Search results for: cell response.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2281

Search results for: cell response.

1831 Existence of Periodic Solutions in a Food Chain Model with Holling–type II Functional Response

Authors: Zhaohui Wen

Abstract:

In this paper, a food chain model with Holling type II functional response on time scales is investigated. By using the Mawhin-s continuation theorem in coincidence degree theory, sufficient conditions for existence of periodic solutions are obtained.

Keywords: Periodic solutions, food chain model, coincidence degree, time scales.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1717
1830 Rule Insertion Technique for Dynamic Cell Structure Neural Network

Authors: Osama Elsarrar, Marjorie Darrah, Richard Devin

Abstract:

This paper discusses the idea of capturing an expert’s knowledge in the form of human understandable rules and then inserting these rules into a dynamic cell structure (DCS) neural network. The DCS is a form of self-organizing map that can be used for many purposes, including classification and prediction. This particular neural network is considered to be a topology preserving network that starts with no pre-structure, but assumes a structure once trained. The DCS has been used in mission and safety-critical applications, including adaptive flight control and health-monitoring in aerial vehicles. The approach is to insert expert knowledge into the DCS before training. Rules are translated into a pre-structure and then training data are presented. This idea has been demonstrated using the well-known Iris data set and it has been shown that inserting the pre-structure results in better accuracy with the same training.

Keywords: Neural network, rule extraction, rule insertion, self-organizing map.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 540
1829 Bridge Analysis Structure under Human Induced Dynamic Load

Authors: O. Kratochvíl, J. Križan

Abstract:

The paper deals with the analysis of the dynamic response of footbridges under human - induced dynamic loads. This is a frequently occurring and often dominant load for footbridges as it stems from the very purpose of a footbridge - to convey pedestrian. Due to the emergence of new materials and advanced engineering technology, slender footbridges are increasingly becoming popular to satisfy the modern transportation needs and the aesthetical requirements of the society. These structures however are always lively with low stiffness, low mass, low damping and low natural frequencies. As a consequence, they are prone to vibration induced by human activities and can suffer severe vibration serviceability problems, particularly in the lateral direction. Pedestrian bridges are designed according to first and second limit states, these are the criteria involved in response to static design load. However, it is necessary to assess the dynamic response of bridge design load on pedestrians and assess it impact on the comfort of the user movement. Usually the load is considered a person or a small group which can be assumed in perfect motion synchronization. Already one person or small group can excite significant vibration of the deck. In order to calculate the dynamic response to the movement of people, designer needs available and suitable computational model and criteria. For the calculation program ANSYS based on finite element method was used.

Keywords: Footbridge, dynamic analysis, vibration serviceability of footbridges, lateral vibration, stiffness, dynamic force, walking force, slender suspension footbridges, natural frequencies and vibration modes, rhythm jumping, normal walking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2672
1828 Theoretical Investigation of Carbazole-Based D-D-π-A Organic Dyes for Efficient Dye-Sensitized Solar Cell

Authors: S. Jungsuttiwong, R. Tarsang, S. Pansay, T. Yakhantip, V. Promarak, T. Sudyoadsuk, T. Kaewin, S. Saengsuwan, S. Namuangrak

Abstract:

In this paper, four carbazole-based D-D-π-A organic dyes code as CCT2A, CCT3A, CCT1PA and CCT2PA were reported. A series of these organic dyes containing identical donor and acceptor group but different π-system. The effect of replacing of thiophene by phenyl thiophene as π-system on the physical properties has been focused. The structural, energetic properties and absorption spectra were theoretically investigated by means of Density Functional Theory (DFT) and Time-Dependent Density Functional Theory (TD-DFT). The results show that nonplanar conformation due to steric hindrance in donor part (cabazolecarbazole unit) of dye molecule can prevent unfavorable dye aggregation. By means of the TD-DFT method, the absorption spectra were calculated by B3LYP and BHandHLYP to study the affect of hybrid functional on the excitation energy (Eg). The results revealed the increasing of thiophene units not only resulted in decreasing of Eg, but also found the shifting of absorption spectra to higher wavelength. TD-DFT/BHandHLYP calculated results are more strongly agreed with the experimental data than B3LYP functions. Furthermore, the adsorptions of CCT2A and CCT3A on the TiO2 anatase (101) surface were carried out by mean of the chemical periodic calculation. The result exhibit the strong adsorption energy. The calculated results provide our new organic dyes can be effectively used as dye for Dye Sensitized Solar Cell (DSC).

Keywords: Dye-Sensitized Solar cell, Carbarzole, TD-DFT, D-D-π-A organic dye

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5159
1827 Optimal Feedback Linearization Control of PEM Fuel Cell

Authors: E. Shahsavari, R. Ghasemi, A. Akramizadeh

Abstract:

This paper presents a new method to design nonlinear feedback linearization controller for PEMFCs (Polymer Electrolyte Membrane Fuel Cells). A nonlinear controller is designed based on nonlinear model to prolong the stack life of PEMFCs. Since it is known that large deviations between hydrogen and oxygen partial pressures can cause severe membrane damage in the fuel cell, feedback linearization is applied to the PEMFC system so that the deviation can be kept as small as possible during disturbances or load variations. To obtain an accurate feedback linearization controller, tuning the linear parameters are always important. So in proposed study NSGA (Non-Dominated Sorting Genetic Algorithm)-II method was used to tune the designed controller in aim to decrease the controller tracking error. The simulation result showed that the proposed method tuned the controller efficiently.

Keywords: Feedback Linearization controller, NSGA, Optimal Control, PEMFC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2251
1826 Time Effective Structural Frequency Response Testing with Oblique Impact

Authors: Khoo Shin Yee, Lian Yee Cheng, Ong Zhi Chao, Zubaidah Ismail, Siamak Noroozi

Abstract:

Structural frequency response testing is accurate in identifying the dynamic characteristic of a machinery structure. In practical perspective, conventional structural frequency response testing such as experimental modal analysis with impulse technique (also known as “impulse testing”) has limitation especially on its long acquisition time. The high acquisition time is mainly due to the redundancy procedure where the engineer has to repeatedly perform the test in 3 directions, namely the axial-, horizontal- and vertical-axis, in order to comprehensively define the dynamic behavior of a 3D structure. This is unfavorable to numerous industries where the downtime cost is high. This study proposes to reduce the testing time by using oblique impact. Theoretically, a single oblique impact can induce significant vibration responses and vibration modes in all the 3 directions. Hence, the acquisition time with the implementation of the oblique impulse technique can be reduced by a factor of three (i.e. for a 3D dynamic system). This study initiates an experimental investigation of impulse testing with oblique excitation. A motor-driven test rig has been used for the testing purpose. Its dynamic characteristic has been identified using the impulse testing with the conventional normal impact and the proposed oblique impact respectively. The results show that the proposed oblique impulse testing is able to obtain all the desired natural frequencies in all 3 directions and thus providing a feasible solution for a fast and time effective way of conducting the impulse testing.

Keywords: Frequency response function, impact testing, modal analysis, oblique angle, oblique impact.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 936
1825 Comparative Study of Equivalent Linear and Non-Linear Ground Response Analysis for Rapar District of Kutch, India

Authors: Kulin Dave, Kapil Mohan

Abstract:

Earthquakes are considered to be the most destructive rapid-onset disasters human beings are exposed to. The amount of loss it brings in is sufficient to take careful considerations for designing of structures and facilities. Seismic Hazard Analysis is one such tool which can be used for earthquake resistant design. Ground Response Analysis is one of the most crucial and decisive steps for seismic hazard analysis. Rapar district of Kutch, Gujarat falls in Zone 5 of earthquake zone map of India and thus has high seismicity because of which it is selected for analysis. In total 8 bore-log data were studied at different locations in and around Rapar district. Different soil engineering properties were analyzed and relevant empirical correlations were used to calculate maximum shear modulus (Gmax) and shear wave velocity (Vs) for the soil layers. The soil was modeled using Pressure-Dependent Modified Kodner Zelasko (MKZ) model and the reference curve used for fitting was Seed and Idriss (1970) for sand and Darendeli (2001) for clay. Both Equivalent linear (EL), as well as Non-linear (NL) ground response analysis, has been carried out with Masing Hysteretic Re/Unloading formulation for comparison. Commercially available DEEPSOIL v. 7.0 software is used for this analysis. In this study an attempt is made to quantify ground response regarding generated acceleration time-history at top of the soil column, Response spectra calculation at 5 % damping and Fourier amplitude spectrum calculation. Moreover, the variation of Peak Ground Acceleration (PGA), Maximum Displacement, Maximum Strain (in %), Maximum Stress Ratio, Mobilized Shear Stress with depth is also calculated. From the study, PGA values estimated in rocky strata are nearly same as bedrock motion and marginal amplification is observed in sandy silt and silty clays by both analyses. The NL analysis gives conservative results of maximum displacement as compared to EL analysis. Maximum strain predicted by both studies is very close to each other. And overall NL analysis is more efficient and realistic because it follows the actual hyperbolic stress-strain relationship, considers stiffness degradation and mobilizes stresses generated due to pore water pressure.

Keywords: DEEPSOIL v 7.0, Ground Response Analysis, Pressure-Dependent Modified KodnerZelasko (MKZ) model, Response Spectra, Shear wave velocity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 937
1824 A New Time Dependent, High Temperature Analytical Model for the Single-electron Box in Digital Applications

Authors: M.J. Sharifi

Abstract:

Several models have been introduced so far for single electron box, SEB, which all of them were restricted to DC response and or low temperature limit. In this paper we introduce a new time dependent, high temperature analytical model for SEB for the first time. DC behavior of the introduced model will be verified against SIMON software and its time behavior will be verified against a newly published paper regarding step response of SEB.

Keywords: Single electron box, SPICE, SIMON, Timedependent, Circuit model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1242
1823 Modeling and Analysis of Process Parameters on Surface Roughness in EDM of AISI D2 Tool Steel by RSM Approach

Authors: M. K. Pradhan, C. K. Biswas

Abstract:

In this research, Response Surface Methodology (RSM) is used to investigate the effect of four controllable input variables namely: discharge current, pulse duration, pulse off time and applied voltage Surface Roughness (SR) of on Electrical Discharge Machined surface. To study the proposed second-order polynomial model for SR, a Central Composite Design (CCD) is used to estimation the model coefficients of the four input factors, which are alleged to influence the SR in Electrical Discharge Machining (EDM) process. Experiments were conducted on AISI D2 tool steel with copper electrode. The response is modeled using RSM on experimental data. The significant coefficients are obtained by performing Analysis of Variance (ANOVA) at 5% level of significance. It is found that discharge current, pulse duration, and pulse off time and few of their interactions have significant effect on the SR. The model sufficiency is very satisfactory as the Coefficient of Determination (R2) is found to be 91.7% and adjusted R2-statistic (R2 adj ) 89.6%.

Keywords: Electrical discharge machining, surface roughness, response surface methodology, ANOVA, central composite design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2361
1822 Viability of Slab Sliding System for Single Story Structure

Authors: C. Iihoshi, G.A. MacRae, G.W. Rodgers, J.G. Chase

Abstract:

Slab sliding system (SSS) with Coulomb friction  interface between slab and supporting frame is a passive structural  vibration control technology. The system can significantly reduce the  slab acceleration and accompanied lateral force of the frame. At the  same time it is expected to cause the slab displacement magnification  by sliding movement. To obtain the general comprehensive seismic  response of a single story structure, inelastic response spectra were  computed for a large ensemble of ground motions and a practical range  of structural periods and friction coefficient values. It was shown that  long period structures have no trade-off relation between force  reduction and displacement magnification with respect to elastic  response, unlike short period structures. For structures with the  majority of mass in the slab, the displacement magnification value can  be predicted according to simple inelastic displacement relation for  inelastically responding SDOF structures because the system behaves  elastically to a SDOF structure.

 

Keywords: Earthquake, Isolation, Slab, Sliding.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1929
1821 Static Priority Approach to Under-Frequency Based Load Shedding Scheme in Islanded Industrial Networks: Using the Case Study of Fatima Fertilizer Company Ltd - FFL

Authors: S. H. Kazmi, T. Ahmed, K. Javed, A. Ghani

Abstract:

In this paper static scheme of under-frequency based load shedding is considered for chemical and petrochemical industries with islanded distribution networks relying heavily on the primary commodity to ensure minimum production loss, plant downtime or critical equipment shutdown. A simplistic methodology is proposed for in-house implementation of this scheme using underfrequency relays and a step by step guide is provided including the techniques to calculate maximum percentage overloads, frequency decay rates, time based frequency response and frequency based time response of the system. Case study of FFL electrical system is utilized, presenting the actual system parameters and employed load shedding settings following the similar series of steps. The arbitrary settings are then verified for worst overload conditions (loss of a generation source in this case) and comprehensive system response is then investigated.

Keywords: Islanding, under-frequency load shedding, frequency rate of change, static UFLS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2220
1820 Tool for Analysing the Sensitivity and Tolerance of Mechatronic Systems in Matlab GUI

Authors: Bohuslava Juhasova, Martin Juhas, Renata Masarova, Zuzana Sutova

Abstract:

The article deals with the tool in Matlab GUI form that is designed to analyse a mechatronic system sensitivity and tolerance. In the analysed mechatronic system, a torque is transferred from the drive to the load through a coupling containing flexible elements. Different methods of control system design are used. The classic form of the feedback control is proposed using Naslin method, modulus optimum criterion and inverse dynamics method. The cascade form of the control is proposed based on combination of modulus optimum criterion and symmetric optimum criterion. The sensitivity is analysed on the basis of absolute and relative sensitivity of system function to the change of chosen parameter value of the mechatronic system, as well as the control subsystem. The tolerance is analysed in the form of determining the range of allowed relative changes of selected system parameters in the field of system stability. The tool allows to analyse an influence of torsion stiffness, torsion damping, inertia moments of the motor and the load and controller(s) parameters. The sensitivity and tolerance are monitored in terms of the impact of parameter change on the response in the form of system step response and system frequency-response logarithmic characteristics. The Symbolic Math Toolbox for expression of the final shape of analysed system functions was used. The sensitivity and tolerance are graphically represented as 2D graph of sensitivity or tolerance of the system function and 3D/2D static/interactive graph of step/frequency response.

Keywords: Mechatronic systems, Matlab GUI, sensitivity, tolerance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2057
1819 Evaluation of Dynamic Behavior a Machine Tool Spindle System through Modal and Unbalance Response Analysis

Authors: Khairul Jauhari, Achmad Widodo, Ismoyo Haryanto

Abstract:

The spindle system is one of the most important components of machine tool. The dynamic properties of the spindle affect the machining productivity and quality of the work pieces. Thus, it is important and necessary to determine its dynamic characteristics of spindles in the design and development in order to avoid forced resonance. The finite element method (FEM) has been adopted in order to obtain the dynamic behavior of spindle system. For this reason, obtaining the Campbell diagrams and determining the critical speeds are very useful to evaluate the spindle system dynamics. The unbalance response of the system to the center of mass unbalance at the cutting tool is also calculated to investigate the dynamic behavior. In this paper, we used an ANSYS Parametric Design Language (APDL) program which based on finite element method has been implemented to make the full dynamic analysis and evaluation of the results. Results show that the calculated critical speeds are far from the operating speed range of the spindle, thus, the spindle would not experience resonance, and the maximum unbalance response at operating speed is still with acceptable limit. ANSYS Parametric Design Language (APDL) can be used by spindle designer as tools in order to increase the product quality, reducing cost, and time consuming in the design and development stages.

Keywords: ANSYS parametric design language (APDL), Campbell diagram, Critical speeds, Unbalance response, The Spindle system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2836
1818 Optimization of Diluted Organic Acid Pretreatment on Rice Straw Using Response Surface Methodology

Authors: Rotchanaphan Hengaroonprasan, Malinee Sriariyanun, Prapakorn Tantayotai, Supacharee Roddecha, Kraipat Cheenkachorn

Abstract:

Lignocellolusic material is a substance that is resistant to be degraded by microorganisms or hydrolysis enzymes. To be used as materials for biofuel production, it needs pretreatment process to improve efficiency of hydrolysis. In this work, chemical pretreatments on rice straw using three diluted organic acids, including acetic acid, citric acid, oxalic acid, were optimized. Using Response Surface Methodology (RSM), the effect of three pretreatment parameters, acid concentration, treatment time, and reaction temperature, on pretreatment efficiency were statistically evaluated. The results indicated that dilute oxalic acid pretreatment led to the highest enhancement of enzymatic saccharification by commercial cellulase and yielded sugar up to 10.67 mg/ml when using 5.04% oxalic acid at 137.11 oC for 30.01 min. Compared to other acid pretreatment by acetic acid, citric acid, and hydrochloric acid, the maximum sugar yields are 7.07, 6.30, and 8.53 mg/ml, respectively. Here, it was demonstrated that organic acids can be used for pretreatment of lignocellulosic materials to enhance of hydrolysis process, which could be integrated to other applications for various biorefinery processes. 

Keywords: Lignocellolusic biomass, pretreatment, organic acid response surface methodology, biorefinery.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2404
1817 A Comparative Studies on Methanesulfonic and p-Touluene Sulfonic Acid Incorporated Polyacrylamide Gel Polymer Electrolyte for Tin-Air Battery

Authors: S. Sumathi, V. Sethuprakhash, W. J. Basirun

Abstract:

This study was focused on polymer electrolytes containing methanesulfonic acid (MSA) and p-toluene sulfonic acid (pTSA) mixed with polyacrylamide (PAAm) respectively. Impedance Spectroscopy technique has been employed to compare the ionic conductivity of these polymer electrolytes. The ionic conductivity of the PAAm hydrogel electrolytes increase upon adding the sulfonic acids. Ionic conductivity of PAAm-pTSA is higher than PAAm-MSA. The electrochemical performance evaluations were done with the tin-air cells discharge at zero current for 30minutes and at constant current density of 2.5, 5, 7.5, 10, 12.5 and 15mA/cm2. The tin-air cell of PAAm-MSA produce higher specific discharge capacity compared to PAAm-pTSA. Open-circuit voltage measurement revealed a higher voltage for tin-air cell of PAAm-MSA which is 1.27V.

Keywords: Methane sulfonic acid, polyacrylamide, polymer gel electrolytes, p-toluene sulfonic acid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3650
1816 Buildings Founded on Thermal Insulation Layer Subjected to Earthquake Load

Authors: D. Koren, V. Kilar

Abstract:

The modern energy-efficient houses are often founded on a thermal insulation (TI) layer placed under the building’s RC foundation slab.The purpose of the paper is to identify the potential problems of the buildings founded on TI layer from the seismic point of view. The two main goals of the study were to assess the seismic behavior of such buildings, and to search for the critical structural parameters affecting the response of the superstructure as well as of the extruded polystyrene (XPS) layer. As a test building a multi-storeyed RC frame structure with and without the XPS layer under the foundation slab has been investigated utilizing nonlinear dynamic (time-history) and static (pushover) analyses. The structural response has been investigated with reference to the following performance parameters: i) Building’s lateral roof displacements, ii) Edge compressive and shear strains of the XPS, iii) Horizontal accelerations of the superstructure, iv) Plastic hinge patterns of the superstructure, v) Part of the foundation in compression, and vi) Deformations of the underlying soil and vertical displacements of the foundation slab (i.e. identifying the potential uplift). The results have shown that in the case of higher and stiff structures lying on firm soil the use of XPS under the foundation slab might induce amplified structural peak responses compared to the building models without XPS under the foundation slab. The analysis has revealed that the superstructure as well as the XPS response is substantially affected by the stiffness of the foundation slab.

Keywords: Extruded polystyrene (XPS), foundation on thermal insulation, energy-efficient buildings, nonlinear seismic analysis, seismic response, soil–structure interaction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2235
1815 2D Validation of a High-order Adaptive Cartesian-grid finite-volume Characteristic- flux Model with Embedded Boundaries

Authors: C. Leroy, G. Oger, D. Le Touzé, B. Alessandrini

Abstract:

A Finite Volume method based on Characteristic Fluxes for compressible fluids is developed. An explicit cell-centered resolution is adopted, where second and third order accuracy is provided by using two different MUSCL schemes with Minmod, Sweby or Superbee limiters for the hyperbolic part. Few different times integrator is used and be describe in this paper. Resolution is performed on a generic unstructured Cartesian grid, where solid boundaries are handled by a Cut-Cell method. Interfaces are explicitely advected in a non-diffusive way, ensuring local mass conservation. An improved cell cutting has been developed to handle boundaries of arbitrary geometrical complexity. Instead of using a polygon clipping algorithm, we use the Voxel traversal algorithm coupled with a local floodfill scanline to intersect 2D or 3D boundary surface meshes with the fixed Cartesian grid. Small cells stability problem near the boundaries is solved using a fully conservative merging method. Inflow and outflow conditions are also implemented in the model. The solver is validated on 2D academic test cases, such as the flow past a cylinder. The latter test cases are performed both in the frame of the body and in a fixed frame where the body is moving across the mesh. Adaptive Cartesian grid is provided by Paramesh without complex geometries for the moment.

Keywords: Finite volume method, cartesian grid, compressible solver, complex geometries, Paramesh.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1615
1814 Fermentation of Germinated Native Black Rice Milk Mixture by Probiotic Lactic Acid Bacteria

Authors: N. Mongkontanawat

Abstract:

This research aimed to demonstrate probiotic germinated native black rice juice fermentation by lactic acid bacteria (Lactobacillus casei TISTR 390). Germinated native black rice juice was inoculated with a 24-h old lactic culture and incubated at 30 °C for 72 hours. Changes in pH, acidity, total soluble solid, and viable cell counts during fermentation under controlled conditions at 0-h, 24-h, 48-h, and 72-h fermentations were evaluated. The study found out that the change in pH and total soluble solid of probiotic germinated black rice juice significantly (p ≤ 0.05) decreased at 72-h fermentation (5.67±0.12 to 2.86±0.04 and 7.00±0.00 to 6.40±0.00 ºbrix at 0-h and 72-h fermentations, respectively). On the other hand, the amount of titratable acidity expressed as lactic acid and the viable cell count significantly (p≤0.05) increased at 72-h fermentation (0.11±0.06 to 0.43±0.06 (% lactic acid) and 3.60 x 106 to 2.75 x 108 CFU/ml at 0-h and 72-h fermentations, respectively). Interestingly, the amount of γ-Amino Butyric Acid (GABA) had a significant difference (p≤0.05) twice as high as that of the control group (0.25±0.01 and 0.13±0.01 mg/100g, respectively). In addition, the free radical scavenging capacity assayed by DPPH method also showed that the IC50 values were significantly (p≤0.05) higher than the control (147.71±0.96 and 202.55±1.24 mg/ml, respectively). After 4 weeks of cold storage at 4 °C, the viable cell counts of lactic acid bacteria reduced to 1.37 x 106 CFU/ml. In conclusion, fermented germinated native black rice juice could be served as a healthy beverage for vegans and people who are allergic to cow milk products.

Keywords: Germinated native black rice, probiotic, lactic acid bacteria, Lactobacillus casei.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1645
1813 Periodic Solutions for a Food Chain System with Monod–Haldane Functional Response on Time Scales

Authors: Kejun Zhuang, Hailong Zhu

Abstract:

In this paper, the three species food chain model on time scales is established. The Monod–Haldane functional response and time delay are considered. With the help of coincidence degree theory, existence of periodic solutions is investigated, which unifies the continuous and discrete analogies.

Keywords: Food chain system, periodic solution, time scales, coincidence degree.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8482
1812 Transcriptomics Analysis on Comparing Non-Small Cell Lung Cancer versus Normal Lung, and Early Stage Compared versus Late-Stages of Non-Small Cell Lung Cancer

Authors: Achitphol Chookaew, Paramee Thongsukhsai, Patamarerk Engsontia, Narongwit Nakwan, Pritsana Raugrut

Abstract:

Lung cancer is one of the most common malignancies and primary cause of death due to cancer worldwide. Non-small cell lung cancer (NSCLC) is the main subtype in which majority of patients present with advanced-stage disease. Herein, we analyzed differentially expressed genes to find potential biomarkers for lung cancer diagnosis as well as prognostic markers. We used transcriptome data from our 2 NSCLC patients and public data (GSE81089) composing of 8 NSCLC and 10 normal lung tissues. Differentially expressed genes (DEGs) between NSCLC and normal tissue and between early-stage and late-stage NSCLC were analyzed by the DESeq2. Pairwise correlation was used to find the DEGs with false discovery rate (FDR) adjusted p-value £ 0.05 and |log2 fold change| ³ 4 for NSCLC versus normal and FDR adjusted p-value £ 0.05 with |log2 fold change| ³ 2 for early versus late-stage NSCLC. Bioinformatic tools were used for functional and pathway analysis. Moreover, the top ten genes in each comparison group were verified the expression and survival analysis via GEPIA. We found 150 up-regulated and 45 down-regulated genes in NSCLC compared to normal tissues. Many immnunoglobulin-related genes e.g., IGHV4-4, IGHV5-10-1, IGHV4-31, IGHV4-61, and IGHV1-69D were significantly up-regulated. 22 genes were up-regulated, and five genes were down-regulated in late-stage compared to early-stage NSCLC. The top five DEGs genes were KRT6B, SPRR1A, KRT13, KRT6A and KRT5. Keratin 6B (KRT6B) was the most significantly increased gene in the late-stage NSCLC. From GEPIA analysis, we concluded that IGHV4-31 and IGKV1-9 might be used as diagnostic biomarkers, while KRT6B and KRT6A might be used as prognostic biomarkers. However, further clinical validation is needed.

Keywords: Bioinformatics, differentially expressed genes, non-small cell lung cancer, transcriptomics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 914
1811 Microbial Fuel Cells and Their Applications in Electricity Generating and Wastewater Treatment

Authors: Shima Fasahat

Abstract:

This research is an experimental research which was done about microbial fuel cells in order to study them for electricity generating and wastewater treatment. These days, it is very important to find new, clean and sustainable ways for energy supplying. Because of this reason there are many researchers around the world who are studying about new and sustainable energies. There are different ways to produce these kind of energies like: solar cells, wind turbines, geothermal energy, fuel cells and many other ways. Fuel cells have different types one of these types is microbial fuel cell. In this research, an MFC was built in order to study how it can be used for electricity generating and wastewater treatment. The microbial fuel cell which was used in this research is a reactor that has two tanks with a catalyst solution. The chemical reaction in microbial fuel cells is a redox reaction. The microbial fuel cell in this research is a two chamber MFC. Anode chamber is an anaerobic one (ABR reactor) and the other chamber is a cathode chamber. Anode chamber consists of stabilized sludge which is the source of microorganisms that do redox reaction. The main microorganisms here are: Propionibacterium and Clostridium. The electrodes of anode chamber are graphite pages. Cathode chamber consists of graphite page electrodes and catalysts like: O2, KMnO4 and C6N6FeK4. The membrane which separates the chambers is Nafion117. The reason of choosing this membrane is explained in the complete paper. The main goal of this research is to generate electricity and treating wastewater. It was found that when you use electron receptor compounds like: O2, MnO4, C6N6FeK4 the velocity of electron receiving speeds up and in a less time more current will be achieved. It was found that the best compounds for this purpose are compounds which have iron in their chemical formula. It is also important to pay attention to the amount of nutrients which enters to bacteria chamber. By adding extra nutrients in some cases the result will be reverse.  By using ABR the amount of chemical oxidation demand reduces per day till it arrives to a stable amount.

Keywords: Anaerobic baffled reactor, bioenergy, electrode, energy efficient, microbial fuel cell, renewable chemicals, sustainable.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1393
1810 Decentralized Handoff for Microcellular Mobile Communication System using Fuzzy Logic

Authors: G. M. Mir, N. A. Shah, Moinuddin

Abstract:

Efficient handoff algorithms are a cost-effective way of enhancing the capacity and QoS of cellular system. The higher value of hysteresis effectively prevents unnecessary handoffs but causes undesired cell dragging. This undesired cell dragging causes interference or could lead to dropped calls in microcellular environment. The problems are further exacerbated by the corner effect phenomenon which causes the signal level to drop by 20-30 dB in 10-20 meters. Thus, in order to maintain reliable communication in a microcellular system new and better handoff algorithms must be developed. A fuzzy based handoff algorithm is proposed in this paper as a solution to this problem. Handoff on the basis of ratio of slopes of normal signal loss to the actual signal loss is presented. The fuzzy based solution is supported by comparing its results with the results obtained in analytical solution.

Keywords: Slope ratio, handoff, corner effect, fuzzy logic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1518
1809 Steady State and Accelerated Decay Rate Evaluations of Membrane Electrode Assembly of PEM Fuel Cells

Authors: Yingjeng James Li, Lung-Yu Sung, Andrew S. Lin, Huan-Jyun Ciou

Abstract:

Durability of Membrane Electrode Assembly for Proton Exchange Membrane Fuel Cells was evaluated in both steady state and accelerated decay modes. Steady state mode was carried out at constant current of 800mA/cm2 for 2500 hours using air as cathode feed and pure hydrogen as anode feed. The degradation of the cell voltage was 0.015V after such 2500 hrs operation. The degradation rate was therefore calculated to be 6uV/hr. Continuously Vigorous fluctuation of the cell voltage, which was switched between OCV and 0.2V, was employed for the accelerated decay mode. No obvious change in performance of the MEA was observed after 10000 cycles of such operation.

Keywords: Durability, lifetime, membrane electrode assembly, proton exchange membrane fuel cells.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2181
1808 Effects of Damper Locations and Base Isolators on Seismic Response of a Building Frame

Authors: Azin Shakibabarough, Mojtaba Valinejadshoubi, Ashutosh Bagchi

Abstract:

Structural vibration means repetitive motion that causes fatigue and reduction of the performance of a structure. An earthquake may release high amount of energy that can have adverse effect on all components of a structure. Therefore, decreasing of vibration or maintaining performance of structures such as bridges, dams, roads and buildings is important for life safety and reducing economic loss. When earthquake or any vibration happens, investigation on parts of a structure which sustain the seismic loads is mandatory to provide a safe condition for the occupants. One of the solutions for reducing the earthquake vibration in a structure is using of vibration control devices such as dampers and base isolators. The objective of this study is to investigate the optimal positions of friction dampers and base isolators for better seismic response of 2D frame. For this purpose, a two bay and six story frame with different distribution formats was modeled and some of their responses to earthquake such as inter-story drift, max joint displacement, max axial force and max bending moment were determined and compared using non-linear dynamic analysis.

Keywords: Fast nonlinear analysis, friction damper, base isolator, seismic vibration control, seismic response.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1670
1807 Application of Simulation and Response Surface to Optimize Hospital Resources

Authors: Shamsuddin Ahmed, Francis Amagoh

Abstract:

This paper presents a case study that uses processoriented simulation to identify bottlenecks in the service delivery system in an emergency department of a hospital in the United Arab Emirates. Using results of the simulation, response surface models were developed to explain patient waiting time and the total time patients spend in the hospital system. Results of the study could be used as a service improvement tool to help hospital management in improving patient throughput and service quality in the hospital system.

Keywords: Simulation, Hospital Service, Resource Utilization, United Arab Emirates.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1506
1806 The Simulation and Realization of Input-Buffer Scheduling Algorithm in Satellite Switching System

Authors: Yi Zhang, Quan Zhou, Jun Li, Yanlang Hu

Abstract:

Scheduling algorithm is a key technology in satellite switching system with input-buffer. In this paper, a new scheduling algorithm and its realization are proposed. Based on Crossbar switching fabric, the algorithm adopts serial scheduling strategy and adjusts the output port arbitrating strategy for the better equity of every port. Consequently, it increases the matching probability. The algorithm can greatly reduce the scheduling delay and cell loss rate. The analysis and simulation results by OPNET show that the proposed algorithm has the better performance than others in average delay and cell loss rate, and has the equivalent complexity. On the basis of these results, the hardware realization and simulation based on FPGA are completed, which validate the feasibility of the new scheduling algorithm.

Keywords: Scheduling algorithm, input-buffer, serial scheduling, hardware design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1479
1805 Response of Fully Backed Sandwich Beams to Low Velocity Transverse Impact

Authors: M. Sadighi, H. Pouriayevali, M. Saadati

Abstract:

This paper describes analysis of low velocity transverse impact on fully backed sandwich beams with composite faces from Eglass/epoxy and cores from Polyurethane or PVC. Indentation on sandwich beams has been analyzed with the existing theories and modeled with the FE code ABAQUS, also loadings have been done experimentally to verify theoretical results. Impact on fully backed has been modeled in two cases of impactor energy with SDOF model (single-degree-of-freedom) and indentation stiffness: lower energy for elastic indentation of sandwich beams and higher energy for plastic area in indentation. Impacts have been modeled by ABAQUS. Impact results can describe response of beam in terms of core and faces thicknesses, core material, indentor energy and energy absorbed. The foam core is modeled using the crushable foam material model and response of the foam core is experimentally characterized in uniaxial compression with higher velocity loading to define quasi impact behaviour.

Keywords: Low velocity impact, fully backed, indentation, sandwich beams, foams, finite element.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1808
1804 Design and Analysis of a Low Power High Speed 1 Bit Full Adder Cell Based On TSPC Logic with Multi-Threshold CMOS

Authors: Ankit Mitra

Abstract:

An adder is one of the most integral component of a digital system like a digital signal processor or a microprocessor. Being an extremely computationally intensive part of a system, the optimization for speed and power consumption of the adder is of prime importance. In this paper we have designed a 1 bit full adder cell based on dynamic TSPC logic to achieve high speed operation. A high threshold voltage sleep transistor is used to reduce the static power dissipation in standby mode. The circuit is designed and simulated in TSPICE using TSMC 180nm CMOS process. Average power consumption, delay and power-delay product is measured which showed considerable improvement in performance over the existing full adder designs.

Keywords: CMOS, TSPC, MTCMOS, ALU, Clock gating, power gating, pipelining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3080
1803 Optimization of Process Parameters using Response Surface Methodology for the Removal of Zinc(II) by Solvent Extraction

Authors: B. Guezzen, M.A. Didi, B. Medjahed

Abstract:

A factorial design of experiments and a response surface methodology were implemented to investigate the liquid-liquid extraction process of zinc (II) from acetate medium using the 1-Butyl-imidazolium di(2-ethylhexyl) phosphate [BIm+][D2EHP-]. The optimization process of extraction parameters such as the initial pH effect (2.5, 4.5, and 6.6), ionic liquid concentration (1, 5.5, and 10 mM) and salt effect (0.01, 5, and 10 mM) was carried out using a three-level full factorial design (33). The results of the factorial design demonstrate that all these factors are statistically significant, including the square effects of pH and ionic liquid concentration. The results showed that the order of significance: IL concentration > salt effect > initial pH. Analysis of variance (ANOVA) showing high coefficient of determination (R2 = 0.91) and low probability values (P < 0.05) signifies the validity of the predicted second-order quadratic model for Zn (II) extraction. The optimum conditions for the extraction of zinc (II) at the constant temperature (20 °C), initial Zn (II) concentration (1mM) and A/O ratio of unity were: initial pH (4.8), extractant concentration (9.9 mM), and NaCl concentration (8.2 mM). At the optimized condition, the metal ion could be quantitatively extracted.

Keywords: Ionic liquid, response surface methodology, solvent extraction, zinc acetate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1158
1802 A New Protocol for Concealed Data Aggregation in Wireless Sensor Networks

Authors: M. Abbasi Dezfouli, S. Mazraeh, M. H. Yektaie

Abstract:

Wireless sensor networks (WSN) consists of many sensor nodes that are placed on unattended environments such as military sites in order to collect important information. Implementing a secure protocol that can prevent forwarding forged data and modifying content of aggregated data and has low delay and overhead of communication, computing and storage is very important. This paper presents a new protocol for concealed data aggregation (CDA). In this protocol, the network is divided to virtual cells, nodes within each cell produce a shared key to send and receive of concealed data with each other. Considering to data aggregation in each cell is locally and implementing a secure authentication mechanism, data aggregation delay is very low and producing false data in the network by malicious nodes is not possible. To evaluate the performance of our proposed protocol, we have presented computational models that show the performance and low overhead in our protocol.

Keywords: Wireless Sensor Networks, Security, Concealed Data Aggregation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1739