Search results for: Free stream temperature.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3641

Search results for: Free stream temperature.

3161 Experimental Investigation on the Lithium-ion Battery Thermal Management System Based on U-Shaped Micro Heat Pipe Array in High Temperature Environment

Authors: Ruyang Ren, Yaohua Zhao, Yanhua Diao

Abstract:

In this study, a type of active air cooling thermal management system (TMS) based on U-shaped micro heat pipe array (MHPA) is established for the battery energy storage box which operates in high ambient temperature all the year round. The thermal management performance of the active air cooling TMS based on U-shaped MHPA under different ambient temperatures and different cooling conditions is analyzed by the method of experimental research. Results show that even if the battery energy storage box operates at a high ambient temperature of 45 °C, the active air cooling TMS based on U-shaped MHPA controls not only the maximum temperature of the battery in the battery energy storage box below 55 °C, but also the maximum temperature difference in the battery energy storage box below 5 °C during the whole charge-discharge process. The experimental results provide guidance for the application of the battery energy storage box TMS that operates in high temperature areas.

Keywords: Active air cooling, lithium-ion battery, micro heat pipe array, thermal management system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 351
3160 The Impact of the Cell-Free Solution of Lactic Acid Bacteria on Cadaverine Production by Listeria monocytogenes and Staphylococcus aureus in Lysine-Decarboxylase Broth

Authors: Fatih Özogul, Nurten Toy, Yesim Özogul

Abstract:

The influences of cell-free solutions (CFSs) of lactic acid bacteria (LAB) on cadaverine and other biogenic amines production by Listeria monocytogenes and Staphylococcus aureus were investigated in lysine decarboxylase broth (LDB) using HPLC. Cell free solutions were prepared from Lactococcus lactis subsp. lactis, Leuconostoc mesenteroides subsp. cremoris, Pediococcus acidilactici and Streptococcus thermophiles. Two different concentrations that were 50% and 25% CFS and the control without CFSs were prepared. Significant variations on biogenic amine production were observed in the presence of L. monocytogenes and S. aureus (P < 0.05). The function of CFS on biogenic amine production by foodborne pathogens varied depending on strains and specific amine. Cadaverine formation by L. monocytogenes and S. aureus in control were 500.9 and 948.1 mg/L, respectively while the CFSs of LAB induced 4-fold lower cadaverine production by L. monocytogenes and 7-fold lower cadaverine production by S. aureus. The CFSs resulted in strong decreases in cadaverine and putrescine production by L. monocytogenes and S. aureus, although remarkable increases were observed for histamine, spermidine, spermine, serotonin, dopamine, tyramine and agmatine in the presence of LAB in lysine decarboxylase broth.

Keywords: Cell-free solution, lactic acid bacteria, cadaverine, food borne-pathogen.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2123
3159 Manufacturing of Twist-Free Surfaces by Magnetism Aided Machining Technologies

Authors: Zs. Kovács, Zs. J. Viharos, J. Kodácsy

Abstract:

As a well-known conventional finishing process, the grinding is commonly used to manufacture seal mating surfaces and bearing surfaces, but is also creates twisted surfaces. The machined surfaces by turning or grinding usually have twist structure on the surfaces, which can convey lubricants such as conveyor screw. To avoid this phenomenon, have to use special techniques or machines, for example start-stop turning, tangential turning, ultrasonic protection or special toll geometries. All of these solutions have high cost and difficult usability. In this paper, we describe a system and summarize the results of the experimental research carried out mainly in the field of Magnetic Abrasive Polishing (MAP) and Magnetic Roller Burnishing (MRB). These technologies are simple and also green while able to produce twist-free surfaces. During the tests, C45 normalized steel was used as workpiece material which was machined by simple and Wiper geometrical turning inserts in a CNC turning lathe. After the turning, the MAP and MRB technologies can be used directly to reduce the twist of surfaces. The evaluation was completed by advanced measuring and IT equipment.

Keywords: Magnetism, finishing, polishing, roller burnishing, twist-free.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1192
3158 The Effects of North Sea Caspian Pattern Index on the Temperature and Precipitation Regime in the Aegean Region of Turkey

Authors: Cenk Sezen, Turgay Partal

Abstract:

North Sea Caspian Pattern Index (NCP) refers to an atmospheric teleconnection between the North Sea and North Caspian at the 500 hPa geopotential height level. The aim of this study is to search for effects of NCP on annual and seasonal mean temperature and also annual and seasonal precipitation totals in the Aegean region of Turkey. The study contains the data that consist of 46 years obtained from nine meteorological stations. To determine the relationship between NCP and the climatic parameters, firstly the Pearson correlation coefficient method was utilized. According to the results of the analysis, most of the stations in the region have a high negative correlation NCPI in all seasons, especially in the winter season in terms of annual and seasonal mean temperature (statistically at significant at the 90% level). Besides, high negative correlation values between NCPI and precipitation totals are observed during the winter season at the most of stations. Furthermore, the NCPI values were divided into two group as NCPI(-) and NCPI(+), and then mean temperature and precipitation total values, which are grouped according to the NCP(-) and NCP(+) phases, were determined as annual and seasonal. During the NCPI(-), higher mean temperature values are observed in all of seasons, particularly in the winter season compared to the mean temperature values under effect of NCP(+). Similarly, during the NCPI(-) in winter season precipitation total values have higher than the precipitation total values under the effect of NCP(+); however, in other seasons there no substantial changes were observed between the precipitation total values. As a result of this study, significant proof is obtained with regards to the influences of NCP on the temperature and precipitation regime in the Aegean region of Turkey.

Keywords: Aegean Region, North Sea Caspian Pattern, precipitation, temperature.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1230
3157 Nonlinear Solitary Structures of Electron Plasma Waves in a Finite Temperature Quantum Plasma

Authors: Swarniv Chandra, Basudev Ghosh

Abstract:

Nonlinear solitary structures of electron plasma waves have been investigated by using nonlinear quantum fluid equations for electrons with an arbitrary temperature. It is shown that the electron degeneracy parameter has significant effects on the linear and nonlinear properties of electron plasma waves. Depending on its value both compressive and rarefactive solitons can be excited in the model plasma under consideration.

Keywords: Electron Plasma Waves, Finite Temperature Model, Modulational Instability, Quantum Plasma, Solitary structure

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1726
3156 Energy Based Temperature Profile for Heat Transfer Analysis of Concrete Section Exposed to Fire on One Side

Authors: Pattamad Panedpojaman

Abstract:

For fire safety purposes, the fire resistance and the structural behavior of reinforced concrete members are assessed to satisfy specific fire performance criteria. The available prescribed provisions are based on standard fire load. Under various fire scenarios, engineers are in need of both heat transfer analysis and structural analysis. For heat transfer analysis, the study proposed a modified finite difference method to evaluate the temperature profile within a cross section. The research conducted is limited to concrete sections exposed to a fire on their one side. The method is based on the energy conservation principle and a pre-determined power function of the temperature profile. The power value of 2.7 is found to be a suitable value for concrete sections. The temperature profiles of the proposed method are only slightly deviate from those of the experiment, the FEM and the FDM for various fire loads such as ASTM E 119, ASTM 1529, BS EN 1991-1-2 and 550 oC. The proposed method is useful to avoid incontinence of the large matrix system of the typical finite difference method to solve the temperature profile. Furthermore, design engineers can simply apply the proposed method in regular spreadsheet software.

Keywords: temperature profile, finite difference method, concrete section, one-side fire exposed, energy conservation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2076
3155 The Pack-Bed Sphere Liquid Porous Burner

Authors: B. Krittacom, P. Amatachaya, W. Srimuang, K. Inla

Abstract:

The combustion of liquid fuel in the porous burner (PB) was experimented to investigate evaporation mechanism and combustion behavior. The diesel oil was used as fuel and the pebbles carefully chosen in the same size like the solid sphere homogeneously was adopted as the porous media. Two structures of the liquid porous burner, i.e. the PB without and with installation of porous emitter (PE), were performed. PE was installed by lower than PB with distance of 20 cm. The pebbles having porosity (φ) of 0.45 and 0.52 were, respectively, used in PB and PE. The fuel was supplied dropwise from the top through the PB and the combustion was occurred between PB and PE. Axial profiles of temperature along the burner length were measured to clarify the evaporation and combustion phenomena. The pollutant emission characteristics were monitored at the burner exit. From the experiment, it was found that the temperature profiles of both structures decreased with the three ways swirling air flows (QA) increasing. On the other hand, the temperature profiles increased with fuel heat input (QF). Obviously, the profile of the porous burner installed with PE was higher than that of the porous burner without PE

Keywords: Liquid fuel, Porous burner, Temperature profile.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1762
3154 Modeling the Effect of Spacer Orientation on Heat Transfer in Membrane Distillation

Authors: M. Shakaib, M. Ehtesham-ul Haq, I. Ahmed, R.M. Yunus

Abstract:

Computational fluid dynamics (CFD) simulations carried out in this paper show that spacer orientation has a major influence on temperature patterns and on the heat transfer rates. The local heat flux values significantly vary from high to very low values at each filament when spacer touches the membrane surface. The heat flux profile is more uniform when spacer filaments are not in contact with the membrane thus making this arrangement more beneficial. The temperature polarization is also found to be less in this case when compared to the empty channel.

Keywords: heat transfer, membrane distillation, spacer, temperature polarization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1724
3153 Influence of Stacking Sequence and Temperature on Buckling Resistance of GFRP Infill Panel

Authors: Viriyavudh Sim, SeungHyun Kim, JungKyu Choi, WooYoung Jung

Abstract:

Glass Fiber Reinforced Polymer (GFRP) is a major evolution for energy dissipation when used as infill material for seismic retrofitting of steel frame, a basic PMC infill wall system consists of two GFRP laminates surrounding an infill of foam core. This paper presents numerical analysis in terms of buckling resistance of GFRP sandwich infill panels system under the influence of environment temperature and stacking sequence of laminate skin. Mode of failure under in-plane compression is studied by means of numerical analysis with ABAQUS platform. Parameters considered in this study are contact length between infill and frame, laminate stacking sequence of GFRP skin and variation of mechanical properties due to increment of temperature. The analysis is done with four cases of simple stacking sequence over a range of temperature. The result showed that both the effect of temperature and stacking sequence alter the performance of entire panel system. The rises of temperature resulted in the decrements of the panel’s strength. This is due to the polymeric nature of this material. Additionally, the contact length also displays the effect on the performance of infill panel. Furthermore, the laminate stiffness can be modified by orientation of laminate, which can increase the infill panel strength. Hence, optimal performance of the entire panel system can be obtained by comparing different cases of stacking sequence.

Keywords: Buckling resistance, GFRP infill panel, stacking sequence, temperature dependent.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1500
3152 Triple Intercell Bar for Electrometallurgical Processes: A Design to Increase PV Energy Utilization

Authors: Eduardo P. Wiechmann, Jorge A. Henríquez, Pablo E. Aqueveque, Luis G. Muñoz

Abstract:

PV energy prices are declining rapidly. To take advantage of the benefits of those prices and lower the carbon footprint, operational practices must be modified. Undoubtedly, it challenges the electrowinning practice to operate at constant current throughout the day. This work presents a technology that contributes in providing modulation capacity to the electrode current distribution system. This is to raise the day time dc current and lower it at night. The system is a triple intercell bar that operates in current-source mode. The design is a capping board free dogbone type of bar that ensures an operation free of short circuits, hot swapability repairs and improved current balance. This current-source system eliminates the resetting currents circulating in equipotential bars. Twin auxiliary connectors are added to the main connectors providing secure current paths to bypass faulty or impaired contacts. All system conductive elements are positioned over a baseboard offering a large heat sink area to the ventilation of a facility. The system works with lower temperature than a conventional busbar. Of these attributes, the cathode current balance property stands out and is paramount for day/night modulation and the use of photovoltaic energy. A design based on a 3D finite element method model predicting electric and thermal performance under various industrial scenarios is presented. Preliminary results obtained in an electrowinning facility with industrial prototypes are included.

Keywords: Electrowinning, intercell bars, PV energy, current modulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 623
3151 Free Vibration Analysis of Smart FGM Plates

Authors: F.Ebrahimi, A.Rastgo

Abstract:

Analytical investigation of the free vibration behavior of circular functionally graded (FG) plates integrated with two uniformly distributed actuator layers made of piezoelectric (PZT4) material on the top and bottom surfaces of the circular FG plate based on the classical plate theory (CPT) is presented in this paper. The material properties of the functionally graded substrate plate are assumed to be graded in the thickness direction according to the power-law distribution in terms of the volume fractions of the constituents and the distribution of electric potential field along the thickness direction of piezoelectric layers is simulated by a quadratic function. The differential equations of motion are solved analytically for clamped edge boundary condition of the plate. The detailed mathematical derivations are presented and Numerical investigations are performed for FG plates with two surface-bonded piezoelectric layers. Emphasis is placed on investigating the effect of varying the gradient index of FG plate on the free vibration characteristics of the structure. The results are verified by those obtained from threedimensional finite element analyses.

Keywords: Circular plate, CPT, Functionally graded, Piezoelectric.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2299
3150 Analyzing of Temperature-Dependent Thermal Conductivity Effect in the Numerical Modeling of Fin-Tube Radiators: Introduction of a New Method

Authors: Farzad Bazdidi-Tehrani, Mohammad Hadi Kamrava

Abstract:

In all industries which are related to heat, suitable thermal ranges are defined for each device to operate well. Consideration of these limits requires a thermal control unit beside the main system. The Satellite Thermal Control Unit exploits from different methods and facilities individually or mixed. For enhancing heat transfer between primary surface and the environment, utilization of radiating extended surfaces are common. Especially for large temperature differences; variable thermal conductivity has a strong effect on performance of such a surface .In most literatures, thermo-physical properties, such as thermal conductivity, are assumed as constant. However, in some recent researches the variation of these parameters is considered. This may be helpful for the evaluation of fin-s temperature distribution in relatively large temperature differences. A new method is introduced to evaluate temperature-dependent thermal conductivity values. The finite volume method is employed to simulate numerically the temperature distribution in a space radiating fin. The present modeling is carried out for Aluminum as fin material and compared with previous method. The present results are also compared with those of two other analytical methods and good agreement is shown.

Keywords: Variable thermal conductivity, New method, Finitevolume method, Combined heat transfer, Extended Surface

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2329
3149 Numerical Study of Fiber Bragg Grating Sensor: Longitudinal and Transverse Detection of Temperature and Strain

Authors: K. Khelil, H. Ammar, K. Saouchi

Abstract:

Fiber Bragg Grating (FBG) structure is an periodically modulated optical fiber. It acts as a selective filter of wavelength whose reflected peak is called Bragg wavelength and it depends on the period of the fiber and the refractive index. The simulation of FBG is based on solving the Coupled Mode Theory equation by using the Transfer Matrix Method which is carried out using MATLAB. It is found that spectral reflectivity is shifted when the change of temperature and strain is uniform. Under non-uniform temperature or strain perturbation, the spectrum is both shifted and destroyed. In case of transverse loading, reflectivity spectrum is split into two peaks, the first is specific to X axis, and the second belongs to Y axis. FBGs are used in civil engineering to detect perturbations applied to buildings.

Keywords: Bragg wavelength, coupled mode theory, optical fiber, temperature measurement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 885
3148 Modeling and Simulation of Acoustic Link Using Mackenize Propagation Speed Equation

Authors: Christhu Raj M. R., Rajeev Sukumaran

Abstract:

Underwater acoustic networks have attracted great attention in the last few years because of its numerous applications. High data rate can be achieved by efficiently modeling the physical layer in the network protocol stack. In Acoustic medium, propagation speed of the acoustic waves is dependent on many parameters such as temperature, salinity, density, and depth. Acoustic propagation speed cannot be modeled using standard empirical formulas such as Urick and Thorp descriptions. In this paper, we have modeled the acoustic channel using real time data of temperature, salinity, and speed of Bay of Bengal (Indian Coastal Region). We have modeled the acoustic channel by using Mackenzie speed equation and real time data obtained from National Institute of Oceanography and Technology. It is found that acoustic propagation speed varies between 1503 m/s to 1544 m/s as temperature and depth differs. The simulation results show that temperature, salinity, depth plays major role in acoustic propagation and data rate increases with appropriate data sets substituted in the simulated model.

Keywords: Underwater Acoustics, Mackenzie Speed Equation, Temperature, Salinity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2199
3147 Investigating the Precipitation and Temperature Change Procedure in Zayanderood Watershed

Authors: Amir Gandomkar

Abstract:

Global warming and continental changes have been one of the people's issues in the recent years and its consequences have appeared in the most parts of the earth planet or will appear in the future. Temperature and Precipitation are two main parameters in climatology. Any changes in these two parameters in this region cause widespread changes in the ecosystem and its natural and humanistic structure. One of the important consequences of this procedure is change in surface and underground water resources. Zayanderood watershed basin which is the main central river in Iran has faced water shortage in the recent years and also it has resulted in drought in Gavkhuni swamp and the river itself. Managers and experts in provinces which are the Zayanderood water consumers believe that global warming; raining decrease and continental changes are the main reason of water decrease. By statistical investigation of annual Precipitation and 46 years temperature of internal and external areas of Zayanderood watershed basin's stations and by using Kendal-man method, Precipitation and temperature procedure changes have been analyzed in this basin. According to obtained results, there was not any noticeable decrease or increase procedure in Precipitation and annual temperature in the basin during this period. However, regarding to Precipitation, a noticeable decrease and increase have been observed in small part of western and some parts of eastern and southern basin, respectively. Furthermore, the investigation of annual temperature procedure has shown that a noticeable increase has been observed in some parts of western and eastern basin, and also a noticeable increasing procedure of temperature in the central parts of metropolitan Esfahan can be observed.

Keywords: Zayanderood, Man_Kendal, Climate Change

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1480
3146 A Study of Calcination and Carbonation of Cockle Shell

Authors: N.A. Rashidi, M. Mohamed, S.Yusup

Abstract:

Calcium oxide (CaO) as carbon dioxide (CO2) adsorbent at the elevated temperature has been very well-received thus far. The CaO can be synthesized from natural calcium carbonate (CaCO3) sources through the reversible calcination-carbonation process. In the study, cockle shell has been selected as CaO precursors. The objectives of the study are to investigate the performance of calcination and carbonation with respect to different temperature, heating rate, particle size and the duration time. Overall, better performance is shown at the calcination temperature of 850oC for 40 minutes, heating rate of 20oC/min, particle size of < 0.125mm and the carbonation temperature is at 650oC. The synthesized materials have been characterized by nitrogen physisorption and surface morphology analysis. The effectiveness of the synthesized cockle shell in capturing CO2 (0.72 kg CO2/kg adsorbent) which is comparable to the commercialized adsorbent (0.60 kg CO2/kg adsorbent) makes them as the most promising materials for CO2 capture.

Keywords: Calcination, Calcium oxide, Carbonation, Cockle shell

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3592
3145 Construction and Performance Characterization of the Looped-Tube Travelling-Wave Thermoacoustic Engine with Ceramic Regenerator

Authors: Abdulrahman S. Abduljalil, Zhibin Yu, Artur J. Jaworski, Lei Shi

Abstract:

In a travelling wave thermoacoustic device, the regenerator sandwiched between a pair of (hot and cold) heat exchangers constitutes the so-called thermoacoustic core, where the thermoacoustic energy conversion from heat to acoustic power takes place. The temperature gradient along the regenerator caused by the two heat exchangers excites and maintains the acoustic wave in the resonator. The devices are called travelling wave thermoacoustic systems because the phase angle difference between the pressure and velocity oscillation is close to zero in the regenerator. This paper presents the construction and testing of a thermoacoustic engine equipped with a ceramic regenerator, made from a ceramic material that is usually used as catalyst substrate in vehicles- exhaust systems, with fine square channels (900 cells per square inch). The testing includes the onset temperature difference (minimum temperature difference required to start the acoustic oscillation in an engine), the acoustic power output, thermal efficiency and the temperature profile along the regenerator.

Keywords: Regenerator, Temperature gradient, Thermoacoustic, Travelling-wave.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2266
3144 Heat Treatment of Aluminum Alloy 7449

Authors: Suleiman E. Al-lubani, Mohammad E. Matarneh, Hussien M. Al-Wedyan, Ala M. Rayes

Abstract:

Aluminum alloy has an extensive range of industrial application due to its consistent mechanical properties and structural integrity. The heat treatment by precipitation technique affected the Magnesium, Silicon Manganese and copper crystals dissolved in the Aluminum alloy. The crystals dislocated to precipitate on the crystal’s boundaries of the Aluminum alloy when given a thermal energy increased its hardness. In this project various times and temperature were varied to find out the best combination of these variables to increase the precipitation of the metals on the Aluminum crystal’s boundaries which will lead to get the highest hardness. These specimens are then tested for their hardness and tensile strength. It is noticed that when the temperature increases, the precipitation increases and consequently the hardness increases. A threshold temperature value (264C0) of Aluminum alloy should not be reached due to the occurrence of recrystalization which causes the crystal to grow. This recrystalization process affected the ductility of the alloy and decrease hardness. In addition, and while increasing the temperature the alloy’s mechanical properties will decrease. The mechanical properties, namely tensile and hardness properties are investigated according to standard procedures. In this research, different temperature and time have been applied to increase hardening.The highest hardness at 100°c in 6 hours equals to 207.31 HBR, while at the same temperature and time the lowest elongation equals to 146.5.

Keywords: Aluminum alloy, recrystalization process, heat treatment, hardness properties, precipitation, intergranular breakage.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4076
3143 Bacteriological Screening and Antibiotic – Heavy Metal Resistance Profile of the Bacteria Isolated from Some Amphibian and Reptile Species of the Biga Stream in Turkey

Authors: Nurcihan Hacioglu, Cigdem Gul, Murat Tosunoglu

Abstract:

In this article, the antibiogram and heavy metal resistance profile of the bacteria isolated from total 34 studied animals (Pelophylax ridibundus = 12; Mauremys rivulata = 14; Natrix natrix = 8) captured around the Biga Stream, are described. There was no database information on antibiogram and heavy metal resistance profile of bacteria from these area’s amphibians and reptiles. A total of 200 bacteria were successfully isolated from cloaca and oral samples of the aquatic amphibians and reptiles as well as from the water sample. According to Jaccard’s similarity index, the degree of similarity in the bacterial flora was quite high among the amphibian and reptile species under examination, whereas it was different from the bacterial diversity in the water sample. The most frequent isolates were A. hydrophila (31.5%), B. pseudomallei (8.5%), and C. freundii (7%). The total numbers of bacteria obtained were as follows: 45 in P. ridibundus, 45 in N. natrix 30 in M. rivulata, and 80 in the water sample. The result showed that cefmetazole was the most effective antibiotic to control the bacteria isolated in this study and that approximately 93.33% of the bacterial isolates were sensitive to this antibiotic. The multiple antibiotic resistances (MAR) index indicated that P. ridibundus (0.95) > N. natrix (0.89) > M. rivulata (0.39). Furthermore, all the tested heavy metals (Pb+2, Cu+2, Cr+3, and Mn+2) inhibit the growth of the bacterial isolates at different rates. Therefore, it indicated that the water source of the animals was contaminated with both antibiotic residues and heavy metals.

Keywords: Amphibian, Bacteriological Quality, Reptile, Antibiotic & Heavy Metal Resistance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2246
3142 A Comparative Study of a Defective Superconductor/ Semiconductor-Dielectric Photonic Crystal

Authors: S. Sadegzadeh, A. Mousavi

Abstract:

Temperature-dependent tunable photonic crystals have attracted widespread interest in recent years. In this research, transmission characteristics of a one-dimensional photonic crystal structure with a single defect have been studied. Here, we assume two different defect layers: InSb as a semiconducting layer and HgBa2Ca2Cu3O10 as a high-temperature superconducting layer. Both the defect layers have temperature-dependent refractive indexes. Two different types of dielectric materials (Si as a high-refractive index dielectric and MgF2 as a low-refractive index dielectric) are used to construct the asymmetric structures (Si/MgF2)NInSb(Si/MgF2)N named S.I, and (Si/MgF2)NHgBa2Ca2Cu3O10(Si/MgF2)N named S.II. It is found that in response to the temperature changes, transmission peaks within the photonic band gap of the S.II structure, in contrast to S.I, show a small wavelength shift. Furthermore, the results show that under the same conditions, S.I structure generates an extra defect mode in the transmission spectra. Besides high efficiency transmission property of S.II structure, it can be concluded that the semiconductor-dielectric photonic crystals are more sensitive to temperature variation than superconductor types.

Keywords: Defect modes, photonic crystals, semiconductor, superconductor, transmission.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1252
3141 The Role of Heat Pumps for the Decarbonization of European Regions

Authors: D. M. Mongelli, M. De Carli, L. Carnieletto, F. Busato

Abstract:

This research aims to provide a contribution to the reduction of fossil fuels and the consequent reduction of CO2eq emissions for each European region. Simulations have been carried out to replace fossil fuel fired heating boilers with air-to-water heat pumps, when allowed by favorable environmental conditions (outdoor temperature, water temperature in emission systems, etc.). To estimate the potential coverage of high-temperature heat pumps in European regions, the energy profiles of buildings were considered together with the potential coefficient of performance (COP) of heat pumps operating with flow temperature with variable climatic regulation. The electrification potential for heating buildings was estimated by dividing the 38 European countries examined into 179 territorial units. The yields have been calculated in terms of energy savings and CO2eq reduction.

Keywords: Decarbonization, Space heating, Heat pumps, Energy policies.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 211
3140 Study of the Process of Climate Change According to Data Simulation Using LARS-WG Software during 2010-2030: Case Study of Semnan Province

Authors: Leila Rashidian

Abstract:

Temperature rise on Earth has had harmful effects on the Earth's surface and has led to change in precipitation patterns all around the world. The present research was aimed to study the process of climate change according to the data simulation in future and compare these parameters with current situation in the studied stations in Semnan province including Garmsar, Shahrood and Semnan. In this regard, LARS-WG software, HADCM3 model and A2 scenario were used for the 2010-2030 period. In this model, climatic parameters such as maximum and minimum temperature, precipitation and radiation were used daily. The obtained results indicated that there will be a 4.4% increase in precipitation in Semnan province compared with the observed data, and in general, there will be a 1.9% increase in temperature. This temperature rise has significant impact on precipitation patterns. Most of precipitation will be raining (torrential rains in some cases). According to the results, from west to east, the country will experience more temperature rise and will be warmer.

Keywords: Climate change, Semnan province, LARS-WG model, climate parameters, HADCM3 model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1151
3139 Implementation of Meshless FEM for Engineering Applications

Authors: A. Seidl, Th. Schmidt

Abstract:

Meshless Finite Element Methods, namely element-free Galerkin and point-interpolation method were implemented and tested concerning their applicability to typical engineering problems like electrical fields and structural mechanics. A class-structure was developed which allows a consistent implementation of these methods together with classical FEM in a common framework. Strengths and weaknesses of the methods under investigation are discussed. As a result of this work joint usage of meshless methods together with classical Finite Elements are recommended.

Keywords: Finite Elements, meshless, element-free Galerkin, point-interpolation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1952
3138 Hot Workability of High Strength Low Alloy Steels

Authors: Seok Hong Min, Jung Ho Moon, Woo Young Jung, Tae Kwon Ha

Abstract:

The hot deformation behavior of high strength low alloy (HSLA) steels with different chemical compositions under hot working conditions in the temperature range of 900 to 1100℃ and strain rate range from 0.1 to 10 s-1 has been studied by performing a series of hot compression tests. The dynamic materials model has been employed for developing the processing maps, which show variation of the efficiency of power dissipation with temperature and strain rate. Also the Kumar-s model has been used for developing the instability map, which shows variation of the instability for plastic deformation with temperature and strain rate. The efficiency of power dissipation increased with decreasing strain rate and increasing temperature in the steel with higher Cr and Ti content. High efficiency of power dissipation over 20 % was obtained at a finite strain level of 0.1 under the conditions of strain rate lower than 1 s-1 and temperature higher than 1050 ℃ . Plastic instability was expected in the regime of temperatures lower than 1000 ℃ and strain rate lower than 0.3 s-1. Steel with lower Cr and Ti contents showed high efficiency of power dissipation at higher strain rate and lower temperature conditions.

Keywords: High strength low alloys steels, hot workability, Dynamic materials model, Processing maps.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2019
3137 Calibrations and Effect of Different Operating Conditions on the Performance of a Fluid Power Control System with Servo Solenoid Valve

Authors: Tahany W. Sadak, Fouly, A. Anwer, M. Rizk

Abstract:

The current investigation presents a study on the hydraulic performance of an electro-hydraulic servo solenoid valve controlled linear piston used in hydraulic systems. Advanced methods have been used to measure and record laboratory experiments, to ensure accurate analysis and evaluation. Experiments have been conducted under different values of temperature (28, 40 and 50 °C), supply pressure (10, 20, 30, 40 and 50 bar), system stiffness (32 N/mm), and load (0.0 & 5560 N). It is concluded that increasing temperature of hydraulic oil increases the quantity of flow rate, so it achieves an increase of the quantity of flow by 5.75 % up to 48.8 % depending on operating conditions. The values of pressure decay at low temperature are less than the values at high temperature. The frequency increases with the increase of the temperature. When we connect the springs to the system, it decreases system frequency. These results are very useful in the process of packing and manufacturing of fluid products, where the properties are not affected by 50 °C, so energy and time are saved.

Keywords: Electro Hydraulic Servo Valve, fluid power control system, system stiffness, static and dynamic performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 680
3136 Effect of Y Addition on the Microstructure and Mechanical Properties of Sn-Zn Eutectic Alloy

Authors: Jung-Ho Moon, Tae Kwon Ha

Abstract:

The effect of Yttrium addition on the microstructure and mechanical properties of Sn-Zn eutectic alloy, which has been attracting intensive focus as a Pb-free solder material, was investigated in this study. Phase equilibrium has been calculated by using FactSage® to evaluate the composition and fraction of equilibrium intermetallic compounds and construct a phase diagram. In the case of Sn-8.8Zn eutectic alloy, the as-cast microstructure was typical lamellar. With addition of 0.25wt.%Y, a large amount of pro-eutectic a phase have been observed and various YZnx intermetallic compounds were expected to successively form during cooling. Hardness of Sn-8.8Zn alloy was not affected by Y-addition and both alloys could be rolled by 90% at room temperature.

Keywords: Sn-Zn eutectic alloy, Yttrium, FactSage®, microstructure, mechanical properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2000
3135 Smith Predictor Design by CDM for Temperature Control System

Authors: Roengruen P., Tipsuwanporn V., Puawade P., Numsomran A.

Abstract:

Smith Predictor control is theoretically a good solution to the problem of controlling the time delay systems. However, it seldom gets use because it is almost impossible to find out a precise mathematical model of the practical system and very sensitive to uncertain system with variable time-delay. In this paper is concerned with a design method of smith predictor for temperature control system by Coefficient Diagram Method (CDM). The simulation results show that the control system with smith predictor design by CDM is stable and robust whilst giving the desired time domain system performance.

Keywords: CDM, Smith Predictor, temperature process

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2433
3134 Non-Burn Treatment of Health Care Risk Waste

Authors: Jefrey Pilusa, Tumisang Seodigeng

Abstract:

This research discusses a South African case study for the potential of utilizing refuse-derived fuel (RDF) obtained from non-burn treatment of health care risk waste (HCRW) as potential feedstock for green energy production. This specific waste stream can be destroyed via non-burn treatment technology involving high-speed mechanical shredding followed by steam or chemical injection to disinfect the final product. The RDF obtained from this process is characterised by a low moisture, low ash, and high calorific value which means it can be potentially used as high-value solid fuel. Due to the raw feed of this RDF being classified as hazardous, the final RDF has been reported to be non-infectious and can blend with other combustible wastes such as rubber and plastic for waste to energy applications. This study evaluated non-burn treatment technology as a possible solution for on-site destruction of HCRW in South African private and public health care centres. Waste generation quantities were estimated based on the number of registered patient beds, theoretical bed occupancy. Time and motion study was conducted to evaluate the logistics viability of on-site treatment. Non-burn treatment technology for HCRW is a promising option for South Africa, and successful implementation of this method depends upon the initial capital investment, operational cost and environmental permitting of such technology; there are other influencing factors such as the size of the waste stream, product off-take price as well as product demand.

Keywords: Autoclave, disposal, fuel, incineration, medical waste.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1165
3133 Particle Simulation of Rarefied Gas Flows witha Superimposed Wall Surface Temperature Gradient in Microgeometries

Authors: V. Azadeh Ranjbar

Abstract:

Rarefied gas flows are often occurred in micro electro mechanical systems and classical CFD could not precisely anticipate the flow and thermal behavior due to the high Knudsen number. Therefore, the heat transfer and the fluid dynamics characteristics of rarefied gas flows in both a two-dimensional simple microchannel and geometry similar to single Knudsen compressor have been investigated with a goal of increasing performance of a actual Knudsen compressor by using a particle simulation method. Thermal transpiration and thermal creep, which are rarefied gas dynamic phenomena, that cause movement of the flow from less to higher temperature is generated by using two different longitude temperature gradients (Linear, Step) along the walls of the flow microchannel. In this study the influence of amount of temperature gradient and governing pressure in various Knudsen numbers and length-to-height ratios have been examined.

Keywords: DSMC, Thermal transpiration, Thermal creep, MEMS, Knudsen Compressor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1253
3132 Modified Scaling-Free CORDIC Based Pipelined Parallel MDC FFT and IFFT Architecture for Radix 2^2 Algorithm

Authors: C. Paramasivam, K. B. Jayanthi

Abstract:

An innovative approach to develop modified scaling free CORDIC based two parallel pipelined Multipath Delay Commutator (MDC) FFT and IFFT architectures for radix 22 FFT algorithm is presented. Multipliers and adders are the most important data paths in FFT and IFFT architectures. Multipliers occupy high area and consume more power. In order to optimize the area and power overhead, modified scaling-free CORDIC based complex multiplier is utilized in the proposed design. In general twiddle factor values are stored in RAM block. In the proposed work, modified scaling-free CORDIC based twiddle factor generator unit is used to generate the twiddle factor and efficient switching units are used. In addition to this, four point FFT operations are performed without complex multiplication which helps to reduce area and power in the last two stages of the pipelined architectures. The design proposed in this paper is based on multipath delay commutator method. The proposed design can be extended to any radix 2n based FFT/IFFT algorithm to improve the throughput. The work is synthesized using Synopsys design Compiler using TSMC 90-nm library. The proposed method proves to be better compared to the reference design in terms of area, throughput and power consumption. The comparative analysis of the proposed design with Xilinx FPGA platform is also discussed in the paper.

Keywords: Coordinate Rotational Digital Computer(CORDIC), Complex multiplier, Fast Fourier transform (FFT), Inverse fast Fourier transform (IFFT), Multipath delay Commutator (MDC), modified scaling free CORDIC, complex multiplier, pipelining, parallel processing, radix-2^2.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1818