Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30578
Formation of Protective Silicide-Aluminide Coating on Gamma-TiAl Advanced Material

Authors: S. Nouri


In this study, the Si-aluminide coating was prepared on gamma-TiAl [Ti-45Al-2Nb-2Mn-1B (at. %)] via liquid-phase slurry procedure. The high temperature oxidation resistance of this diffusion coating was evaluated at 1100 °C for 400 hours. The results of the isothermal oxidation showed that the formation of Si-aluminide coating can remarkably improve the high temperature oxidation of bare gamma-TiAl alloy. The identification of oxide scale microstructure showed that the formation of protective Al2O3+SiO2 mixed oxide scale along with a continuous, compact and uniform layer of Ti5Si3 beneath the surface oxide scale can act as an oxygen diffusion barrier during the high temperature oxidation. The other possible mechanisms related to the formation of Si-aluminide coating and oxide scales were also discussed.

Keywords: high temperature oxidation, Gamma-TiAl alloy, Si-aluminide coating, slurry procedure

Digital Object Identifier (DOI):

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 181


[1] M. Perrut, P. Caron, M. Thomas, A. Couret. High temperature materials for aerospace applications: Ni-based superalloys and γ-TiAl alloys, Comptes Rendus Physique, 19 (2018) 657-671.
[2] J. Ding, M. Zhang, Y. Liang, Y. Ren, C. Dong, J. Lin, Enhanced high-temperature tensile property by gradient twin structure of duplex high-Nb-containing TiAl alloy, Acta Materialia, 161 (2018) 1-11.
[3] S. J. Qu, S. Q. Tang, A. H. Feng, C. Feng, J. Shen, D. L. Chen, Microstructural evolution and high-temperature oxidation mechanisms of a titanium aluminide based alloy, Acta Materialia, 148 (2018) 300-310.
[4] L. Chen, J. Lin, X. Xu, C. Li, Y. Xu, Y. Liang, Microstructure refinement via martensitic transformation in TiAl alloys, Journal of Alloys and Compounds, 741 (2018) 1175-1182.
[5] R. Chen, Q. Wang, Y. Yang, J. Guo, Y. Su, H. Ding, H. Fu, Brittle–ductile transition during creep in nearly and fully lamellar high-Nb TiAl alloys, Intermetallics, 93 (2018) 47-54.
[6] J. Ding, M. Zhang, T. Ye, Y. Liang, Y. Ren, C. Dong, J. Lin, Microstructure stability and micro-mechanical behavior of as-cast gamma-TiAl alloy during high-temperature low cycle fatigue, Acta Materialia, 145 (2018) 504-515.
[7] A. J. Palomares-García, M. T. Pérez-Prado, J. M. Molina-Aldareguia, Effect of lamellar orientation on the strength and operating deformation mechanisms of fully lamellar TiAl alloys determined by micropillar compression, Acta Materialia, 123 (2017) 102-114.
[8] B. Bewlay, S. Nag, A. Suzuki, and M. Weimer, TiAl alloys in commercial aircraft engines, Materials at High Temperatures, 33 (2016) 549-559.
[9] G. Yang, H. Kou, J. Yang, J. Li, and H. Fu, Microstructure control of Ti 45Al 8.5 Nb (W, B, Y) alloy during the solidification process, Acta Materialia, 112 (2016) 121-131.
[10] H. Jiang, S. Zeng, A. Zhao, X. Ding, and P. Dong, Hot deformation behavior of β phase containing γ-TiAl alloy, Materials Science and Engineering: A, 661(2016) 160-167.
[11] F. Appel, H. Clemens, F. Fischer, Modeling concepts for intermetallic titanium aluminides, Progress in Materials Science. 81 (2016) 55–124.
[12] J. Q. Wang, L. Y. Kong, T. F. Li, T. Y. Xiong, High temperature oxidation behavior of Ti (Al, Si)3 diffusion coating on γ-TiAl by cold spray, Transactions of Nonferrous Metals Society of China, 26 (2016) 1155-1162.
[13] S. Nouri, S. Mirdamadi, S. Rastegari, and M. Hadavi, Microstructural Investigation of Si -Modified Aluminide Coating Formed on γ-TiAl Alloy by the Slurry Method, Metallography, Microstructure, and Analysis, 4 (2015) 109-113.
[14] R. Swadźba, L. Swadźba, B. Mendala, B. Witala, J. Tracz, and K. Marugi, Characterization of Si-aluminide coating and oxide scale microstructure formed on γ-TiAl alloy during long-term oxidation at 950° C, Intermetallics, 87 (2017) 81-89.
[15] K. Bobzin, T. Brögelmann, C. Kalscheuer, and T. Liang, High temperature oxidation protection of γ-titanium aluminide using (Cr, Al) ON coatings deposited by high-speed physical vapor deposition, Surface and Coatings Technology, 332 (2017) 2-11.
[16] W. Li, M. Chen, M. Wu, S. Zhu, C. Wang, and F. Wang, Microstructure and oxidation behavior of a SiC-Al2O3-glass composite coating on Ti-47Al-2Cr-2Nb alloy, Corrosion Science, 87 (2014) 179-186.
[17] M. Jovanović, B. Dimčić, I. Bobić, S. Zec, and V. Maksimović, Microstructure and mechanical properties of precision cast TiAl turbocharger wheel, Journal of Materials Processing Technology, 167 (2005) 14-21.
[18] H. G. Jung, D. J. Jung, and K. Y. Kim, Effect of Cr addition on the properties of aluminide coating layers formed on TiAl alloys, Surface and Coatings Technology, 154 (2002) 75-81.
[19] M. Yoshihara, K. Miura, Effects of Nb addition on oxidation behavior of TiAl, Intermetallics, 3 (1995) 357-363.
[20] Z. H. Jiang, C. Z. Zhao, H. X. Zhang, Microstructure and Oxidation Behavior of Cr/Mo Modified TiAl Alloy Containing High Nb, IOP Conference Series: Materials Science and Engineering, 205 (2017) p. 012003: IOP Publishing.
[21] S. Y. Park, D. Seo, S. W. Kim, S. E. Kim, J. K. Hong, and D. B. Lee, High temperature oxidation of Ti–46Al–6Nb–0.5 W–0.5 Cr–0.3 Si–0.1 C alloy, Intermetallics, 74 (2016) 8-14.
[22] V. Haanappel, J. Sunderkötter, M. Stroosnijder, The isothermal and cyclic high temperature oxidation behaviour of Ti–48Al–2Mn–2Nb compared with Ti–48Al–2Cr–2Nb and Ti–48Al–2Cr, Intermetallics, 7 (1999) 529-541.
[23] H. Du, A. Aljarany, P. Datta, J. Burnell-Gray, Oxidation behaviour of Ti–46.7 Al–1.9 W–0.5 Si in air and Ar–20% O2 between 750 and 950C, Corrosion science, 47 (2005) 1706-1723.
[24] T. Nishimoto, T. Izumi, S. Hayashi, and T. Narita, Two-step Cr and Al diffusion coating on TiAl at high temperatures, Intermetallics, 11 (2003) 225-235.
[25] H. Jung, D. Wee, M. Oh, and K. Kim, An Al+ Y coating process for improvement of the high-temperature oxidation resistance of a TiAl alloy, Oxidation of metals, 55 (2001) 189-208.
[26] S. Taniguchi, T. Shibata, and K. Takeuchi, Protectiveness of a CVD-Al2O3 film on TiAl intermetallic compound against high-temperature oxidation, Materials Transactions, 32 (1991) 299-301.
[27] X. Chen, P. Zhang, D. Wei, F. Ding, F. Li, X. Wei, S. Ma, Preparation and characterization of Cr/CrC multilayer on γ-TiAl alloy by the double glow plasma surface alloying technology, Materials Letters. 215 (2018) 292–295.
[28] K. Bobzin, T. Brögelmann, C. Kalscheuer, T. Liang, Al-Si and Al-Si-Y Coatings deposited by HS-PVD for the Oxidation Protection of γ-TiAl, Surface and Coatings Technology. 350 (2018) 587-595.
[29] L. K. Wu, W.Y. Wu, J.L. Song, G.Y. Hou, H.Z. Cao, Y. P. Tang, G. Q. Zheng, Enhanced high temperature oxidation resistance for γ-TiAl alloy with electrodeposited SiO2 film, Corrosion Science. 140 (2018) 388-401.
[30] S. Nouri, S. Rastegari, S. Mirdamadi, M. Hadavi, Microstructure and oxidation resistance of Si modified aluminide coating on TiAl based alloys, Surface Engineering, 31 (2015) 930-933.
[31] H. E. Zschau, M. Schütze, H. Baumann, K. Bethge, The time behaviour of surface applied fluorine inducing the formation of an alumina scale on gamma-TiAl during oxidation at 900°C in air, Intermetallics, 14 (2006) 1136-1142.
[32] S. Taniguchi, T. Shibata, T. Yamada, X. Liu, and S. Zou, High-temperature oxidation resistance of TiAl improved by IBED Si3N4 coating, ISIJ international, 33 (1993) 869-876.
[33] X. B. Liu, R. L. Yu, Microstructure and high-temperature wear and oxidation resistance of laser clad γ/W2C/TiC composite coatings on γ-TiAl intermetallic alloy, Journal of alloys and compounds, 439 (2007) 279-286.
[34] V. Gauthier, F. Dettenwanger, and M. Schütze, Oxidation behavior of γ-TiAl coated with zirconia thermal barriers, Intermetallics, 10 (2002) 667-674.
[35] Z. Tang, F. Wang, and W. Wu, Effect of Al2O3 and enamel coatings on 900C oxidation and hot corrosion behaviors of gamma-TiAl," Materials Science and Engineering: A, 276 (2000) 70-75.
[36] R. Yankov et al., Surface protection of titanium and titanium–aluminum alloys against environmental degradation at elevated temperatures, Surface and Coatings Technology, 206 (2012) 3595-3600.
[37] P. Datta, J. Burnell‐Gray, and K. Natesan, Coating Technology, Intermetallic Compounds-Principles and Practice: Progress, 3 (2002) 561-588.
[38] Z. Xiang, S. Rose, P. Datta, Pack deposition of coherent aluminide coatings on γ-TiAl for enhancing its high temperature oxidation resistance, Surface and Coatings Technology, 161 (2002) 286-292.
[39] T. Sasaki and T. Yagi, Two-step diffusion treatment of aluminium-coated TiAl-based alloy, Surface Engineering, 32 (2016) 809-815.
[40] C. Zhou, H. Xu, S. Gong, and K. Y. Kim, A study of aluminide coatings on TiAl alloys by the pack cementation method, Materials Science and Engineering: A, 341 (2003) 169-173.
[41] M. Goral, G. Moskal, L. Swadzba, Gas phase aluminizing of TiAl intermetallics, Intermetallics, 17 (2009) 669-671.
[42] A. Rahmel, P. Spencer, Thermodynamic aspects of TiAl and TiSi2 oxidation: the Al-Ti-O and Si-Ti-O phase diagrams, Oxidation of Metals, 35 (1991) 53-68.
[43] B. V. Cockeram, R. A. Rapp, The kinetics of multilayered titanium-silicide coatings grown by the pack cementation method, Metallurgical and Materials Transactions A, 26 (1995) 777-791.
[44] K. L. Luthra, Stability of protective oxide films on Ti-base alloys, Oxidation of metals, 36 (1991) 475-490.