Search results for: intelligent robot.
441 A Real Time Ultra-Wideband Location System for Smart Healthcare
Authors: Mingyang Sun, Guozheng Yan, Dasheng Liu, Lei Yang
Abstract:
Driven by the demand of intelligent monitoring in rehabilitation centers or hospitals, a high accuracy real-time location system based on UWB (ultra-wideband) technology was proposed. The system measures precise location of a specific person, traces his movement and visualizes his trajectory on the screen for doctors or administrators. Therefore, doctors could view the position of the patient at any time and find them immediately and exactly when something emergent happens. In our design process, different algorithms were discussed, and their errors were analyzed. In addition, we discussed about a , simple but effective way of correcting the antenna delay error, which turned out to be effective. By choosing the best algorithm and correcting errors with corresponding methods, the system attained a good accuracy. Experiments indicated that the ranging error of the system is lower than 7 cm, the locating error is lower than 20 cm, and the refresh rate exceeds 5 times per second. In future works, by embedding the system in wearable IoT (Internet of Things) devices, it could provide not only physical parameters, but also the activity status of the patient, which would help doctors a lot in performing healthcare.Keywords: Intelligent monitoring, IoT devices, real-time location, smart healthcare, ultra-wideband technology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 890440 Fundamental Equation of Complete Factor Synergetics of Complex Systems with Normalization of Dimension
Authors: Li Zong-Cheng
Abstract:
It is by reason of the unified measure of varieties of resources and the unified processing of the disposal of varieties of resources, that these closely related three of new basic models called the resources assembled node and the disposition integrated node as well as the intelligent organizing node are put forth in this paper; the three closely related quantities of integrative analytical mechanics including the disposal intensity and disposal- weighted intensity as well as the charge of resource charge are set; and then the resources assembled space and the disposition integrated space as well as the intelligent organizing space are put forth. The system of fundamental equations and model of complete factor synergetics is preliminarily approached for the general situation in this paper, to form the analytical base of complete factor synergetics. By the essential variables constituting this system of equations we should set twenty variables respectively with relation to the essential dynamical effect, external synergetic action and internal synergetic action of the system.
Keywords: complex system, disposal of resources, completefactor synergetics, fundamental equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1419439 Laser Registration and Supervisory Control of neuroArm Robotic Surgical System
Authors: Hamidreza Hoshyarmanesh, Hosein Madieh, Sanju Lama, Yaser Maddahi, Garnette R. Sutherland, Kourosh Zareinia
Abstract:
This paper illustrates the concept of an algorithm to register specified markers on the neuroArm surgical manipulators, an image-guided MR-compatible tele-operated robot for microsurgery and stereotaxy. Two range-finding algorithms, namely time-of-flight and phase-shift, are evaluated for registration and supervisory control. The time-of-flight approach is implemented in a semi-field experiment to determine the precise position of a tiny retro-reflective moving object. The moving object simulates a surgical tool tip. The tool is a target that would be connected to the neuroArm end-effector during surgery inside the magnet bore of the MR imaging system. In order to apply flight approach, a 905-nm pulsed laser diode and an avalanche photodiode are utilized as the transmitter and receiver, respectively. For the experiment, a high frequency time to digital converter was designed using a field-programmable gate arrays. In the phase-shift approach, a continuous green laser beam with a wavelength of 530 nm was used as the transmitter. Results showed that a positioning error of 0.1 mm occurred when the scanner-target point distance was set in the range of 2.5 to 3 meters. The effectiveness of this non-contact approach exhibited that the method could be employed as an alternative for conventional mechanical registration arm. Furthermore, the approach is not limited by physical contact and extension of joint angles.
Keywords: 3D laser scanner, intraoperative MR imaging, neuroArm, real time registration, robot-assisted surgery, supervisory control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1061438 Support Vector Machine based Intelligent Watermark Decoding for Anticipated Attack
Authors: Syed Fahad Tahir, Asifullah Khan, Abdul Majid, Anwar M. Mirza
Abstract:
In this paper, we present an innovative scheme of blindly extracting message bits from an image distorted by an attack. Support Vector Machine (SVM) is used to nonlinearly classify the bits of the embedded message. Traditionally, a hard decoder is used with the assumption that the underlying modeling of the Discrete Cosine Transform (DCT) coefficients does not appreciably change. In case of an attack, the distribution of the image coefficients is heavily altered. The distribution of the sufficient statistics at the receiving end corresponding to the antipodal signals overlap and a simple hard decoder fails to classify them properly. We are considering message retrieval of antipodal signal as a binary classification problem. Machine learning techniques like SVM is used to retrieve the message, when certain specific class of attacks is most probable. In order to validate SVM based decoding scheme, we have taken Gaussian noise as a test case. We generate a data set using 125 images and 25 different keys. Polynomial kernel of SVM has achieved 100 percent accuracy on test data.Keywords: Bit Correct Ratio (BCR), Grid Search, Intelligent Decoding, Jackknife Technique, Support Vector Machine (SVM), Watermarking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1670437 An Intelligent Nondestructive Testing System of Ultrasonic Infrared Thermal Imaging Based on Embedded Linux
Authors: Hao Mi, Ming Yang, Tian-yue Yang
Abstract:
Ultrasonic infrared nondestructive testing is a kind of testing method with high speed, accuracy and localization. However, there are still some problems, such as the detection requires manual real-time field judgment, the methods of result storage and viewing are still primitive. An intelligent non-destructive detection system based on embedded linux is put forward in this paper. The hardware part of the detection system is based on the ARM (Advanced Reduced Instruction Set Computer Machine) core and an embedded linux system is built to realize image processing and defect detection of thermal images. The CLAHE algorithm and the Butterworth filter are used to process the thermal image, and then the boa server and CGI (Common Gateway Interface) technology are used to transmit the test results to the display terminal through the network for real-time monitoring and remote monitoring. The system also liberates labor and eliminates the obstacle of manual judgment. According to the experiment result, the system provides a convenient and quick solution for industrial non-destructive testing.Keywords: Remote monitoring, non-destructive testing, embedded linux system, image processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 966436 ISC–Intelligent Subspace Clustering, A Density Based Clustering Approach for High Dimensional Dataset
Authors: Sunita Jahirabadkar, Parag Kulkarni
Abstract:
Many real-world data sets consist of a very high dimensional feature space. Most clustering techniques use the distance or similarity between objects as a measure to build clusters. But in high dimensional spaces, distances between points become relatively uniform. In such cases, density based approaches may give better results. Subspace Clustering algorithms automatically identify lower dimensional subspaces of the higher dimensional feature space in which clusters exist. In this paper, we propose a new clustering algorithm, ISC – Intelligent Subspace Clustering, which tries to overcome three major limitations of the existing state-of-art techniques. ISC determines the input parameter such as є – distance at various levels of Subspace Clustering which helps in finding meaningful clusters. The uniform parameters approach is not suitable for different kind of databases. ISC implements dynamic and adaptive determination of Meaningful clustering parameters based on hierarchical filtering approach. Third and most important feature of ISC is the ability of incremental learning and dynamic inclusion and exclusions of subspaces which lead to better cluster formation.
Keywords: Density based clustering, high dimensional data, subspace clustering, dynamic parameter setting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2018435 Intelligent System and Renewable Energy: A Farming Platform in Precision Agriculture
Authors: Ryan B. Escorial, Elmer A. Maravillas, Chris Jordan G. Aliac
Abstract:
This study presents a small-scale water pumping system utilizing a fuzzy logic inference system attached to a renewable energy source. The fuzzy logic controller was designed and simulated in MATLAB fuzzy logic toolbox to examine the properties and characteristics of the input and output variables. The result of the simulation was implemented in a microcontroller, together with sensors, modules, and photovoltaic cells. The study used a grand rapid variety of lettuce, organic substrates, and foliar for observation of the capability of the device to irrigate crops. Two plant boxes intended for manual and automated irrigation were prepared with each box having 48 heads of lettuce. The observation of the system took 22-31 days, which is one harvest period of the crop. Results showed a 22.55% increase in agricultural productivity compared to manual irrigation. Aside from reducing human effort, and time, the smart irrigation system could help lessen some of the shortcomings of manual irrigations. It could facilitate the economical utilization of water, reducing consumption by 25%. The use of renewable energy could also help farmers reduce the cost of production by minimizing the use of diesel and gasoline.
Keywords: Fuzzy logic controller, intelligent system, precision agriculture, renewable energy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2299434 Active Islanding Detection Method Using Intelligent Controller
Authors: Kuang-Hsiung Tan, Chih-Chan Hu, Chien-Wu Lan, Shih-Sung Lin, Te-Jen Chang
Abstract:
An active islanding detection method using disturbance signal injection with intelligent controller is proposed in this study. First, a DC\AC power inverter is emulated in the distributed generator (DG) system to implement the tracking control of active power, reactive power outputs and the islanding detection. The proposed active islanding detection method is based on injecting a disturbance signal into the power inverter system through the d-axis current which leads to a frequency deviation at the terminal of the RLC load when the utility power is disconnected. Moreover, in order to improve the transient and steady-state responses of the active power and reactive power outputs of the power inverter, and to further improve the performance of the islanding detection method, two probabilistic fuzzy neural networks (PFNN) are adopted to replace the traditional proportional-integral (PI) controllers for the tracking control and the islanding detection. Furthermore, the network structure and the online learning algorithm of the PFNN are introduced in detail. Finally, the feasibility and effectiveness of the tracking control and the proposed active islanding detection method are verified with experimental results.
Keywords: Distributed generators, probabilistic fuzzy neural network, islanding detection, non-detection zone.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1422433 Simulation and Workspace Analysis of a Tripod Parallel Manipulator
Authors: A. Arockia Selvakumar, R. Sivaramakrishnan, Srinivasa Karthik.T.V, Valluri Siva Ramakrishna, B.Vinodh.
Abstract:
Industrial robots play a vital role in automation however only little effort are taken for the application of robots in machining work such as Grinding, Cutting, Milling, Drilling, Polishing etc. Robot parallel manipulators have high stiffness, rigidity and accuracy, which cannot be provided by conventional serial robot manipulators. The aim of this paper is to perform the modeling and the workspace analysis of a 3 DOF Parallel Manipulator (3 DOF PM). The 3 DOF PM was modeled and simulated using 'ADAMS'. The concept involved is based on the transformation of motion from a screw joint to a spherical joint through a connecting link. This paper work has been planned to model the Parallel Manipulator (PM) using screw joints for very accurate positioning. A workspace analysis has been done for the determination of work volume of the 3 DOF PM. The position of the spherical joints connected to the moving platform and the circumferential points of the moving platform were considered for finding the workspace. After the simulation, the position of the joints of the moving platform was noted with respect to simulation time and these points were given as input to the 'MATLAB' for getting the work envelope. Then 'AUTOCAD' is used for determining the work volume. The obtained values were compared with analytical approach by using Pappus-Guldinus Theorem. The analysis had been dealt by considering the parameters, link length and radius of the moving platform. From the results it is found that the radius of moving platform is directly proportional to the work volume for a constant link length and the link length is also directly proportional to the work volume, at a constant radius of the moving platform.Keywords: Three Degrees of freedom Parallel Manipulator (3DOF PM), ADAMS, Work volume, MATLAB, AUTOCAD, Pappus- Guldinus Theorem.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2995432 Ultimately Bounded Takagi-Sugeno Fuzzy Management in Urban Traffic Stream Mechanism: Multi-Agent Modeling Approach
Authors: Reza Ghasemi, Negin Amiri Hazaveh
Abstract:
In this paper, control methodology based on the selection of the type of traffic light and the period of the green phase to accomplish an optimum balance at intersections is proposed. This balance should be flexible to the static behavior of time, and randomness in a traffic situation; the goal of the proposed method is to reduce traffic volume in transportation, the average delay for each vehicle, and control over the crash of cars. The proposed method was specifically investigated at the intersection through an appropriate timing of traffic lights by sampling a multi-agent system. It consists of a large number of intersections, each of which is considered as an independent agent that exchanges information with each other, and the stability of each agent is provided separately. The robustness against uncertainties, scalability, and stability of the closed-loop overall system are the main merits of the proposed methodology. The simulation results show that the fuzzy intelligent controller in this multi-factor system which is a Takagi-Sugeno (TS) fuzzy is more useful than scheduling in the fixed-time method and it reduces the lengths of vehicles queuing.
Keywords: Fuzzy intelligent controller, traffic-light control, multi-agent systems, state space equations, stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 554431 Condition Monitoring in the Management of Maintenance in a Large Scale Precision CNC Machining Manufacturing Facility
Authors: N. Ahmed, A.J. Day, J.L. Victory L. Zeall, B. Young
Abstract:
The manufacture of large-scale precision aerospace components using CNC requires a highly effective maintenance strategy to ensure that the required accuracy can be achieved over many hours of production. This paper reviews a strategy for a maintenance management system based on Failure Mode Avoidance, which uses advanced techniques and technologies to underpin a predictive maintenance strategy. It is shown how condition monitoring (CM) is important to predict potential failures in high precision machining facilities and achieve intelligent and integrated maintenance management. There are two distinct ways in which CM can be applied. One is to monitor key process parameters and observe trends which may indicate a gradual deterioration of accuracy in the product. The other is the use of CM techniques to monitor high status machine parameters enables trends to be observed which can be corrected before machine failure and downtime occurs. It is concluded that the key to developing a flexible and intelligent maintenance framework in any precision manufacturing operation is the ability to evaluate reliably and routinely machine tool condition using condition monitoring techniques within a framework of Failure Mode Avoidance.Keywords: Maintenance, Condition Monitoring, CNC, Machining, Accuracy, Capability, Key Process Parameters, Critical Parameters
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2231430 A Smart Monitoring System for Preventing Gas Risks in Indoor
Authors: Gyoutae Park, Geunjun Lyu, Yeonjae Lee, Wooksuk Kim, Jaheon Gu, Sanguk Ahn, Hiesik Kim
Abstract:
In this paper, we propose a system for preventing gas risks through the use of wireless communication modules and intelligent gas safety appliances. Our system configuration consists of an automatic extinguishing system, detectors, a wall-pad, and a microcomputer controlled micom gas meter to monitor gas flow and pressure as well as the occurrence of earthquakes. The automatic fire extinguishing system checks for both combustible gaseous leaks and monitors the environmental temperature, while the detector array measures smoke and CO gas concentrations. Depending on detected conditions, the micom gas meter cuts off an inner valve and generates a warning, the automatic fire-extinguishing system cuts off an external valve and sprays extinguishing materials, or the sensors generate signals and take further action when smoke or CO are detected. Information on intelligent measures taken by the gas safety appliances and sensors are transmitted to the wall-pad, which in turn relays this as real time data to a server that can be monitored via an external network (BcN) connection to a web or mobile application for the management of gas safety. To validate this smart-home gas management system, we field-tested its suitability for use in Korean apartments under several scenarios.Keywords: Gas sensor, leak, gas safety, gas meter, gas risk, wireless communication.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2719429 Intelligent Video-Based Monitoring of Freeway Traffic
Authors: Saad M. Al-Garni, Adel A. Abdennour
Abstract:
Freeways are originally designed to provide high mobility to road users. However, the increase in population and vehicle numbers has led to increasing congestions around the world. Daily recurrent congestion substantially reduces the freeway capacity when it is most needed. Building new highways and expanding the existing ones is an expensive solution and impractical in many situations. Intelligent and vision-based techniques can, however, be efficient tools in monitoring highways and increasing the capacity of the existing infrastructures. The crucial step for highway monitoring is vehicle detection. In this paper, we propose one of such techniques. The approach is based on artificial neural networks (ANN) for vehicles detection and counting. The detection process uses the freeway video images and starts by automatically extracting the image background from the successive video frames. Once the background is identified, subsequent frames are used to detect moving objects through image subtraction. The result is segmented using Sobel operator for edge detection. The ANN is, then, used in the detection and counting phase. Applying this technique to the busiest freeway in Riyadh (King Fahd Road) achieved higher than 98% detection accuracy despite the light intensity changes, the occlusion situations, and shadows.Keywords: Background Extraction, Neural Networks, VehicleDetection, Freeway Traffic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1912428 Intelligent Temperature Controller for Water-Bath System
Authors: Om Prakash Verma, Rajesh Singla, Rajesh Kumar
Abstract:
Conventional controller’s usually required a prior knowledge of mathematical modelling of the process. The inaccuracy of mathematical modelling degrades the performance of the process, especially for non-linear and complex control problem. The process used is Water-Bath system, which is most widely used and nonlinear to some extent. For Water-Bath system, it is necessary to attain desired temperature within a specified period of time to avoid the overshoot and absolute error, with better temperature tracking capability, else the process is disturbed.
To overcome above difficulties intelligent controllers, Fuzzy Logic (FL) and Adaptive Neuro-Fuzzy Inference System (ANFIS), are proposed in this paper. The Fuzzy controller is designed to work with knowledge in the form of linguistic control rules. But the translation of these linguistic rules into the framework of fuzzy set theory depends on the choice of certain parameters, for which no formal method is known. To design ANFIS, Fuzzy-Inference-System is combined with learning capability of Neural-Network.
It is analyzed that ANFIS is best suitable for adaptive temperature control of above system. As compared to PID and FLC, ANFIS produces a stable control signal. It has much better temperature tracking capability with almost zero overshoot and minimum absolute error.
Keywords: PID Controller, FLC, ANFIS, Non-Linear Control System, Water-Bath System, MATLAB-7.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5548427 Hands-off Parking: Deep Learning Gesture-Based System for Individuals with Mobility Needs
Authors: Javier Romera, Alberto Justo, Ignacio Fidalgo, Javier Araluce, Joshué Pérez
Abstract:
Nowadays, individuals with mobility needs face a significant challenge when docking vehicles. In many cases, after parking, they encounter insufficient space to exit, leading to two undesired outcomes: either avoiding parking in that spot or settling for improperly placed vehicles. To address this issue, this paper presents a parking control system employing gestural teleoperation. The system comprises three main phases: capturing body markers, interpreting gestures, and transmitting orders to the vehicle. The initial phase is centered around the MediaPipe framework, a versatile tool optimized for real-time gesture recognition. MediaPipe excels at detecting and tracing body markers, with a special emphasis on hand gestures. Hands detection is done by generating 21 reference points for each hand. Subsequently, after data capture, the project employs the MultiPerceptron Layer (MPL) for in-depth gesture classification. This tandem of MediaPipe’s extraction prowess and MPL’s analytical capability ensures that human gestures are translated into actionable commands with high precision. Furthermore, the system has been trained and validated within a built-in dataset. To prove the domain adaptation, a framework based on the Robot Operating System 2 (ROS2), as a communication backbone, alongside CARLA Simulator, is used. Following successful simulations, the system is transitioned to a real-world platform, marking a significant milestone in the project. This real-vehicle implementation verifies the practicality and efficiency of the system beyond theoretical constructs.
Keywords: Gesture detection, MediaPipe, MultiLayer Perceptron Layer, Robot Operating System.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 136426 A Tuning Method for Microwave Filter via Complex Neural Network and Improved Space Mapping
Authors: Shengbiao Wu, Weihua Cao, Min Wu, Can Liu
Abstract:
This paper presents an intelligent tuning method of microwave filter based on complex neural network and improved space mapping. The tuning process consists of two stages: the initial tuning and the fine tuning. At the beginning of the tuning, the return loss of the filter is transferred to the passband via the error of phase. During the fine tuning, the phase shift caused by the transmission line and the higher order mode is removed by the curve fitting. Then, an Cauchy method based on the admittance parameter (Y-parameter) is used to extract the coupling matrix. The influence of the resonant cavity loss is eliminated during the parameter extraction process. By using processed data pairs (the amount of screw variation and the variation of the coupling matrix), a tuning model is established by the complex neural network. In view of the improved space mapping algorithm, the mapping relationship between the actual model and the ideal model is established, and the amplitude and direction of the tuning is constantly updated. Finally, the tuning experiment of the eight order coaxial cavity filter shows that the proposed method has a good effect in tuning time and tuning precision.Keywords: Microwave filter, scattering parameter (s-parameter), coupling matrix, intelligent tuning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1315425 Exploration of the Communication Area of Infrared Short-Range Communication Systems for Intervehicle Communication
Authors: Wern-Yarng Shieh, Hsin-Chuan Chen, Ti-Ho Wang, Bo-Wei Chen
Abstract:
Infrared communication in the wavelength band 780- 950 nm is very suitable for short-range point-to-point communications. It is a good choice for vehicle-to-vehicle communication in several intelligent-transportation-system (ITS) applications such as cooperative driving, collision warning, and pileup-crash prevention. In this paper, with the aid of a physical model established in our previous works, we explore the communication area of an infrared intervehicle communication system utilizing a typical low-cost cormmercial lightemitting diodes (LEDs) as the emitter and planar p-i-n photodiodes as the receiver. The radiation pattern of the emitter fabricated by aforementioned LEDs and the receiving pattern of the receiver are approximated by a linear combination of cosinen functions. This approximation helps us analyze the system performance easily. Both multilane straight-road conditions and curved-road conditions with various radius of curvature are taken into account. The condition of a small car communicating with a big truck, i.e., there is a vertical mounting height difference between the emitter and the receiver, is also considered. Our results show that the performance of the system meets the requirement of aforementioned ITS applications in terms of the communication area.
Keywords: Dedicated short-range communication (DSRC), infrared communication, intervehicle communication, intelligent transportation system (ITS).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1655424 Proposal of Commutation Protocol in Hybrid Sensors and Vehicular Networks for Intelligent Transport Systems
Authors: Taha Bensiradj, Samira Moussaoui
Abstract:
Hybrid Sensors and Vehicular Networks (HSVN), represent a hybrid network, which uses several generations of Ad-Hoc networks. It is used especially in Intelligent Transport Systems (ITS). The HSVN allows making collaboration between the Wireless Sensors Network (WSN) deployed on the border of the road and the Vehicular Network (VANET). This collaboration is defined by messages exchanged between the two networks for the purpose to inform the drivers about the state of the road, provide road safety information and more information about traffic on the road. Moreover, this collaboration created by HSVN, also allows the use of a network and the advantage of improving another network. For example, the dissemination of information between the sensors quickly decreases its energy, and therefore, we can use vehicles that do not have energy constraint to disseminate the information between sensors. On the other hand, to solve the disconnection problem in VANET, the sensors can be used as gateways that allow sending the messages received by one vehicle to another. However, because of the short communication range of the sensor and its low capacity of storage and processing of data, it is difficult to ensure the exchange of road messages between it and the vehicle, which can be moving at high speed at the time of exchange. This represents the time where the vehicle is in communication range with the sensor. This work is the proposition of a communication protocol between the sensors and the vehicle used in HSVN. The latter has as the purpose to ensure the exchange of road messages in the available time of exchange.
Keywords: HSVN, ITS, VANET, WSN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1233423 Microservices-Based Provisioning and Control of Network Services for Heterogeneous Networks
Authors: Shameemraj M. Nadaf, Sipra Behera, Hemant K. Rath, Garima Mishra, Raja Mukhopadhyay, Sumanta Patro
Abstract:
Microservices architecture has been widely embraced for rapid, frequent, and reliable delivery of complex applications. It enables organizations to evolve their technology stack in various domains. Today, the networking domain is flooded with plethora of devices and software solutions which address different functionalities ranging from elementary operations, viz., switching, routing, firewall etc., to complex analytics and insights based intelligent services. In this paper, we attempt to bring in the microservices based approach for agile and adaptive delivery of network services for any underlying networking technology. We discuss the life cycle management of each individual microservice and a distributed control approach with emphasis for dynamic provisioning, management, and orchestration in an automated fashion which can provide seamless operations in large scale networks. We have conducted validations of the system in lab testbed comprising of Traditional/Legacy and Software Defined Wireless Local Area networks.
Keywords: Microservices architecture, software defined wireless networks, traditional wireless networks, automation, orchestration, intelligent networks, network analytics, seamless management, single pane control, fine-grain control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 890422 The Study of the Intelligent Fuzzy Weighted Input Estimation Method Combined with the Experiment Verification for the Multilayer Materials
Authors: Ming-Hui Lee, Tsung-Chien Chen, Tsu-Ping Yu, Horng-Yuan Jang
Abstract:
The innovative intelligent fuzzy weighted input estimation method (FWIEM) can be applied to the inverse heat transfer conduction problem (IHCP) to estimate the unknown time-varying heat flux of the multilayer materials as presented in this paper. The feasibility of this method can be verified by adopting the temperature measurement experiment. The experiment modular may be designed by using the copper sample which is stacked up 4 aluminum samples with different thicknesses. Furthermore, the bottoms of copper samples are heated by applying the standard heat source, and the temperatures on the tops of aluminum are measured by using the thermocouples. The temperature measurements are then regarded as the inputs into the presented method to estimate the heat flux in the bottoms of copper samples. The influence on the estimation caused by the temperature measurement of the sample with different thickness, the processing noise covariance Q, the weighting factor γ , the sampling time interval Δt , and the space discrete interval Δx , will be investigated by utilizing the experiment verification. The results show that this method is efficient and robust to estimate the unknown time-varying heat input of the multilayer materials.Keywords: Multilayer Materials, Input Estimation Method, IHCP, Heat Flux.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1237421 Optimal Straight Line Trajectory Generation in 3D Space using Deviation Algorithm
Authors: T. C. Manjunath, C. Ardil
Abstract:
This paper presents an efficient method of obtaining a straight-line motion in the tool configuration space using an articulated robot between two specified points. The simulation results & the implementation results show the effectiveness of the method.Keywords: Bounded deviation algorithm, Straight line motion, Tool configuration space, Joint space, TCV.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2620420 Laser Data Based Automatic Generation of Lane-Level Road Map for Intelligent Vehicles
Authors: Zehai Yu, Hui Zhu, Linglong Lin, Huawei Liang, Biao Yu, Weixin Huang
Abstract:
With the development of intelligent vehicle systems, a high-precision road map is increasingly needed in many aspects. The automatic lane lines extraction and modeling are the most essential steps for the generation of a precise lane-level road map. In this paper, an automatic lane-level road map generation system is proposed. To extract the road markings on the ground, the multi-region Otsu thresholding method is applied, which calculates the intensity value of laser data that maximizes the variance between background and road markings. The extracted road marking points are then projected to the raster image and clustered using a two-stage clustering algorithm. Lane lines are subsequently recognized from these clusters by the shape features of their minimum bounding rectangle. To ensure the storage efficiency of the map, the lane lines are approximated to cubic polynomial curves using a Bayesian estimation approach. The proposed lane-level road map generation system has been tested on urban and expressway conditions in Hefei, China. The experimental results on the datasets show that our method can achieve excellent extraction and clustering effect, and the fitted lines can reach a high position accuracy with an error of less than 10 cm.
Keywords: Curve fitting, lane-level road map, line recognition, multi-thresholding, two-stage clustering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 512419 Intelligent Transport System: Classification of Traffic Signs Using Deep Neural Networks in Real Time
Authors: Anukriti Kumar, Tanmay Singh, Dinesh Kumar Vishwakarma
Abstract:
Traffic control has been one of the most common and irritating problems since the time automobiles have hit the roads. Problems like traffic congestion have led to a significant time burden around the world and one significant solution to these problems can be the proper implementation of the Intelligent Transport System (ITS). It involves the integration of various tools like smart sensors, artificial intelligence, position technologies and mobile data services to manage traffic flow, reduce congestion and enhance driver's ability to avoid accidents during adverse weather. Road and traffic signs’ recognition is an emerging field of research in ITS. Classification problem of traffic signs needs to be solved as it is a major step in our journey towards building semi-autonomous/autonomous driving systems. The purpose of this work focuses on implementing an approach to solve the problem of traffic sign classification by developing a Convolutional Neural Network (CNN) classifier using the GTSRB (German Traffic Sign Recognition Benchmark) dataset. Rather than using hand-crafted features, our model addresses the concern of exploding huge parameters and data method augmentations. Our model achieved an accuracy of around 97.6% which is comparable to various state-of-the-art architectures.
Keywords: Multiclass classification, convolution neural network, OpenCV, Data Augmentation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 814418 Automatic Motion Trajectory Analysis for Dual Human Interaction Using Video Sequences
Authors: Yuan-Hsiang Chang, Pin-Chi Lin, Li-Der Jeng
Abstract:
Advance in techniques of image and video processing has enabled the development of intelligent video surveillance systems. This study was aimed to automatically detect moving human objects and to analyze events of dual human interaction in a surveillance scene. Our system was developed in four major steps: image preprocessing, human object detection, human object tracking, and motion trajectory analysis. The adaptive background subtraction and image processing techniques were used to detect and track moving human objects. To solve the occlusion problem during the interaction, the Kalman filter was used to retain a complete trajectory for each human object. Finally, the motion trajectory analysis was developed to distinguish between the interaction and non-interaction events based on derivatives of trajectories related to the speed of the moving objects. Using a database of 60 video sequences, our system could achieve the classification accuracy of 80% in interaction events and 95% in non-interaction events, respectively. In summary, we have explored the idea to investigate a system for the automatic classification of events for interaction and non-interaction events using surveillance cameras. Ultimately, this system could be incorporated in an intelligent surveillance system for the detection and/or classification of abnormal or criminal events (e.g., theft, snatch, fighting, etc.).
Keywords: Motion detection, motion tracking, trajectory analysis, video surveillance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1730417 Design of an Intelligent Location Identification Scheme Based On LANDMARC and BPNs
Authors: S. Chaisit, H.Y. Kung, N.T. Phuong
Abstract:
Radio frequency identification (RFID) applications have grown rapidly in many industries, especially in indoor location identification. The advantage of using received signal strength indicator (RSSI) values as an indoor location measurement method is a cost-effective approach without installing extra hardware. Because the accuracy of many positioning schemes using RSSI values is limited by interference factors and the environment, thus it is challenging to use RFID location techniques based on integrating positioning algorithm design. This study proposes the location estimation approach and analyzes a scheme relying on RSSI values to minimize location errors. In addition, this paper examines different factors that affect location accuracy by integrating the backpropagation neural network (BPN) with the LANDMARC algorithm in a training phase and an online phase. First, the training phase computes coordinates obtained from the LANDMARC algorithm, which uses RSSI values and the real coordinates of reference tags as training data for constructing an appropriate BPN architecture and training length. Second, in the online phase, the LANDMARC algorithm calculates the coordinates of tracking tags, which are then used as BPN inputs to obtain location estimates. The results show that the proposed scheme can estimate locations more accurately compared to LANDMARC without extra devices.
Keywords: BPNs, indoor location, location estimation, intelligent location identification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2011416 Neuron Efficiency in Fluid Dynamics and Prediction of Groundwater Reservoirs'' Properties Using Pattern Recognition
Authors: J. K. Adedeji, S. T. Ijatuyi
Abstract:
The application of neural network using pattern recognition to study the fluid dynamics and predict the groundwater reservoirs properties has been used in this research. The essential of geophysical survey using the manual methods has failed in basement environment, hence the need for an intelligent computing such as predicted from neural network is inevitable. A non-linear neural network with an XOR (exclusive OR) output of 8-bits configuration has been used in this research to predict the nature of groundwater reservoirs and fluid dynamics of a typical basement crystalline rock. The control variables are the apparent resistivity of weathered layer (p1), fractured layer (p2), and the depth (h), while the dependent variable is the flow parameter (F=λ). The algorithm that was used in training the neural network is the back-propagation coded in C++ language with 300 epoch runs. The neural network was very intelligent to map out the flow channels and detect how they behave to form viable storage within the strata. The neural network model showed that an important variable gr (gravitational resistance) can be deduced from the elevation and apparent resistivity pa. The model results from SPSS showed that the coefficients, a, b and c are statistically significant with reduced standard error at 5%.
Keywords: Neural network, gravitational resistance, pattern recognition, non-linear.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 801415 Solving an Extended Resource Leveling Problem with Multiobjective Evolutionary Algorithms
Authors: Javier Roca, Etienne Pugnaghi, Gaëtan Libert
Abstract:
We introduce an extended resource leveling model that abstracts real life projects that consider specific work ranges for each resource. Contrary to traditional resource leveling problems this model considers scarce resources and multiple objectives: the minimization of the project makespan and the leveling of each resource usage over time. We formulate this model as a multiobjective optimization problem and we propose a multiobjective genetic algorithm-based solver to optimize it. This solver consists in a two-stage process: a main stage where we obtain non-dominated solutions for all the objectives, and a postprocessing stage where we seek to specifically improve the resource leveling of these solutions. We propose an intelligent encoding for the solver that allows including domain specific knowledge in the solving mechanism. The chosen encoding proves to be effective to solve leveling problems with scarce resources and multiple objectives. The outcome of the proposed solvers represent optimized trade-offs (alternatives) that can be later evaluated by a decision maker, this multi-solution approach represents an advantage over the traditional single solution approach. We compare the proposed solver with state-of-art resource leveling methods and we report competitive and performing results.
Keywords: Intelligent problem encoding, multiobjective decision making, evolutionary computing, RCPSP, resource leveling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4193414 Design and Implementation of Cricket-based Location Tracking System
Authors: Byung Ki Kim, Ho Min Jung, Jae-Bong Yoo, Wan Yeon Lee, Chan Young Park, Young Woong Ko
Abstract:
In this paper, we present a novel approach to location system under indoor environment. The key idea of our work is accurate distance estimation with cricket-based location system using A* algorithm. We also use magnetic sensor for detecting obstacles in indoor environment. Finally, we suggest how this system can be used in various applications such as asset tracking and monitoring.Keywords: Cricket, Indoor Location Tracking, Mobile Robot, Localization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2072413 Evaluation of Mixed-Mode Stress Intensity Factor by Digital Image Correlation and Intelligent Hybrid Method
Authors: K. Machida, H. Yamada
Abstract:
Displacement measurement was conducted on compact normal and shear specimens made of acrylic homogeneous material subjected to mixed-mode loading by digital image correlation. The intelligent hybrid method proposed by Nishioka et al. was applied to the stress-strain analysis near the crack tip. The accuracy of stress-intensity factor at the free surface was discussed from the viewpoint of both the experiment and 3-D finite element analysis. The surface images before and after deformation were taken by a CMOS camera, and we developed the system which enabled the real time stress analysis based on digital image correlation and inverse problem analysis. The great portion of processing time of this system was spent on displacement analysis. Then, we tried improvement in speed of this portion. In the case of cracked body, it is also possible to evaluate fracture mechanics parameters such as the J integral, the strain energy release rate, and the stress-intensity factor of mixed-mode. The 9-points elliptic paraboloid approximation could not analyze the displacement of submicron order with high accuracy. The analysis accuracy of displacement was improved considerably by introducing the Newton-Raphson method in consideration of deformation of a subset. The stress-intensity factor was evaluated with high accuracy of less than 1% of the error.
Keywords: Digital image correlation, mixed mode, Newton-Raphson method, stress intensity factor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1703412 Interactive Agents with Artificial Mind
Authors: Hirohide Ushida
Abstract:
This paper discusses an artificial mind model and its applications. The mind model is based on some theories which assert that emotion is an important function in human decision making. An artificial mind model with emotion is built, and the model is applied to action selection of autonomous agents. In three examples, the agents interact with humans and their environments. The examples show the proposed model effectively work in both virtual agents and real robots.Keywords: Artificial mind, emotion, interactive agent, pet robot
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1252