Search results for: energy band diagram.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3397

Search results for: energy band diagram.

2917 Review of Various Designs and Development in Hydropower Turbines

Authors: F. Behrouzi, A. Maimun, M. Nakisa

Abstract:

The growth of population, rising fossil fuel prices (limited and decreasing day by day), pollution problem due to use of fossil fuels and increasing electrical demand are important factors that encourage the use of green and renewable energy technologies. Among the different renewable energy technologies, hydro power generation (large and small scale) is the prime choice in terms of contribution to the world's electricity generation by using water current turbines. Currently, researchers mainly focused on design and development of different kind of turbines to capture hydropower to generate electricity as clean and reliable energy. This paper is a review of the status of research on water current turbines carried out to generate electricity from hydrokinetic energy especially in places where there is no electricity, but there is access to flowing water.

Keywords: Turbines, Renewable Energy, Hydropower.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4577
2916 Optimization and Feasibility Analysis of PV/Wind/ Battery Hybrid Energy Conversion

Authors: Doaa M. Atia, Faten H. Fahmy, Ninet M. Ahmed, Hassen T. Dorrah

Abstract:

In this paper, the optimum design for renewable energy system powered an aquaculture pond was determined. Hybrid Optimization Model for Electric Renewable (HOMER) software program, which is developed by U.S National Renewable Energy Laboratory (NREL), is used for analyzing the feasibility of the stand alone and hybrid system in this study. HOMER program determines whether renewable energy resources satisfy hourly electric demand or not. The program calculates energy balance for every 8760 hours in a year to simulate operation of the system. This optimization compares the demand for the electrical energy for each hour of the year with the energy supplied by the system for that hour and calculates the relevant energy flow for each component in the model. The essential principle is to minimize the total system cost while HOMER ensures control of the system. Moreover the feasibility analysis of the energy system is also studied. Wind speed, solar irradiance, interest rate and capacity shortage are the parameters which are taken into consideration. The simulation results indicate that the hybrid system is the best choice in this study, yielding lower net present cost. Thus, it provides higher system performance than PV or wind stand alone systems.

Keywords: Wind stand-alone system, Photovoltaic stand-alone system, Hybrid system, Optimum system sizing, feasibility, Cost analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2115
2915 Architecture Performance-Related Design Based on Graphic Parameterization

Authors: Wenzhe Li, Xiaoyu Ying, Grace Ding

Abstract:

Architecture plane form is an important consideration in the design of green buildings due to its significant impact on energy performance. The most effective method to consider energy performance in the early design stages is parametric modelling. This paper presents a methodology to program plane forms using MATLAB language, generating 16 kinds of plane forms by changing four designed parameters. DesignBuilder (an energy consumption simulation software) was proposed to simulate the energy consumption of the generated planes. A regression mathematical model was established to study the relationship between the plane forms and their energy consumption. The main finding of the study suggested that there was a cubic function relationship between the depth-ratio of U-shaped buildings and energy consumption, and there is also a cubic function relationship between the width-ratio and energy consumption. In the design, the depth-ratio of U-shaped buildings should not be less than 2.5, and the width-ratio should not be less than 2.

Keywords: Graphic parameterization, green building design, mathematical model, U-shaped buildings.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 854
2914 A Study of the Growth of Single-Phase Mg0.5Zn0.5O Films for UV LED

Authors: Hong Seung Kim, Chang Hoi Kim, Lili Yue

Abstract:

Single-phase, high band gap energy Zn0.5Mg0.5O films were grown under oxygen pressure, using pulse laser deposition with a Zn0.5Mg0.5O target. Structural characterization studies revealed that the crystal structures of the ZnX-1MgXO films could be controlled via changes in the oxygen pressure. TEM analysis showed that the thickness of the deposited Zn1-xMgxO thin films was 50–75 nm. As the oxygen pressure increased, we found that one axis of the crystals did not show a very significant increase in the crystallization compared with that observed at low oxygen pressure. The X-ray diffraction peak intensity for the hexagonal-ZnMgO (002) plane increased relative to that for the cubic-ZnMgO (111) plane. The corresponding c-axis of the h-ZnMgO lattice constant increased from 5.141 to 5.148 Å, and the a-axis of the c-ZnMgO lattice constant decreased from 4.255 to 4.250 Å. EDX analysis showed that the Mg content in the mixed-phase ZnMgO films decreased significantly, from 54.25 to 46.96 at.%. As the oxygen pressure was increased from 100 to 150 mTorr, the absorption edge red-shifted from 3.96 to 3.81 eV; however, a film grown at the highest oxygen pressure tested here (200 mTorr).

Keywords: MgO, UV LED, ZnMgO, ZnO.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2121
2913 Providing Energy Management of a Fuel Cell-Battery Hybrid Electric Vehicle

Authors: Fatma Keskin Arabul, Ibrahim Senol, Ahmet Yigit Arabul, Ali Rifat Boynuegri

Abstract:

On account of the concern of the fossil fuel is depleting and its negative effects on the environment, interest in alternative energy sources is increasing day by day. However, considering the importance of transportation in human life, instead of oil and its derivatives fueled vehicles with internal combustion engines, electric vehicles which are sensitive to the environment and working with electrical energy has begun to develop. In this study, simulation was carried out for providing energy management and recovering regenerative braking in fuel cell-battery hybrid electric vehicle. The main power supply of the vehicle is fuel cell on the other hand not only instantaneous power is supplied by the battery but also the energy generated due to regenerative breaking is stored in the battery. Obtained results of the simulation is analyzed and discussed.

Keywords: Electric vehicles, fuel cell, battery, regenerative braking, energy management.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2242
2912 Energy Consumption in Forward Osmosis Desalination Compared to other Desalination Techniques

Authors: Ali Shoeb Moon, Moonyong Lee

Abstract:

The draw solute separation process in Forward Osmosis desalination was simulated in Aspen Plus chemical process modeling software, to estimate the energy consumption and compare it with other desalination processes, mainly the Reverse Osmosis process which is currently most prevalent. The electrolytic chemistry for the system was retrieved using the Elec – NRTL property method in the Aspen Plus database. Electrical equivalent of energy required in the Forward Osmosis desalination technique was estimated and compared with the prevalent desalination techniques.

Keywords: Desalination, Energy, Forward Osmosis, Separation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4050
2911 System-Level Energy Estimation for SoC based on the Dynamic Behavior of Embedded Software

Authors: Yoshifumi Sakamoto, Kouichi Ono, Takeo Nakada, Yousuke Kubo, Hiroto Yasuura

Abstract:

This paper describes a system-level SoC energy consumption estimation method based on a dynamic behavior of embedded software in the early stages of the SoC development. A major problem of SOC development is development rework caused by unreliable energy consumption estimation at the early stages. The energy consumption of an SoC used in embedded systems is strongly affected by the dynamic behavior of the software. At the early stages of SoC development, modeling with a high level of abstraction is required for both the dynamic behavior of the software, and the behavior of the SoC. We estimate the energy consumption by a UML model-based simulation. The proposed method is applied for an actual embedded system in an MFP. The energy consumption estimation of the SoC is more accurate than conventional methods and this proposed method is promising to reduce the chance of development rework in the SoC development. ∈

Keywords: SoC, Embedded Sytem, Energy Consumption, Dynamic behavior, UML, Modeling, Model-based simulation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2457
2910 Modified Energy and Link Failure Recovery Routing Algorithm for Wireless Sensor Network

Authors: M. Jayekumar, V. Nagarajan

Abstract:

Wireless sensor network finds role in environmental monitoring, industrial applications, surveillance applications, health monitoring and other supervisory applications. Sensing devices form the basic operational unit of the network that is self-battery powered with limited life time. Sensor node spends its limited energy for transmission, reception, routing and sensing information. Frequent energy utilization for the above mentioned process leads to network lifetime degradation. To enhance energy efficiency and network lifetime, we propose a modified energy optimization and node recovery post failure method, Energy-Link Failure Recovery Routing (E-LFRR) algorithm. In our E-LFRR algorithm, two phases namely, Monitored Transmission phase and Replaced Transmission phase are devised to combat worst case link failure conditions. In Monitored Transmission phase, the Actuator Node monitors and identifies suitable nodes for shortest path transmission. The Replaced Transmission phase dispatches the energy draining node at early stage from the active link and replaces it with the new node that has sufficient energy. Simulation results illustrate that this combined methodology reduces overhead, energy consumption, delay and maintains considerable amount of alive nodes thereby enhancing the network performance.

Keywords: Actuator node, energy efficient routing, energy hole, link failure recovery, link utilization, wireless sensor network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1191
2909 Impact of the Non-Energy Sectors Diversification on the Energy Dependency Mitigation: Visualization by the “IntelSymb” Software Application

Authors: Ilaha Rzayeva, Emin Alasgarov, Orkhan Karim-Zada

Abstract:

This study attempts to consider the linkage between management and computer sciences in order to develop the software named “IntelSymb” as a demo application to prove data analysis of non-energy* fields’ diversification, which will positively influence on energy dependency mitigation of countries. Afterward, we analyzed 18 years of economic fields of development (5 sectors) of 13 countries by identifying which patterns mostly prevailed and which can be dominant in the near future. To make our analysis solid and plausible, as a future work, we suggest developing a gateway or interface, which will be connected to all available on-line data bases (WB, UN, OECD, U.S. EIA) for countries’ analysis by fields. Sample data consists of energy (TPES and energy import indicators) and non-energy industries’ (Main Science and Technology Indicator, Internet user index, and Sales and Production indicators) statistics from 13 OECD countries over 18 years (1995-2012). Our results show that the diversification of non-energy industries can have a positive effect on energy sector dependency (energy consumption and import dependence on crude oil) deceleration. These results can provide empirical and practical support for energy and non-energy industries diversification’ policies, such as the promoting of Information and Communication Technologies (ICTs), services and innovative technologies efficiency and management, in other OECD and non-OECD member states with similar energy utilization patterns and policies. Industries, including the ICT sector, generate around 4 percent of total GHG, but this is much higher — around 14 percent — if indirect energy use is included. The ICT sector itself (excluding the broadcasting sector) contributes approximately 2 percent of global GHG emissions, at just under 1 gigatonne of carbon dioxide equivalent (GtCO2eq). Ergo, this can be a good example and lesson for countries which are dependent and independent on energy, and mainly emerging oil-based economies, as well as to motivate non-energy industries diversification in order to be ready to energy crisis and to be able to face any economic crisis as well.

Keywords: Energy policy, energy diversification, “IntelSymb” software, renewable energy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1696
2908 A Refined Energy-Based Model for Friction-Stir Welding

Authors: Samir A. Emam, Ali El Domiaty

Abstract:

Friction-stir welding has received a huge interest in the last few years. The many advantages of this promising process have led researchers to present different theoretical and experimental explanation of the process. The way to quantitatively and qualitatively control the different parameters of the friction-stir welding process has not been paved. In this study, a refined energybased model that estimates the energy generated due to friction and plastic deformation is presented. The effect of the plastic deformation at low energy levels is significant and hence a scale factor is introduced to control its effect. The predicted heat energy and the obtained maximum temperature using our model are compared to the theoretical and experimental results available in the literature and a good agreement is obtained. The model is applied to AA6000 and AA7000 series.

Keywords: Friction-stir welding, Energy, Aluminum Alloys.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1748
2907 Performance Analysis of the Time-Based and Periodogram-Based Energy Detector for Spectrum Sensing

Authors: Sadaf Nawaz, Adnan Ahmed Khan, Asad Mahmood, Chaudhary Farrukh Javed

Abstract:

Classically, an energy detector is implemented in time domain (TD). However, frequency domain (FD) based energy detector has demonstrated an improved performance. This paper presents a comparison between the two approaches as to analyze their pros and cons. A detailed performance analysis of the classical TD energy-detector and the periodogram based detector is performed. Exact and approximate mathematical expressions for probability of false alarm (Pf) and probability of detection (Pd) are derived for both approaches. The derived expressions naturally lead to an analytical as well as intuitive reasoning for the improved performance of (Pf) and (Pd) in different scenarios. Our analysis suggests the dependence improvement on buffer sizes. Pf is improved in FD, whereas Pd is enhanced in TD based energy detectors. Finally, Monte Carlo simulations results demonstrate the analysis reached by the derived expressions.

Keywords: Cognitive radio, energy detector, periodogram, spectrum sensing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1029
2906 Simulation of Activity Stream inside Energy Social Business Environment using Assemblage Theory and Simplicial Complex Tool

Authors: Eddie Soulier, Philippe Calvez, Florie Bugeaud, Francis Rousseaux, Jacky Legrand

Abstract:

Social, mobility and information aggregation inside business environment need to converge to reach the next step of collaboration to enhance interaction and innovation. The following article is based on the “Assemblage" concept seen as a framework to formalize new user interfaces and applications. The area of research is the Energy Social Business Environment, especially the Energy Smart Grids, which are considered as functional and technical foundations of the revolution of the Energy Sector of tomorrow. The assemblages are modelized by means of mereology and simplicial complexes. Its objective is to offer new central attention and decision-making tools to end-users.

Keywords: Activity Streams, Assemblage, Energy Social Business Environment, Simplicial Complex, Smart Grid

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2291
2905 Load Frequency Control of Nonlinear Interconnected Hydro-Thermal System Using Differential Evolution Technique

Authors: Banaja Mohanty, Prakash Kumar Hota

Abstract:

This paper presents a differential evolution algorithm to design a robust PI and PID controllers for Load Frequency Control (LFC) of nonlinear interconnected power systems considering the boiler dynamics, Governor Dead Band (GDB), Generation Rate Constraint (GRC). Differential evolution algorithm is employed to search for the optimal controller parameters. The proposed method easily copes of with nonlinear constraints. Further the proposed controller is simple, effective and can ensure the desirable overall system performance. The superiority of the proposed approach has been shown by comparing the results with published fuzzy logic controller for the same power systems. The comparison is done using various performance measures like overshoot, settling time and standard error criteria of frequency and tie-line power deviation following a 1% step load perturbation in hydro area. It is noticed that, the dynamic performance of proposed controller is better than fuzzy logic controller. Furthermore, it is also seen that the proposed system is robust and is not affected by change in the system parameters.

Keywords: Automatic Generation control (AGC), Generation Rate Constraint (GRC), Governor Dead Band (GDB), Differential Evolution (DE)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3370
2904 Green Computing: From Current to Future Trends

Authors: Tariq Rahim Soomro, Muhammad Sarwar

Abstract:

During recent years, attention in 'Green Computing' has moved research into energy-saving techniques for home computers to enterprise systems' Client and Server machines. Saving energy or reduction of carbon footprints is one of the aspects of Green Computing. The research in the direction of Green Computing is more than just saving energy and reducing carbon foot prints. This study provides a brief account of Green Computing. The emphasis of this study is on current trends in Green Computing; challenges in the field of Green Computing and the future trends of Green Computing.

Keywords: Energy consumption, e-waste recycling, Green Computing, Green IT

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10567
2903 Trust Based Energy Aware Reliable Reactive Protocol in Mobile Ad Hoc Networks

Authors: M. Pushpalatha, Revathi Venkataraman, T. Ramarao

Abstract:

Trust and Energy consumption is the most challenging issue in routing protocol design for Mobile ad hoc networks (MANETs), since mobile nodes are battery powered and nodes behaviour are unpredictable. Furthermore replacing and recharging batteries and making nodes co-operative is often impossible in critical environments like military applications. In this paper, we propose a trust based energy aware routing model in MANET. During route discovery, node with more trust and maximum energy capacity is selected as a router based on a parameter called 'Reliability'. Route request from the source is accepted by a node only if its reliability is high. Otherwise, the route request is discarded. This approach forms a reliable route from source to destination thus increasing network life time, improving energy utilization and decreasing number of packet loss during transmission.

Keywords: Mobile Ad Hoc Networks, Trust, Energy, Reliability, AODV, TEA-AODV.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2616
2902 Application of GM (1, 1) Model Group Based on Recursive Solution in China's Energy Demand Forecasting

Authors: Yeqing Guan, Fen Yang

Abstract:

To learn about China-s future energy demand, this paper first proposed GM(1,1) model group based on recursive solutions of parameters estimation, setting up a general solving-algorithm of the model group. This method avoided the problems occurred on the past researches that remodeling, loss of information and large amount of calculation. This paper established respectively all-data-GM(1,1), metabolic GM(1,1) and new information GM (1,1)model according to the historical data of energy consumption in China in the year 2005-2010 and the added data of 2011, then modeling, simulating and comparison of accuracies we got the optimal models and to predict. Results showed that the total energy demand of China will be 37.2221 billion tons of equivalent coal in 2012 and 39.7973 billion tons of equivalent coal in 2013, which are as the same as the overall planning of energy demand in The 12th Five-Year Plan.

Keywords: energy demands, GM(1, 1) model group, least square estimation, prediction

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1554
2901 Bio Fuel Production from Waste of Starting Dates in South Algeria

Authors: Insaf Mehani, Ahmed Boulal, Bachir Bouchekima

Abstract:

Renewable energy, including bio energy are an alternative to fossil fuel depletion and a way to fight against the harmful effects of climate change. It is possible to develop common dates of low commercial value, and put on the local and international market a new generation of products with high added values ​​such as bio ethanol. Besides its use in chemical synthesis, bio ethanol can be blended with gasoline to produce a clean fuel while improving the octane.

Keywords: Bio energy, dates, bio ethanol.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2296
2900 Investigation on Machine Tools Energy Consumptions

Authors: Shiva Abdoli, Daniel T. Semere

Abstract:

Several researches have been conducted to study consumption of energy in cutting process. Most of these researches are focusing to measure the consumption and propose consumption reduction methods. In this work, the relation between the cutting parameters and the consumption is investigated in order to establish a generalized energy consumption model that can be used for process and production planning in real production lines. Using the generalized model, the process planning will be carried out by taking into account the energy as a function of the selected process parameters. Similarly, the generalized model can be used in production planning to select the right operational parameters like batch sizes, routing, buffer size, etc. in a production line. The description and derivation of the model as well as a case study are given in this paper to illustrate the applicability and validity of the model.

Keywords: Process parameters, cutting process, energy efficiency, Material Removal Rate (MRR).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3404
2899 Development of Energy Benchmarks Using Mandatory Energy and Emissions Reporting Data: Ontario Post-Secondary Residences

Authors: C. Xavier Mendieta, J. J McArthur

Abstract:

Governments are playing an increasingly active role in reducing carbon emissions, and a key strategy has been the introduction of mandatory energy disclosure policies. These policies have resulted in a significant amount of publicly available data, providing researchers with a unique opportunity to develop location-specific energy and carbon emission benchmarks from this data set, which can then be used to develop building archetypes and used to inform urban energy models. This study presents the development of such a benchmark using the public reporting data. The data from Ontario’s Ministry of Energy for Post-Secondary Educational Institutions are being used to develop a series of building archetype dynamic building loads and energy benchmarks to fill a gap in the currently available building database. This paper presents the development of a benchmark for college and university residences within ASHRAE climate zone 6 areas in Ontario using the mandatory disclosure energy and greenhouse gas emissions data. The methodology presented includes data cleaning, statistical analysis, and benchmark development, and lessons learned from this investigation are presented and discussed to inform the development of future energy benchmarks from this larger data set. The key findings from this initial benchmarking study are: (1) the importance of careful data screening and outlier identification to develop a valid dataset; (2) the key features used to develop a model of the data are building age, size, and occupancy schedules and these can be used to estimate energy consumption; and (3) policy changes affecting the primary energy generation significantly affected greenhouse gas emissions, and consideration of these factors was critical to evaluate the validity of the reported data.

Keywords: Building archetypes, data analysis, energy benchmarks, GHG emissions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1022
2898 Comparisons of Co-Seismic Gravity Changes between GRACE Observations and the Predictions from the Finite-Fault Models for the 2012 Mw = 8.6 Indian Ocean Earthquake Off-Sumatra

Authors: Armin Rahimi

Abstract:

The Gravity Recovery and Climate Experiment (GRACE) has been a very successful project in determining math redistribution within the Earth system. Large deformations caused by earthquakes are in the high frequency band. Unfortunately, GRACE is only capable to provide reliable estimate at the low-to-medium frequency band for the gravitational changes. In this study, we computed the gravity changes after the 2012 Mw8.6 Indian Ocean earthquake off-Sumatra using the GRACE Level-2 monthly spherical harmonic (SH) solutions released by the University of Texas Center for Space Research (UTCSR). Moreover, we calculated gravity changes using different fault models derived from teleseismic data. The model predictions showed non-negligible discrepancies in gravity changes. However, after removing high-frequency signals, using Gaussian filtering 350 km commensurable GRACE spatial resolution, the discrepancies vanished, and the spatial patterns of total gravity changes predicted from all slip models became similar at the spatial resolution attainable by GRACE observations, and predicted-gravity changes were consistent with the GRACE-detected gravity changes. Nevertheless, the fault models, in which give different slip amplitudes, proportionally lead to different amplitude in the predicted gravity changes.

Keywords: Undersea earthquake, GRACE observation, gravity change, dislocation model, slip distribution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 990
2897 Advanced Simulation of Power Consumption of Electric Vehicles

Authors: Ilya Kavalchuk, Hayrettin Arisoy, Alex Stojcevski, Aman Maun Than Oo

Abstract:

Electric vehicles are one of the most complicated electric devices to simulate due to the significant number of different processes involved in electrical structure of it. There are concurrent processes of energy consumption and generation with different onboard systems, which make simulation tasks more complicated to perform. More accurate simulation on energy consumption can provide a better understanding of all energy management for electric transport. As a result of all those processes, electric transport can allow for a more sustainable future and become more convenient in relation to the distance range and recharging time. This paper discusses the problems of energy consumption simulations for electric vehicles using different software packages to provide ideas on how to make this process more precise, which can help engineers create better energy management strategies for electric vehicles.

Keywords: Electric Vehicles, EV, Power Consumption, Power Management, Simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3736
2896 An Introduction to Methods and Technologies Applied for Reduction of Energy Consumption in Transportation Sector and Air Pollution in Iran

Authors: Eshagh Rasouli Sarabi, Mir Saeed Moosavi

Abstract:

In Iran, due to abundance of energy resources, energy consumption is extraordinarily higher than international standards and transportation sector is considered to be one of the major consumers of energy. Moreover, air pollution in urban areas as a result of high dependence on private vehicle and lower standards of vehicles, high subsidies spent on fuel and time waste due to traffic congestion in urban areas all have led to speculations on new strategies and policies in order to control energy consumption in transportation sector. These strategies and policies will be introduced in this paper and their consequences will be analyzed with consideration to socio-economic factors affecting the urban society of Iran. Besides, the intention is to suggest and analyze new approaches such as broader application of public transportation system, demand management in transport sector, replacement of deteriorated vehicles, quality improvement in car manufacture and introduction of substitute fuels.

Keywords: Consumption, energy, fuel, transportation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1625
2895 Design and Sensitivity Analysis of Photovoltaic/Thermal Solar Collector

Authors: H. M. Farghally, N. M. Ahmed, H. T. El-Madany, D. M. Atia, F. H. Fahmy

Abstract:

Energy is required in almost every aspect of human activities and development of any nation in the world. Increasing fossil fuel price, energy security and climate change have important bearings on sustainable development of any nation. The renewable energy technology is considered one of the drastic approaches which taken over the world to reduce the energy problem. The preservation of vegetables by freezing is one of the most important methods of retaining quality in agricultural products over long-term storage periods. Freezing factories show high demand of energy for both heat and electricity; the hybrid Photovoltaic/Thermal (PV/T) systems could be used in order to meet this requirement. This paper presents PV/T system design for freezing factory. Also, the complete mathematical modeling and MATLAB SIMULINK of PV/T collector is introduced. The sensitivity analysis for the manufacturing parameters of PV/T collector is carried out to study their effect on both thermal and electrical efficiency.

Keywords: Renewable energy, Hybrid PV/T system, Sensitivity analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3893
2894 New Method for Determining the Distribution of Birefringence and Linear Dichroism in Polymer Materials Based On Polarization-Holographic Grating

Authors: Barbara Kilosanidze, George Kakauridze, Levan Nadareishvili, Yuri Mshvenieradze

Abstract:

A new method for determining the distribution of birefringence and linear dichroism in optical polymer materials is presented. The method is based on the use of polarizationholographic diffraction grating that forms an orthogonal circular basis in the process of diffraction of probing laser beam on the grating. The intensities ratio of the orders of diffraction on this grating enables the value of birefringence and linear dichroism in the sample to be determined. The distribution of birefringence in the sample is determined by scanning with a circularly polarized beam with a wavelength far from the absorption band of the material. If the scanning is carried out by probing beam with the wavelength near to a maximum of the absorption band of the chromophore then the distribution of linear dichroism can be determined. An appropriate theoretical model of this method is presented. A laboratory setup was created for the proposed method. An optical scheme of the laboratory setup is presented. The results of measurement in polymer films with two-dimensional gradient distribution of birefringence and linear dichroism are discussed.

Keywords: Birefringence, graded oriented polymers, linear dichroism, optical polymers, optical anisotropy, polarization-holographic grating,

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1510
2893 ZigBee Wireless Sensor Nodes with Hybrid Energy Storage System Based On Li-ion Battery and Solar Energy Supply

Authors: Chia-Chi Chang, Chuan-Bi Lin, Chia-Min Chan

Abstract:

Most ZigBee sensor networks to date make use of nodes with limited processing, communication, and energy capabilities. Energy consumption is of great importance in wireless sensor applications as their nodes are commonly battery-driven. Once ZigBee nodes are deployed outdoors, limited power may make a sensor network useless before its purpose is complete. At present, there are two strategies for long node and network lifetime. The first strategy is saving energy as much as possible. The energy consumption will be minimized through switching the node from active mode to sleep mode and routing protocol with ultra-low energy consumption. The second strategy is to evaluate the energy consumption of sensor applications as accurately as possible. Erroneous energy model may render a ZigBee sensor network useless before changing batteries.

In this paper, we present a ZigBee wireless sensor node with four key modules: a processing and radio unit, an energy harvesting unit, an energy storage unit, and a sensor unit. The processing unit uses CC2530 for controlling the sensor, carrying out routing protocol, and performing wireless communication with other nodes. The harvesting unit uses a 2W solar panel to provide lasting energy for the node. The storage unit consists of a rechargeable 1200 mAh Li-ion battery and a battery charger using a constant-current/constant-voltage algorithm. Our solution to extend node lifetime is implemented. Finally, a long-term sensor network test is used to exhibit the functionality of the solar powered system.

Keywords: ZigBee, Li-ion battery, solar panel, CC2530.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3090
2892 Water End-Use Classification with Contemporaneous Water-Energy Data and Deep Learning Network

Authors: Khoi A. Nguyen, Rodney A. Stewart, Hong Zhang

Abstract:

‘Water-related energy’ is energy use which is directly or indirectly influenced by changes to water use. Informatics applying a range of mathematical, statistical and rule-based approaches can be used to reveal important information on demand from the available data provided at second, minute or hourly intervals. This study aims to combine these two concepts to improve the current water end use disaggregation problem through applying a wide range of most advanced pattern recognition techniques to analyse the concurrent high-resolution water-energy consumption data. The obtained results have shown that recognition accuracies of all end-uses have significantly increased, especially for mechanised categories, including clothes washer, dishwasher and evaporative air cooler where over 95% of events were correctly classified.

Keywords: Deep learning network, smart metering, water end use, water-energy data.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1362
2891 Study Interaction between Tin Dioxide Nanowhiskers and Ethanol Molecules in Gas Phase: Monte Carlo(MC) and Langevin Dynamics (LD) Simulation

Authors: L. Mahdavian, M. Raouf

Abstract:

Three dimensional nanostructure materials have attracted the attention of many researches because the possibility to apply them for near future devices in sensors, catalysis and energy related. Tin dioxide is the most used material for gas sensing because its three-dimensional nanostructures and properties are related to the large surface exposed to gas adsorption. We propose the use of branch SnO2 nanowhiskers in interaction with ethanol. All Sn atoms are symmetric. The total energy, potential energy and Kinetic energy calculated for interaction between SnO2 and ethanol in different distances and temperatures. The calculations achieved by methods of Langevin Dynamic and Mont Carlo simulation. The total energy increased with addition ethanol molecules and temperature so interactions between them are endothermic.

Keywords: Tin dioxide, nanowhisker, Ethanol, Langevin Dynamic and Mont Carlo Simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1168
2890 Zero Carbon & Low Energy Housing; Comparative Analysis of Two Persian Vernacular Architectural Solutions to Increase Energy Efficiency

Authors: N. Poorang

Abstract:

In order to respond the human needs, all regional, social, and economical factors are available to gain residents’ comfort and ideal architecture. There is no doubt the thermal comfort has to satisfy people not only for daily and physical activities but also creating pleasant area for mental activities and relaxing. It costs energy and increases greenhouse gas emissions.

Reducing energy use in buildings is a critical component of meeting carbon reduction commitments. Hence housing design represents a major opportunity to cut energy use and CO2 emissions.

In terms of energy efficiency, it is vital to propose and research modern design methods for buildings however vernacular architecture techniques are proven empirical existing practices which have to be considered. This research tries to compare two architectural solution were proposed by Persian vernacular architecture, to achieve energy efficiency in hot areas.

The aim of this research is to analyze two forms of traditional Persian architecture in different locations in order to develop a systematic research and sustainable technologies on adaptation to contemporary living standards.

Keywords: Comparative Analysis, Persian Vernacular Architecture, Sustainable architecture.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2292
2889 Empirical Survey of the Solar System Based on the Fusion of GPS and Image Processing

Authors: S. Divya Gnanarathinam, S. Sundaramurthy

Abstract:

The tremendous increase in the population of the world creates the immediate need for the energy resources. All the people in the world need the sustainable energy resources which have low costs. Solar energy is appraised as one of the main energy resources in warm countries. The areas in the west of India like Rajasthan, Gujarat, etc. are immensely rich in solar energy resources. This paper deals with the development of dual axis solar tracker using Arduino board. Depending on the astronomical estimates of the sun from the GPS and sensor image processing outcomes, a methodology is proposed to locate the position of the sun to obtain the maximum solar energy. Based on the outcomes, the solar tracking system figures out whether to use image processing outcomes or astronomical estimates to attain the maximum efficiency of the solar panel. Finally, the experimental values obtained from the solar tracker for both the sunny and the rainy days are being tabulated.

Keywords: Dual axis solar tracker, Arduino board, LDR sensors, global positioning system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1586
2888 A Study of Under Actuator Dynamic System by Comparing between Minimum Energy and Minimum Jerk Problems

Authors: Tawiwat V., Phermsak S., Noppasit C.

Abstract:

This paper deals with under actuator dynamic systems such as spring-mass-damper system when the number of control variable is less than the number of state variable. In order to apply optimal control, the controllability must be checked. There are many objective functions to be selected as the goal of the optimal control such as minimum energy, maximum energy and minimum jerk. As the objective function is the first priority, if one like to have the second goal to be applied; however, it could not fit in the objective function format and also avoiding the vector cost for the objective, this paper will illustrate the problem of under actuator dynamic systems with the easiest to deal with comparing between minimum energy and minimum jerk.

Keywords: Under actuator, Dynamic optimal control, Minimumjerk, Minimum energy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1320