


Abstract—Microservices architecture has been widely embraced

for rapid, frequent, and reliable delivery of complex applications. It
enables organizations to evolve their technology stack in various
domains. Today, the networking domain is flooded with plethora of
devices and software solutions which address different functionalities
ranging from elementary operations, viz., switching, routing, firewall
etc., to complex analytics and insights based intelligent services. In
this paper, we attempt to bring in the microservices based approach
for agile and adaptive delivery of network services for any underlying
networking technology. We discuss the life cycle management of
each individual microservice and a distributed control approach with
emphasis for dynamic provisioning, management, and orchestration
in an automated fashion which can provide seamless operations in
large scale networks. We have conducted validations of the system in
lab testbed comprising of Traditional/Legacy and Software Defined
Wireless Local Area networks.

Keywords—Microservices architecture, software defined

wireless networks, traditional wireless networks, automation,
orchestration, intelligent networks, network analytics, seamless
management, single pane control, fine-grain control.

I. INTRODUCTION

UE to the Corona Virus Disease (COVID-19) pandemic,
the work scenario at offices and on-premises has taken a

setback. Work from Home (WFH) has become new norm in
current situations. Many industries have delivered the
infrastructure resources such as Laptops, Tablets, Workstations
etc., on a war footing directly to household of employees. IT
industries and other organizations across the globe have come
up with different work models wherein the number of staff
working on premises and at office locations is currently
restricted to essential/critical categories only.

There has been a drastic change in the operations at on-
premises/office locations to adhere strictly to COVID-19 safety
measures and guidelines. Different business organization such
as, Big Enterprises (BEs), Small and Medium Enterprises
(SMEs), Startup companies, Government offices etc., have a
mix of staff and based on the nature of work have been divided
to WFH or Work from Office (WFO). This drastic shift in the
work environment requires use of different sets of
technologies. Considering the networking needs of each
business entity, the use of remote access technologies is
predominant. The access to data centers, branch offices and
other premises is critical for many staff members to perform

Shameem Raj M Nadaf, Sipra Behera, Hemant Kumar Rath, Garima
Mishra, Raja Mukhopadhyay, and Sumanta Patro are with the TCS Research
& Innovation, Tata Consultancy Services, India (e-mail: sm.nadaf@tcs.com,
beherasipra9@gmail.com, hemant.rath@tcs.com, garima.mishra2@tcs.com,
raja.mukhopadhyay@tcs.com, sumanta.patro@tcs.com).

day-to-day operations. Disruptions in the networking can lead
to delays and may cause deviations in delivering the customer
needs. To support day-to-day operations in the backend, there
is a need to maintain the networking infrastructure, which is a
heterogeneous environment comprising of vendor products,
cloud services, open-source solutions, and management
software etc. The maintenance and further sustainability
require availability of skilled staff both at on-premises and off-
premises at different times. Furthermore, it is essential to adopt
new networking technologies (5G, WiFi6 etc.) and networking
solutions to boost business prospects, optimize utilization and
provide innovative solutions to customers. On the contrary, the
number of visits to the offices and other on-premises zones for
skilled staff is highly dependent on the prevailing COVID-19
situations and government restrictions. Similar situations can
also rise in future.

A better approach at such difficult time is looking at
simplifying the network operations by means of customized
and dedicated Software Defined Network (SDN) services to
cater to needs of the heterogeneous networking environments
in place. Technologies such as SDN [1] and Network Function
Virtualization (NFV) [2] have emerged as promising solutions
for fine-grain control and optimization of high-performance
network infrastructures such as Switches, Routers, Firewall,
Wide Area Network (WAN) accelerators, and application
performance solutions etc. These technologies can help in
creating customized services for different management,
maintenance, and orchestration needs. Use of the White/Brite
box [3] hardware solutions can help in creating customized
SDN/NFV related functionalities on actual hardware and can
initially be utilized in non-critical functions like branch offices,
non-production etc., and moved to critical operations at later
stages. Adoption of cloud related services [4] such as Software
as a Service (SaaS), Platform as a Service (PaaS),
Infrastructure as a Service (IaaS) etc., can make a positive
impact. Typical workloads such as file transfer, backup, mail
etc., can be replaced by suitable cloud offerings. Use of on-
premises private cloud infrastructure for critical workloads is
inevitable since it gives better reliability and productivity.

To adopt SDN/NFV for fine-grained control and use the
overall resources which are geographically distributed like one
Single Virtualized Infrastructure (SVI), a dynamic on-demand
provisioning of services must be realized on top of SVI.
Therefore, there is a necessity of a dynamic network
deployment and provisioning which is holistic and must cater
to different scenarios in a heterogeneous network environment.
Furthermore, the application architectures have evolved over
the years and new paradigm of small, independent, and agile

Microservices-Based Provisioning and Control of
Network Services for Heterogeneous Networks

Shameemraj M. Nadaf, Sipra Behera, Hemant K. Rath, Garima Mishra, Raja Mukhopadhyay, Sumanta Patro

D

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:16, No:3, 2022

89International Scholarly and Scientific Research & Innovation 16(3) 2022 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:1

6,
 N

o:
3,

 2
02

2
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

12
48

2.
pd

f

microservices is prevalent in the industry. People have slowly
started migrating to the microservices for scalability, ease-of
operation, and efficiency. Many of the network services
required for management, orchestration, and enhancement can
be provided by means of microservices. However, there is a
need for an efficient system which can smoothen the process of
managing the life cycle of these network aware microservices
and co-ordinate for achieving the desired goals/business logic
in a reliable and scalable manner in heterogeneous network
environments. Such a system must be highly distributed,
dynamic, and robust in nature.

In this paper, we discuss Microservices Architecture (MSA)
based system for smooth and seamless deployment/
provisioning of network services to enable better control and
management of the heterogeneous networks. We have
performed seamless mobility management and wireless
station’s link health prediction for usage in network analytics.
Furthermore, we have validated this system for multiple
services such as monitoring, network analytics etc., on different
network types. Moreover, this system also aids in performing a
single pane management of the entire network landscape with
multitude of services.

The rest of the paper is organized as follows. We discuss the
related works in Section II and the problem statement is
described in Section III. Further we describe the approach and
system architecture in Sections IV and V respectively. Finally,
we validate the proposed system through lab testbed
deployment as described in Section VI and conclude with
details of the future scope of work in Section VII.

II. RELATED WORK

In the enterprise and among the Service Providers (SPs), the
maintenance of existing infrastructure along with the adoption
of new technologies for better management is a real practical
challenge these days [5]. Authors [5] have evaluated the
implementation and use of state-of-the-art technologies for
building new business models, minimize the Operational
Expenditure (OPEX) and digitize the business operations.
Keeping in view the use of these new technologies, authors [6]
provide the illustrations on adopting the cloud computing
technology for enterprise business and service management.
Similarly, authors [7] describe the challenges and
implementation of SDN as a new networking paradigm for
enterprise network management. Selection of the right
technology suitable for the business logic and service
management in enterprise network is highly essential. These
days enterprise network is heterogeneous in nature where apart
from existing proprietary physical devices, the virtual software
entities are being used for vendor agnostic solutions [8]. Apart
from this, some enterprises prefer to use private cloud
infrastructure for scalability of services. Use of a single
technology for managing these multiple applications and
services in enterprise sometimes may not result in desired
outcome. In [6], authors use the cloud-based platform for
heterogeneous logistic system. Similarly, authors in [8] explain
the distributed management of heterogeneous SDN enabled
network and legacy network.

Another challenge arises when these heterogeneous
enterprise network scales up with multitudes of applications
and services. Some of these are like tight coupling among
services, recurring end-to-end testing upon addition of new
service, chances of single point of failure, platform dependency
of different applications etc. These challenges are surpassed
using microservices based network application design. Authors
[9] provide the comparative analysis between microservice
based architecture and monolithic architecture. In MSA, the
application services are loosely coupled and designed with
single business logic per microservice. Using this architecture,
the services in the network are decoupled and this provides a
fine granular control over the application’s performance
thereby overcoming the earlier challenges.

From the above, it is evident that there is a need of a system
which manages the life cycle of these microservices in the
network. In this perspective, authors [10] have taken initial
steps by illustrating the automated management of network
with microservices based VNFs. A dedicated platform agnostic
system for managing these microservices will smoothen the
process and synchronize them. With this system it is easier to
manage the application and infrastructure for quick response to
failure and change in environmental conditions. This can
enable the application to scale without any human
interventions. In the following section we describe our
approach designing such a system which is practically
deployable and helps in fine-grain control of MSA based
heterogeneous networks.

III. PROBLEM STATEMENT

Today’s Information & Technology (IT) divisions of
enterprises, business organizations, SPs, telecom operators
(Telecos) etc., are facing challenges to keep up with growing
demands of the consumers. IT world is burdened by the high
influx of handheld devices and role of these devices in the real
world is continuously evolving to address majority of the user
needs. The IT related decisions in today’s highly competitive
market and unforeseen economic conditions are categorically
driven by two important aspects: Capital Expenditure
(CAPEX) and Operational Expenditure (OPEX). Chief
Information Officers (CIOs) must keep in check the overall
CAPEX and OPEX related spending within a constrained
budget. Vendor dependencies on resources such as Compute,
Storage and Network drive more investments and management
of infrastructure needs considerable operational costs involving
software licenses, accessories, power systems, cooling/air flow
systems, backup with disaster management, employee training
etc. In practice, it is not feasible to get away with existing
infrastructure and bring in new ones for adoption of new
technologies.

From enterprise perspective, mainly the pain areas are
revolving around how to provide reliable and efficient
communication between the application services which may be
geographically located either on cloud or other resources.
Hence, there is a possibility of having a heterogeneous
environment comprising of vendor products, cloud services,
opensource solutions, new hardware products etc. in place

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:16, No:3, 2022

90International Scholarly and Scientific Research & Innovation 16(3) 2022 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:1

6,
 N

o:
3,

 2
02

2
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

12
48

2.
pd

f

w.r.t. enterprises/business organization operations. On the other
hand, the SPs and Telecos have relatively poor performance
w.r.t. achieving optimal CAPEX. There is a compelling drive
to invest on technology to catch hold of multiple opportunities
w.r.t. consumer demands. However, the reality reflects
downward trend in Return on Invested Capital (RoIC). Also,
other factors such as regulations, spectrum costs, vendor
payouts etc., impact the overall revenue. Moreover, areas such
as Internet-of-Things (IoT), Fog/Edge computing, Vehicular
networks etc., which have large scale needs will increase the
burden by two to three-fold on the communication networks.

In the long run probably best fit for Enterprises/SPs/Telecos
will be to have modus operandi involving lower CAPEX and
optimized OPEX costs. Currently, the use of different
technologies, vendor products, protocols, solutions etc., rather
increase the complexity involved and makes it difficult to drive
dynamic decisions. Several industry tools and opensource
platforms are there which try to cater to different networking
needs. However, bringing all of them under a single umbrella
to operate in a smooth and seamless manner is a challenging
task. A solution which binds any vendor network solution,
opensource network solution, hybrid solution etc., to co-exist
and drives them towards the optimization goals of dynamic
network deployment/provisioning is lacking.

IV. PROPOSED APPROACH

We have considered the Domain-driven Design (DDD) and
Command Query Responsibility Segregation (CQRS)
architecture pattern to derive a functional model. Then, we use
MSA as the building block for the actual network services
deployment and provisioning. DDD is an architectural pattern
primarily based on Domain/Business logic [11] whereas CQRS
is an architectural pattern that separates Queries (Read) and
Commands (Write) into two different models. MSA is meant
for creating loosely coupled services each with a single
business task. We do not dwell into details of the DDD
principles, CQRS patterns and MSA; specific details have been
elaborately discussed in [11]-[13].

As per the principles of DDD, there must be layers of
responsibility to achieve the domain related tasks, categorized
into three layers: (I) Domain Layer - Any rules or criteria
pertaining to the business needs/logic are encapsulated in this
layer, (II) Infrastructure Layer - All the technicalities required
for implementation are part of this, and (III) Application Layer
- This layer acts as an interface to the outside world. It accepts
appropriate requests and returns corresponding responses.

We make use of the DDD principles and CQRS pattern in
microservices to breakdown vast set of networking related
services into a catalog of microservices which can be deployed
dynamically. In each microservice, DDD is being utilized to
identify a particular domain specific task and CQRS for
creating segregation of the task responsibilities. For instance, in
a Wireless Local Area Network (WLAN), we consider a task
of monitoring (domain specific) which is performed by
collection of information such as radio characteristics, traffic
statistics and station statistics etc. A microservice responsible
for WLAN monitoring can be handling two different models

(I) collecting WLAN related information and update of
monitoring database, and (II) Response for any queries with
respect to monitoring by retrieving from database. Further,
intermediary microservices may be required to address the
challenges of fine-grain control w.r.t. Traditional/Legacy
networking technologies as well as the proprietary vendor
solutions. Note that, we do not attempt to create any new
services/components in the transport/network/physical layer of
the Open Systems Interconnection (OSI) model or make any
modifications in the existing vendor/opensource network
solutions. In our approach, we start with identification Domain/
Business logic to achieve optimal network resource utilization
which involves the following mentioned high-level activities:

A. Dynamic Network Services Provisioning

Depending on the needs of a given business entity (viz.,
branch, data center, service provider network, customer
premises etc.) different network services such as, switching,
routing, load balancing, traffic engineering, scheduling etc.,
can be commissioned, or decommissioned in a dynamic
manner to optimize the utilization of the available resources.
Different technologies such as Legacy, SDN, NFV, Hybrid
[14] etc., are to be dealt with as per their core principles.

Fig. 1 Network Landscape

B. Lifecycle Management of Network Services

Each network service component commissioned goes
through a typical life cycle until decommissioned. Different
stages of this life cycle must be managed by appropriate means
and fault tolerance techniques must be employed to address
reliability concerns. We have proposed a system/method for
single pane management and orchestration of entire network
landscape of a business enterprise by means of network aware
microservices. Fig. 1 illustrates the entire network landscape
that we consider for designing the system.

V. PROPOSED SYSTEM ARCHITECTURE

In the proposed system as demonstrated in Fig. 2, the
network aware microservices are the applications which
interact with networking elements such as network devices,
middle management software, vendor software, network data
sources etc. These microservices are used for monitoring, data
collection, meaningful data extraction, analysis, configuration,
control, and event handling etc. For each single autonomous

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:16, No:3, 2022

91International Scholarly and Scientific Research & Innovation 16(3) 2022 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:1

6,
 N

o:
3,

 2
02

2
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

12
48

2.
pd

f

network which may be wired or wireless in nature our system
comprises of a Control Unit (CU - one primary and one
secondary controller), an IaaS Platform, a communication
services platform, a co-ordination services platform, and a set
of network aware micro-services applications.

Fig. 2 System for Single pane management of Networks

A. CU (Primary and Secondary Controllers)

CU is responsible for life-cycle management of network
aware microservices and co-operation with CUs of other
Autonomous Network Segments (ANS). For reliability and
fault-tolerance, a primary and secondary controller
combination is provided in each CU. The secondary controller
is inactive and receives all events/updates from the primary
controller. It becomes active only when the primary fails.
Considering z number of ANSs each with a CU, co-operation
amongst the different active controllers is achieved by means
of periodic message exchange related to microservices
activated, utilization, event notifications etc., as illustrated in
Fig. 3. The responsibilities of the active controller of a CU in
one ANS can be offloaded to active controller of corresponding
CU in any other ANS in case of total failure (primary and
secondary fail) or high service load.

Fig. 3 Co-ordination among multiple CUs

When a user sends a request specific to one ANS, CU goes

through various states as illustrated in Fig. 4. Initially when CU
is ready to serve any user’s request it is in the START state.
When the user logs in, the user session is validated by the CU;
it transitions from START to IDLE state where it waits for the
user to provide the network and service requirements. Upon
receiving the initial user input, it transits to DEPLOY

MICROSERVICE state, where it identifies the list of
microservices, creates workflow, maps the list of microservices
to workflow and communicates to the IaaS to deploy the
microservices. Here workflow is the list of tasks identified by
CU according to the user provided service requirement in an
ANS. If any error occurs during this, the CU goes back to
IDLE state. However, on successful deployment of
microservices the CU transits into CONFIGURE
MICROSERVICE state. In this state it configures the
microservices with the initial configurations. Post this, the
microservices starts operating with initial received
configurations and the CU transits to MONITOR state. In this
state, it monitors the health of the microservices, and the task
assigned to them. However, for the current user request if the
CU receives any change in service information, it triggers an
update configuration action and transits back to CONFIGURE
MICROSERVICE state from MONITOR state. On completion
of the task, it transits from MONITOR to REMOVE
MICROSERVICE state. In this state it communicates to the
IaaS to remove the deployed microservices from the
Microservice Groups (MGs). Further when the session ends, it
transits to END state.

Fig. 4 State diagram of a CU

B. IaaS Platform

One or more IaaS platforms are required for dynamic
provisioning of the network aware microservices
corresponding to each ANS inside the network landscape. Each
IaaS platform helps in hosting microservices on top of the
Resource Pool (CPU, Memory, Storage and Network). The
active controller in a CU interacts with IaaS platform by means
of suitable Application Programming Interfaces (APIs) or any
other interfaces provided. The number of microservices to be
hosted, resource to be allocated to each microservice,
configuration and role of each microservice, details of the ANS
the microservice needs to operate on, up-scaling and down-
scaling of each microservice etc., are handled by the active
controller of corresponding CU. Transferring the
responsibilities of one MG to another is also handled by the
active controller. Detailed functioning of the IaaS platform is
out of scope of the paper.

C. Communication Services

The communication services are responsible for: (I)
communication between different microservices, (II)
communication between microservices and the active
controller of corresponding CU and (III) microservices to any
third-party component. A standard publish-subscribe
messaging platform is used to handle large number of message

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:16, No:3, 2022

92International Scholarly and Scientific Research & Innovation 16(3) 2022 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:1

6,
 N

o:
3,

 2
02

2
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

12
48

2.
pd

f

exchanges taking place among the entities. Creation of
individual communication channels based on the needs and
adding/removing subscribers to communication channel is
handled by the active controller via the messaging system
interfaces.

D. Co-ordination Services

Apart from communication services, proper co-ordination
amongst the different microservices and the active controller is
very essential for efficient functioning and single pane
management. Typical services necessary for co-ordination such
as service registry, synchronization, leader election and group
management etc., are realized through a standard distributed
co-ordination platform. The active controller takes care of
providing fault tolerance and scalability for each network
aware service by creating one or more MGs with the use of
resources provisioned by IaaS.

E. Microservice Groups

Fault Tolerance Groups (FTGs) and Scalability Groups
(SCGs) are the two major categories in MGs as illustrated in
Fig. 5. Each FTG comprises of one or more master
microservices and one or more slave microservices. The master
microservices act upon the service requests and each slave
request proxies for every received service request to one of the
masters. One of the slaves microservices is chosen as master
when any one of the masters fail. New FTG is constituted in
case of a total failure where no slave microservice is available
and the responsibilities of the failed FTG are transferred to the
new FTG. In case of SCGs, each microservice acts as a master
and serves the received service requests. There is a Service
Landscape (SL) as illustrated in Fig. 6, maintained in each
active controller. It consists of the details of the services
provided by different network aware microservices available
for activation (deployed in resource pool of IaaS). Based on the
specification in the SL, active controller decides the formation
of FTGs and SCGs depending upon the factors such as
criticality of the service, nature of service etc.

Fig. 5 MGs (FTGs and SCGs)

Fig. 6 Service Landscape

Each microservice that is deployed in an MG undergoes a
set of states in its life cycle as illustrated in Fig. 7. When the
IaaS initiates the deployment of a microservice it is in the
START state. Upon successful deployment, it transits to the
IDLE state. In this state, it waits for any configuration message
from the CU. After receiving the configuration message from
the CU, it transits to BUSY state. In BUSY state it runs the task
for which the microservice is deployed. While running any task
if the CU sends any configuration update (other than removal),
microservice handles that. In case of removal of configuration,
the microservice transits to IDLE state from BUSY state. On
completion of the task or in case of any error, the microservice
transits from BUSY to END state. The CU acts as a cognitive
brain, where it learns the network functionalities/parameters
and application requirements over time, and intelligently
orchestrates the desired microservices in a semi-autonomic
manner. Since the orchestration mechanism is assisted (with
prior knowledge of the network, applications, protocols, and
standards), we call the process as semi-autonomic.

Fig. 7 State Diagram of a Microservice

VI. SYSTEM VALIDATIONS THROUGH LAB TESTBED

We have validated the proposed system in a lab testbed
deployment as illustrated in Fig. 8. Technologies used and the
infrastructure consumed for different components of the system
are described in Table I. The lab testbed comprises of Virtual
Machines (VMs) hosted in a resource pool using the VMware
ESX hypervisor.

Elastic search [15] is used as the database (non-SQL) and the
Graphical User Interface (GUI) is created using Angular JS/
Java Struts technologies. For messages exchange, we have used
the Apache Kafka platform [16] deployed as a cluster of three

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:16, No:3, 2022

93International Scholarly and Scientific Research & Innovation 16(3) 2022 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:1

6,
 N

o:
3,

 2
02

2
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

12
48

2.
pd

f

different VMs. Further, for the co-ordination activities such as
service registry, group management, status tracking etc., we
have used the Apache Zookeeper platform [17] deployed as
Quorum of three different VMs. Java Spring based
configuration server is also part of the co-ordination system
that manages the configurations of each microservice. The
microservices are deployed as Docker containers [18] inside
the IaaS platform. Apache Mesos has been used as the IaaS
platform for containers orchestration. A local docker registry
has been used for storage and retrieval of the corresponding
container images for different ANS.

TABLE I

SYSTEM DEPLOYMENT DETAILS
System

Component
Technology Deployment

Infrastructure
Database Elasticsearch non-SQL database

hosted as a 3-node cluster
deployment

3 VMs with 4 CPU, 8
GB RAM and 200 GB

HDD each
Dashboard

(Graphical User
Interface)

Angular JS Frontend and Java
Struts 2.0 backend

2 VMs with 4 CPU, 8
GB RAM and 200 GB

HDD each
CU (Primary &

Secondary
Controllers)

Java Spring application deployed
in Java Spring boot framework

2 VMs with 4 CPU, 8
GB RAM and 200 GB

HDD each
IaaS Platform Apache Mesos Platform [2

master nodes, 10 slave nodes]
for containers orchestration

12 VMs with 8 CPU, 32
GB RAM and 500 GB

HDD each
Local Docker Registry for

hosting private docker container
images

1 VM with 4 CPU, 8 GB
RAM and 500 GB HDD

Communication
Service

Apache Kafka Platform [3
brokers cluster deployment] for

message exchange between
dashboard, CU and the

Microservices

3 VMs with 4 CPU, 8
GB RAM and 200 GB

HDD each

Co-ordination
Service

Apache Zookeeper Platform [3
nodes Quorum deployment] for
service registry, fault tolerance,

group management etc.

3 VMs with 4 CPU, 8
GB RAM and 200 GB

HDD each

Java Spring based Centralized
Configuration server with file

system backend for management
of microservices related

configurations

1 VM with 4 CPU, 8 GB
RAM and 500 GB HDD

MGs Java Spring application as
docker containers in Apache

Mesos platform

Infra requirement varies
based on the

functionality of each
microservice [hosted

inside the Mesos nodes]

In Fig. 8, CU is the central component of the system. It has
knowledge different network types and the corresponding
services. It parses the user provided requirements through the
GUI by subscribing to a topic on Kafka message bus channel.
Then, it creates the workflow and identifies the microservices
required to perform the tasks. It then commands the IaaS to
deploy the required microservice images as the containers as
MGs through HTTP Representational State Transfer (REST)
communication. IaaS platform internally communicates with
the local docker registry to pull the corresponding microservice
images for a workflow and deploy them as containers inside
the resource pool. Further upon successful deployment of
microservices for a workflow, CU decides the configurations
for each microservice and shares them to configuration server
through HTTP REST communication. The configuration server

further broadcasts the configuration to respective microservice
through Kafka Spring Cloud Bus Topic. Further, CU monitors
all the events of the microservices through Kafka bus and
monitors the health status of each microservice via the IaaS
platform. CU is responsible for commissioning and
decommissioning of each microservice and handling the events
in between.

Fig. 8 Lab Testbed Setup

A. Evaluation of Microservices Lifecycle Management

The services specific to any ANS serving a very specific
function are considered as microservice. In this scope the
microservices perform functions like sensing network
parameters, retrieving the network parameters specific to use-
case, performing analysis using AI/ML algorithms, deciding
the policy, and implementing the policy on the network. In the
proposed system these microservices play a vital role. These
microservices are bundled as Docker images and stored at
private docker registry on IaaS system. The workflow initiated
by CU is accomplished by starting the run time instance of the
images called docker containers. These containers are managed
by Apache Mesos [19] and Marathon [20] on the IaaS system.
As illustrated in Table I, we have 2VM server performing the
job of Mesos Master along with the Marathon and 10 VM
server acting as Slaves for the Mesos Master. These slave
servers host the containers deployed in run-time w.r.t. one
workflow. The container running status and health is monitored
by Mesos Master which passes this information to CU.

In the lab testbed, the microservice images are deployed in
groups either FTGs or SCGs. Once the microservice
application inside a container receives the configuration, it
connects to the Kafka cluster for communication and
zookeeper quorum for co-ordination. Zookeeper is responsible
for this service registry, service discovery. In case of a critical
application that demands fault tolerance, CU instructs Mesos
Master to deploy multiple instances of the same docker image
in FTG mode. In such scenario among the deployed instances
of a single docker image per workflow, one acts as a leader
instance and others work as follower. The coordination among
these instances is managed by zookeeper which is responsible
for leader instance election and leader management [21]. The

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:16, No:3, 2022

94International Scholarly and Scientific Research & Innovation 16(3) 2022 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:1

6,
 N

o:
3,

 2
02

2
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

12
48

2.
pd

f

Znodes of each instance of a service forms a cluster which has
information about live nodes, leader nodes and follower nodes.
This information stored at cluster is shared with CU through
REST endpoint for monitoring the FTGs in real-time.

Fig. 9 Leader Election in Fault Tolerance Groups

Fig. 9 illustrates the leader election process for the
microservice deployed in FTG mode. Depending on the size of
FTG decided by CU, Mesos master starts the container of

service, S. Each container instance of the service ‘S’ inside an
FTG registers itself with zookeeper as a ‘ZK client’.
Afterwards, the zookeeper fetches the client’s server details
like IP address and port number. Once an instance of a S
registers, corresponding parent Znodes are created at
zookeeper. These parents Znodes are of type election,
livenodes and allnodes. Apart from creating these Znodes, the
server details of each instance in one FTG are added to cluster
by creating Znodes under allnodes. The leader election is taken
care by zookeeper among the Znodes under allnodes and labels
one instance in FTG as master and others as followers.
Follower nodes are added under livenodes. The data from
master Znode are synchronized with the follower. In case the
master Znode goes down, the cluster is rebalanced, and leader
election happens among the available instances under
livenodes. This is ensured by registering a ZKWatcher at ZK
for monitoring leader change and live node change.

B. Use-Cases for Different ANS

We consider wireless as network category from Network
Landscape in Fig. 1, as the ANS. For wireless network we have
considered two different network categories: (I) Odin [21]
(Software Defined WLAN) and (II) Aruba [23] (Traditional
WLAN). Both use-cases utilize the microservices with core
functionalities of SADR principles as mentioned in [24]. As
illustrated in Fig. 10, the microservices are categorized based
on SADR principle and deployed on IaaS platform as MGs.
The MGs with functionality of sensing and respond interact
with the south-bound ANS like Odin and Aruba network as
illustrated in Fig. 10. In lab testbed each ANS comprises of
number of devices like SDN controllers, Access Points (APs)
and wireless stations.

Fig. 10 System validation in Aruba and Odin ANS setup

Use-case 1 Link Health Prediction: A lab testbed of Aruba
ANS with two APs and one mobile user running real-time
applications walking from one place to other is considered.
Both network and service specific micro services are deployed
as MGs which communicate with the Aruba network
(Traditional WLAN) ANS in this use-case and perform

network and service specific workflows. In this use-case the
proposed system fulfills the health check service requirement
in a TWLAN network by using ML based prediction algorithm.
In the Traditional WLAN network, in order to monitor link
health between a wireless station and AP, two possible options
are available like doing on-the fly prediction at APs or

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:16, No:3, 2022

95International Scholarly and Scientific Research & Innovation 16(3) 2022 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:1

6,
 N

o:
3,

 2
02

2
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

12
48

2.
pd

f

performing prediction on the collected network statistics offline
and provide a prescriptive report to the network administrator.
Without the proposed system there will be a single application
that will sense the network statistics, store them for offline
prediction or do the online prediction at AP. However, with the
proposed system this service requirement is achieved in a
modular way with the help of multiple microservices deployed
as MGs performing their respective works without interrupting
AP’s normal work of routing the packets. After the initiation of
prediction workflow by CU, the Mesos Master deploys the
required microservices as Docker containers on the MGs. One
group of microservice performs the retrieval of required
network statistics and publish on the dedicated Kafka topic.
These are further consumed by another group of microservice
that performs the online ML prediction and publishes the report
on a dedicated Kafka topic. This is further consumed by decide
MG which sets the policies on the Aruba ANS with the help of
respond MG.

Use-case 2 Seamless mobility by smooth handoffs: Similar
to Aruba ANS, in this use-case a lab testbed of Odin ANS with
two APs, one SDN controller and one mobile user running
real-time applications walking from one place to other are
considered. In this use-case, the proposed system fulfills the
mobility management service requirement in Software Defined
WLAN network. In the normal scenario, handoff decision is
wireless station initiated which results in hard handoff.
However, with the proposed system, handoff decision (both
prescriptive and reactive) is taken by the CU while performing
the workflow. This reduces the workload on the APs of the
network and seamless mobility with significant reduction in
packet drops and jitter is observed during handoff. Experiment
details are out of scope of this paper. The techniques used for
seamless mobility are presented in Algorithm 1.

In Step 1-4, the CU receives the user input and decides the
type of workflow (handoff workflow as in Fig. 6). The CU then
decides the types of microservices required to complete the
workflow. It decides the image name and resource requirement
for their deployment. In this case, four microservices are
required - sense, analyze, decide, and respond. Sense
microservice collects link and load parameters from the
network. Analyze microservice runs the proposed handoff
algorithm to generate the report on the wireless station’s link
performance with connected AP as well as all the available
APs of the network. Decide microservice consumes the
analysis report and provides the decision whether handoff is
required or not as a decision report. Finally respond
microservice consumes the decision report; triggers the handoff
for the wireless station by communicating with the wireless
devices.

To deploy these microservices, CU performs Step 7. In Step
7-13, CU initiates and performs the deployment of
microservices and sets the status of the workflow to active. In
case of any error (Step 27-28), it sets the status as error. CU
then performs the configuration of microservices (Step 15-16).
In case of failure (Step 23-24), it sets the status as error in
configuration. In Step 18, the microservices start their
respective core functionalities and publish their report on

Kafka bus for consumption of other microservices. These
microservices also share their health status to the CU via Kafka
bus, which enables the CU to monitor their life cycle and
events (Step 19-20). In Step 21, upon completion of the desired
workflow, the Mesos Master on IaaS destroys the
microservices and clears the resources assigned to them so that
it can be re-utilized by any other workflow.

VII. CONCLUSION AND FUTURE WORK

In this paper we propose a system for provisioning and
management of network services using microservices based
framework with emphasis on life cycle management. This
system supports different network types forming its network
landscape and different service type forming its SL. It is vendor
agnostic and adaptable to changes in different networking
technologies. We have deployed the proposed system in a
testbed setup comprising of Traditional WLAN and Software
Defined WLAN networks and successfully conducted
experiments like seamless mobility and link health predictions.
We aim to deploy the proposed system on a large-scale hybrid
network with WiFi6 and other wireless networks including
private 5G in future.

ACKNOWLEDGMENT

We are thankful to Bighnaraj Panigrahi, Nikita Trivedi,

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:16, No:3, 2022

96International Scholarly and Scientific Research & Innovation 16(3) 2022 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:1

6,
 N

o:
3,

 2
02

2
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

12
48

2.
pd

f

Samar Shailendra and Ashwin R for their contribution during
the initial stage of this work.

REFERENCES
[1] B. A. A. Nunes, M. Mendonca, X.-N. Nguyen, K. Obraczka, and T.

Turletti, “A survey of software-defined networking: Past, present, and
future of programmable networks,” IEEE Communications Surveys and
Tutorials, vol. 16, no. 3, pp. 1617–1634, 2014.

[2] “Network Functions Virtualization (NFV) – ETSI standards,” http:
//www.etsi.org/technologies-clusters/technologies/nfv, Nov. 2021.

[3] “The Future of Data Center Network Switches Looks ‘Brite’,” https:
//www.gartner.com/en/documents/2928517, Nov. 2019.

[4] M. Armbrust, A. Fox, R. Griffith, A.D. Joseph, R. Katz, A. Konwinski,
G. Lee, D. Patterson, A. Rabkin, T. Stoica and M. Zaharia, “Above the
Clouds: A Berkeley View of Cloud Computing,” Communications
Magazine, ACM, vol. 53 issue 4, pp. 50–58, April 2010.

[5] J. A. Wickboldt, W. P. De Jesus, P. H. Isolani, C. B. Both, J. Rochol,
and L. Z. Granville, “Software-defined networking: management
requirements and challenges,” IEEE Communications Magazine, vol.
53, no. 1, pp. 278–285, 2015.

[6] M. Li, P. Lin, G. Xu, and G. Q. Huang, “Cloud-based ubiquitous object
sharing platform for heterogeneous logistics system integration,”
Advanced Engineering Informatics, 2018.

[7] C. Lorenz, D. Hock, J. Scherer, R. Durner, W. Kellerer, S. Gebert, N.
Gray, T. Zinner, and P. Tran-Gia, “An SDN/NFV-Enabled Enterprise
Network Architecture Offering Fine-Grained Security Policy
Enforcement,” IEEE Communications Magazine, vol. 55, no. 3, pp.
217–223, 2017.

[8] N. Gray, S. Lange, T. Zinner, B. Pfaff, and D. Hock, “Evaluation of a
distributed control plane for managing heterogeneous SDN-enabled and
legacy networks,” in in Proc. of IEEE Seventh International Conference
on Communications and Electronics (ICCE), 2018.

[9] O. Al-Debagy and P. Martinek, “A comparative review of microservices
and monolithic architectures,” in in Proc. of IEEE 18th International
Symposium on Computational Intelligence and Informatics (CINTI),
2018.

[10] R. de Jesus Martins, A. G. Dalla-Costa, J. A. Wickboldt, and L. Z.
Granville, “SWEETEN: Automated Network Management Provisioning
for 5G Microservices-Based Virtual Network Functions,” in in Proc. of
16th International Conference on Network and Service Management
(CNSM), 2020.

[11] “What are Microservices?” https://microservices.io/, Nov. 2021.
[12] “What is Command Query Responsibility Segregation (CQRS),”

https://culttt.com/2015/01/14/ command-query-responsibility-
segregation-cqrs/, Nov. 2019.

[13] “Creating and Using a Command bus,” https://culttt.com/2014/11/10/
creating-using-command-bus/, Nov. 2019.

[14] X. Huang, S. Cheng, K. Cao, P. Cong, T. Wei, and S. Hu, “A Survey of
Deployment Solutions and Optimization Strategies for Hybrid SDN
Networks,” IEEE Communications Surveys and Tutorials, vol. 21, no. 2,
pp. 1483–1507, 2019.

[15] “Elastic search – The heart of Elastic Stack,”
https://www.elastic.co/elasticsearch, Sept. 2020.

[16] “Getting Started with Kafka,” https://kafka.apache.org/intro, Sept. 2020.
[17] “Welcome to Apache Zookeeper,” https://zookeeper.apache.org/, Sept.

2020.
[18] “Containerization with Spring Boot and Docker,” https://www.split.io/

blog/containerization-spring-boot-docker/, 2020.
[19] “Mesos Architecture,” https://mesos.apache.org/documentation/latest/

architecture/, 2020.
[20] “Marathon: A container orchestration platform for Mesos and DC/OS,”

https://mesosphere.github.io/marathon/, 2020.
[21] “ZooKeeper Recipes and Solutions,”

https://zookeeper.apache.org/doc/current/recipes.html#scleaderElection,
2020.

[22] L. Suresh, J. Schulz-Zander, R. Merz, A. Feldmann, and T. Vazao,
“Towards programmable Enterprise WLANS with Odin,” in
Proceedings of the first workshop on Hot topics in software defined
networks, 2012.

[23] “ArubaOS 8.3.0.x,” https://www.arubanetworks.com/techdocs/
ArubaOS 83x Web Help/Content/PDFs/ArubaOS%208.3.0.x%
20API%20Guide.pdf, Jan. 2020.

[24] “Seamless Integration of 5G,” https://www.tcs.

com/content/dam/tcs/pdf/research-innovation/insights/ Reimagining-
Research-seamless-intergration-of-5G.pdf, 2020.

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:16, No:3, 2022

97International Scholarly and Scientific Research & Innovation 16(3) 2022 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:1

6,
 N

o:
3,

 2
02

2
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

12
48

2.
pd

f

