, M. Polyakova, A. Gulin
Abstract:
A way of achieving nanodimentional structural elements in high carbon steel by special kind of heat treatment and cold plastic deformation is being explored. This leads to increasing interlamellar spacing of ferrite-carbide mixture. Decreasing the interlamellar spacing with cooling temperature increasing is determined. Experiments confirm such interlamellar spacing with which high carbon steel demonstrates the highest treatment and hardening capability. Total deformation degree effect on interlamellar spacing value in a ferrite-carbide mixture is obtained. Mechanical experiments results show that high carbon steel after heat treatment and repetitive cold plastic deformation possesses high tensile strength and yield strength keeping good percentage elongation.
Keywords: High-carbon steel, nanodimensional structural element, interlamellar spacing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1343823 Factors Affecting Weld Line Movement in Tailor Welded Blank
Authors: Shakil A. Kagzi, Sanjay Patil, Harit K. Raval
Abstract:
Tailor Welded Blanks (TWB) are utilized in automotive industries widely because of their advantage of weight and cost reduction and maintaining required strength and structural integrity. TWB consist of two or more sheet having dissimilar or similar material and thickness; welded together to form a single sheet before forming it to desired shape. Forming of the tailor welded blank is affected by ratio of thickness of blanks, ratio of their strength, etc. mainly due to in-homogeneity of material. In the present work the relative effect of these parameters on weld line movement is studied during deep drawing of TWB using FE simulation using HYPERWORKS. The simulation is validated with results from the literature. Simulations were than performed based on Taguchi orthogonal array followed by the ANOVA analysis to determine the significance of these parameters on forming of TWB.
Keywords: ANOVA, Deep drawing, Tailor Welded Blank, TWB, Weld line movement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2790822 Study of Mechanical Properties of Glutarylated Jute Fiber Reinforced Epoxy Composites
Authors: V. Manush Nandan, K. Lokdeep, R. Vimal, K. Hari Hara Subramanyan, C. Aswin, V. Logeswaran
Abstract:
Natural fibers have attained the potential market in the composite industry because of the huge environmental impact caused by synthetic fibers. Among the natural fibers, jute fibers are the most abundant plant fibers which are manufactured mainly in countries like India. Even though there is a good motive to utilize the natural supplement, the strength of the natural fiber composites is still a topic of discussion. In recent days, many researchers are showing interest in the chemical modification of the natural fibers to increase various mechanical and thermal properties. In the present study, jute fibers have been modified chemically using glutaric anhydride at different concentrations of 5%, 10%, 20%, and 30%. The glutaric anhydride solution is prepared by dissolving the different quantity of glutaric anhydride in benzene and dimethyl-sulfoxide using sodium formate catalyst. The jute fiber mats have been treated by the method of retting at various time intervals of 3, 6, 12, 24, and 36 hours. The modification structure of the treated fibers has been confirmed with infrared spectroscopy. The degree of modification increases with an increase in retention time, but higher retention time has damaged the fiber structure. The unmodified fibers and glutarylated fibers at different retention times are reinforced with epoxy matrix under room temperature. The tensile strength and flexural strength of the composites are analyzed in detail. Among these, the composite made with glutarylated fiber has shown good mechanical properties when compared to those made of unmodified fiber.
Keywords: Flexural properties, glutarylation, glutaric anhydride, tensile properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 706821 Carbon Nanotubes Based Porous Framework for Filtration Applications Using Industrial Grinding Waste
Authors: V. J. Pillewan, D. N. Raut, K. N. Patil, D. K. Shinde
Abstract:
Forging, milling, turning, grinding and shaping etc. are the various industrial manufacturing processes which generate the metal waste. Grinding is extensively used in the finishing operation. The waste generated contains significant impurities apart from the metal particles. Due to these significant impurities, it becomes difficult to process and gets usually dumped in the landfills which create environmental problems. Therefore, it becomes essential to reuse metal waste to create value added products. Powder injection molding process is used for producing the porous metal matrix framework. This paper discusses the presented design of the porous framework to be used for the liquid filter application. Different parameters are optimized to obtain the better strength framework with variable porosity. Carbon nanotubes are used as reinforcing materials to enhance the strength of the metal matrix framework.Keywords: Grinding waste, powder injection molding, carbon nanotubes, metal matrix composites.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1131820 Development of AA2024 Matrix Composites Reinforced with Micro Yttrium through Cold Compaction with Superior Mechanical Properties
Authors: C. H. S. Vidyasagar, D. B. Karunakar
Abstract:
In this present work, five different composite samples with AA2024 as matrix and varying amounts of yttrium (0.1-0.5 wt.%) as reinforcement are developed through cold compaction. The microstructures of the developed composite samples revealed that the yttrium reinforcement caused grain refinement up to 0.3 wt.% and beyond which the refinement is not effective. The microstructure revealed Al2Cu precipitation which strengthened the composite up to 0.3 wt.% yttrium reinforcement. Upon further increase in yttrium reinforcement, the intermetallics and the precipitation coarsen and their corresponding strengthening effect decreases. The mechanical characterization revealed that the composite sample reinforced with 0.3 wt.% yttrium showed highest mechanical properties like 82 HV of hardness, 276 MPa Ultimate Tensile Strength (UTS), 229 MPa Yield Strength (YS) and an elongation (EL) of 18.9% respectively. However, the relative density of the developed composites decreased with the increase in yttrium reinforcement.
Keywords: Mechanical properties, AA 2024 matrix, yttrium reinforcement, cold compaction, precipitation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 660819 Recycled Cellulosic Fibers and Lignocellulosic Aggregates for Sustainable Building Materials
Authors: N. Stevulova, I. Schwarzova, V. Hospodarova, J. Junak, J. Briancin
Abstract:
Sustainability is becoming a priority for developers and the use of environmentally friendly materials is increasing. Nowadays, the application of raw materials from renewable sources to building materials has gained a significant interest in this research area. Lignocellulosic aggregates and cellulosic fibers are coming from many different sources such as wood, plants and waste. They are promising alternative materials to replace synthetic, glass and asbestos fibers as reinforcement in inorganic matrix of composites. Natural fibers are renewable resources so their cost is relatively low in comparison to synthetic fibers. With the consideration of environmental consciousness, natural fibers are biodegradable so their using can reduce CO2 emissions in the building materials production. The use of cellulosic fibers in cementitious matrices have gained importance because they make the composites lighter at high fiber content, they have comparable cost - performance ratios to similar building materials and they could be processed from waste paper, thus expanding the opportunities for waste utilization in cementitious materials. The main objective of this work is to find out the possibility of using different wastes: hemp hurds as waste of hemp stem processing and recycled fibers obtained from waste paper for making cement composite products such as mortars based on cellulose fibers. This material was made of cement mortar containing organic filler based on hemp hurds and recycled waste paper. In addition, the effects of fibers and their contents on some selected physical and mechanical properties of the fiber-cement plaster composites have been investigated. In this research organic material have used to mortars as 2.0, 5.0 and 10.0 % replacement of cement weight. Reference sample is made for comparison of physical and mechanical properties of cement composites based on recycled cellulosic fibers and lignocellulosic aggregates. The prepared specimens were tested after 28 days of curing in order to investigate density, compressive strength and water absorbability. Scanning Electron Microscopy examination was also carried out.Keywords: Hemp hurds, organic filler, recycled paper, sustainable building materials.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2067818 Modelling of Factors Affecting Bond Strength of Fibre Reinforced Polymer Externally Bonded to Timber and Concrete
Authors: Abbas Vahedian, Rijun Shrestha, Keith Crews
Abstract:
In recent years, fibre reinforced polymers as applications of strengthening materials have received significant attention by civil engineers and environmentalists because of their excellent characteristics. Currently, these composites have become a mainstream technology for strengthening of infrastructures such as steel, concrete and more recently, timber and masonry structures. However, debonding is identified as the main problem which limit the full utilisation of the FRP material. In this paper, a preliminary analysis of factors affecting bond strength of FRP-to-concrete and timber bonded interface has been conducted. A novel theoretical method through regression analysis has been established to evaluate these factors. Results of proposed model are then assessed with results of pull-out tests and satisfactory comparisons are achieved between measured failure loads (R2 = 0.83, P < 0.0001) and the predicted loads (R2 = 0.78, P < 0.0001).Keywords: Debonding, FRP, pull-out test, stepwise regression analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 800817 Ablation, Mechanical and Thermal Properties of Fiber/Phenolic Matrix Composites
Authors: N. Winya, S. Chankapoe, C. Kiriratnikom
Abstract:
In this study, an ablation, mechanical and thermal properties of a rocket motor insulation from phenolic/ fiber matrix composites forming a laminate with different fiber between fiberglass and locally available synthetic fibers. The phenolic/ fiber matrix composites was mechanics and thermal properties by means of tensile strength, ablation, TGA and DSC. The design of thermal insulation involves several factors.Determined the mechanical properties according to MIL-I-24768: Density >1.3 g/cm3, Tensile strength >103 MPa and Ablation <0.14 mm/s to optimization formulation of phenolic binder, fiber glass reinforcement and other ingredients were conducted after that the insulation prototype was formed and cured. It was found that the density of phenolic/fiberglass composites and phenolic/ synthetic fiber composite was 1.66 and 1.41 g/cm3 respectively. The ablative of phenolic/fiberglass composites and phenolic/ synthetic fiber composite was 0.13 and 0.06 mm/s respectively.
Keywords: Phenolic Resin, Ablation, Rocket Motor, Insulation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4391816 Effect of Sodium Hydroxide Treatment on the Mechanical Properties of Crushed and Uncrushed Luffa cylindrica Fibre Reinforced rLDPE Composites
Authors: Paschal A. Ubi, Salawu Abdul Rahman Asipita
Abstract:
Sustainability and eco-friendly requirement of engineering materials are sort for in recent times, thus giving rise to the development of bio-composites. However, the natural fibres to matrix interface interactions remain a key issue in getting the desired mechanical properties from such composites. Treatment of natural fibres is essential in improving matrix to filler adhesion, hence improving its mechanical properties. In this study, investigations were carried out to determine the effect of sodium hydroxide treatment on the tensile, flexural, impact and hardness properties of crushed and uncrushed Luffa cylindrica fibre reinforced recycled low density polyethylene composites. The LC (Luffa cylindrica) fibres were treated with 0%, 2%, 4%, 6%, 8% and 10% wt. sodium hydroxide (NaOH) concentrations for a period of 24 hours under room temperature conditions. A formulation ratio of 80/20 g (matrix to reinforcement) was maintained for all developed samples. Analysis of the results showed that the uncrushed luffa fibre samples gave better mechanical properties compared with the crushed luffa fibre samples. The uncrushed luffa fibre composites had a maximum tensile and flexural strength of 7.65 MPa and 17.08 Mpa respectively corresponding to a young modulus and flexural modulus of 21.08 MPa and 232.22 MPa for the 8% and 4% wt. NaOH concentration respectively. Results obtained in the research showed that NaOH treatment with the 8% NaOH concentration improved the mechanical properties of the LC fibre reinforced composites when compared with other NaOH treatment concentration values.
Keywords: Flexural strength, LC fibres, LC/rLDPE composite, Tensile strength.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2614815 Some Design Issues in Designing of 50KW 50Krpm Permanent Magnet Synchronous Machine
Authors: Ali A. Mehna, Mohmed A. Ali, Ali S. Zayed
Abstract:
A numbers of important developments have led to an increasing attractiveness for very high speed electrical machines (either motor or generator). Specifically the increasing switching speed of power electronics, high energy magnets, high strength retaining materials, better high speed bearings and improvements in design analysis are the primary drivers in a move to higher speed. The design challenges come in the mechanical design both in terms of strength and resonant modes and in the electromagnetic design particularly in respect of iron losses and ac losses in the various conducting parts including the rotor. This paper describes detailed design work which has been done on a 50,000 rpm, 50kW permanent magnet( PM) synchronous machine. It describes work on electromagnetic and rotor eddy current losses using a variety of methods including both 2D finite element analysisKeywords: High speed, PM motor, rotor and stator losses, finiteelement analysis
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2649814 Numerical Simulation of Flow and Combustionin an Axisymmetric Internal Combustion Engine
Authors: Nureddin Dinler, Nuri Yucel
Abstract:
Improving the performance of internal combustion engines is one of the major concerns of researchers. Experimental studies are more expensive than computational studies. Also using computational techniques allows one to obtain all the required data for the cylinder, some of which could not be measured. In this study, an axisymmetric homogeneous charged spark ignition engine was modeled. Fluid motion and combustion process were investigated numerically. Turbulent flow conditions were considered. Standard k- ε turbulence model for fluid flow and eddy break-up model for turbulent combustion were utilized. The effects of valve angle on the fluid flow and combustion are analyzed for constant air/fuel and compression ratios. It is found that, velocities and strength of tumble increases in-cylinder flow and due to increase in turbulence strength, the flame propagation is faster for small valve angles.Keywords: CFD simulation, eddy break-up model, k-εturbulence model, reciprocating engine flow and combustion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2253813 Numerical Simulation of CNT Incorporated Cement
Authors: B. S. Sindu, Saptarshi Sasmal, Smitha Gopinath
Abstract:
Cement, the most widely used construction material is very brittle and characterized by low tensile strength and strain capacity. Macro to nano fibers are added to cement to provide tensile strength and ductility to it. Carbon Nanotube (CNT), one of the nanofibers, has proven to be a promising reinforcing material in the cement composites because of its outstanding mechanical properties and its ability to close cracks at the nano level. The experimental investigations for CNT reinforced cement is costly, time consuming and involves huge number of trials. Mathematical modeling of CNT reinforced cement can be done effectively and efficiently to arrive at the mechanical properties and to reduce the number of trials in the experiments. Hence, an attempt is made to numerically study the effective mechanical properties of CNT reinforced cement numerically using Representative Volume Element (RVE) method. The enhancement in its mechanical properties for different percentage of CNTs is studied in detail.Keywords: Carbon Nanotubes, Cement composites, Representative Volume Element, Numerical simulation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2314812 Microstructure and High Temperature Deformation Behavior of Cast 310S Alloy
Authors: Jung-Ho Moon, Myung-Gon Yoon, Tae Kwon Ha
Abstract:
High temperature deformation behavior of cast 310S stainless steel has been investigated in this study by performing tensile and compression tests at temperatures from 900 to 1200oC. Rectangular ingots of which the dimensions were 350×350×100 in millimeter were cast using vacuum induction melting. Phase equilibrium was calculated using the FactSage®, thermodynamic software and database. Thermal expansion coefficient was also measured on the ingot in the temperature range from room temperature to 1200oC. Tensile strength of cast 310S stainless steel was 9 MPa at 1200oC, which is a little higher than that of a wrought 310S. With temperature decreased, tensile strength increased rapidly and reached up to 72 MPa at 900oC. Elongation also increased with temperature decreased. Microstructure observation revealed that s phase was precipitated along the grain boundary and within the matrix over 1200oC, which is detrimental to high temperature elongation.
Keywords: Stainless steel, STS 310S, high temperature deformation, microstructure, mechanical properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3259811 Improvement in Properties of Ni-Cr-Mo-V Steel through Process Control
Authors: Arnab Majumdar, Sanjoy Sadhukhan
Abstract:
Although gun barrel steels are an important variety from defense view point, available literatures are very limited. In the present work, an IF grade Ni-Cr-Mo-V high strength low alloy steel is produced in Electric Earth Furnace-ESR Route. Ingot was hot forged to desired dimension with a reduction ratio of 70-75% followed by homogenization, hardening and tempering treatment. Sample chemistry, NMIR, macro and micro structural analyses were done. Mechanical properties which include tensile, impact, and fracture toughness were studied. Ultrasonic testing was done to identify internal flaws. The existing high strength low alloy Ni-Cr-Mo-V steel shows improved properties in modified processing route and heat treatment schedule in comparison to properties noted earlier for manufacturing of gun barrels. The improvement in properties seems to withstand higher explosive loads with the same amount of steel in gun barrel application.Keywords: Gun barrel steels, IF grade, physical properties, thermal and mechanical processing, mechanical properties, ultrasonic testing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2437