Implementation of Meshless FEM for Engineering Applications
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33093
Implementation of Meshless FEM for Engineering Applications

Authors: A. Seidl, Th. Schmidt

Abstract:

Meshless Finite Element Methods, namely element-free Galerkin and point-interpolation method were implemented and tested concerning their applicability to typical engineering problems like electrical fields and structural mechanics. A class-structure was developed which allows a consistent implementation of these methods together with classical FEM in a common framework. Strengths and weaknesses of the methods under investigation are discussed. As a result of this work joint usage of meshless methods together with classical Finite Elements are recommended.

Keywords: Finite Elements, meshless, element-free Galerkin, point-interpolation.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1055303

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1951

References:


[1] Belytschko, T.; Lu, Y.Y. and Gu, L.: ÔÇ×Element-Free Galerkin Methods", International Journal for Numerical Methods in Engineering, vol. 37, 1994, pp.229-256.
[2] G.R. Liu: Meshfree Methods - Moving beyond the Finite Element Method, 712 pages, 2002, CRC Press. ISBN: 0849312388.
[3] Beissel, S.; Belytschko T.: ÔÇ×Nodal Integration of the element-free Galerkin Method", Computer Methods in Applied Mechanics and Engineering, 1996, 139: 49-74.
[4] Martin Larcher private communication
[5] Zienkiewitz, O.C.: ÔÇ×Methode der finiten Elemente", Carl-Hanser Verlag, M├╝nchen 1984.
[6] Chen, J.S.; Wu, C.T.; Yoon, S.; Yu, J.: ÔÇ×A stabilized conforming nodal integration for Galerkin mesh-free methods", Int. J. Numer. Meth. Engng. 2001; 50:435-466.
[7] Schmidt, Th.; Abschlussbericht: Effektive Implemen-tierung gitterloser Finite Elemente Methoden, Forschungs-semester, Abschlußbericht.
[8] Seidl, A; Schmidt, Th.: "Gitterlose FEM", Abschlußbericht des Forschungsvorhabens FKZ 1705503.
[9] Seidl, A.; Schnattinger, Th.; Erdmann, A.; Hartmann, H; Petrashenko, A.: "Accurate extraction of maximum current densities from the layout", presented at IWCE 11, Vienna, 2006.
[10] Seidl, A., Schmidt Th., Orlando 2005.
[11] Seidl, A., Schnattinger Th., Erdmann A., Hartmann H., Petraschenko A.: "" Journal of computational electronics.
[12] McKenna, Object-oriented finite element programming: frameworks for analysis, algorithms and parallel computing, PhD, University of California at Berkeley, 1997.
[13] Archer Graham Charles, Object-Oriented Finite Element Analysis, PhD, University of California at Berkeley, 1996.