Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 29978
A Comparative Studies on Methanesulfonic and p-Touluene Sulfonic Acid Incorporated Polyacrylamide Gel Polymer Electrolyte for Tin-Air Battery

Authors: S. Sumathi, V. Sethuprakhash, W. J. Basirun


This study was focused on polymer electrolytes containing methanesulfonic acid (MSA) and p-toluene sulfonic acid (pTSA) mixed with polyacrylamide (PAAm) respectively. Impedance Spectroscopy technique has been employed to compare the ionic conductivity of these polymer electrolytes. The ionic conductivity of the PAAm hydrogel electrolytes increase upon adding the sulfonic acids. Ionic conductivity of PAAm-pTSA is higher than PAAm-MSA. The electrochemical performance evaluations were done with the tin-air cells discharge at zero current for 30minutes and at constant current density of 2.5, 5, 7.5, 10, 12.5 and 15mA/cm2. The tin-air cell of PAAm-MSA produce higher specific discharge capacity compared to PAAm-pTSA. Open-circuit voltage measurement revealed a higher voltage for tin-air cell of PAAm-MSA which is 1.27V.

Keywords: Methane sulfonic acid, polyacrylamide, polymer gel electrolytes, p-toluene sulfonic acid.

Digital Object Identifier (DOI):

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF


[1] M. Ulaganathan, R. Nithya and S. Rajentran, "Surface Analysis Studies on Polymer Electrolyte Membranes Using Scanning Electron Microscope and Atomic Force Microscope”,2012.
[2] S. Rajendran, P. Sivakumar, and R. Babu, (2007) "Studies on the salt concentration of a PVdF–PVC based polymer blend electrolyte,” J. Power Sources, vol.164, pp. 815-821, 2007.
[3] P. Carol, P. Ramakrishnan, B. John, and G. Cheruvally, "Preparation and characterization of electrospun poly (acrylonitrile) fibrous membrane based gel polymer electrolytes for lithium-ion batteries,” J. Power Sources, vol. 196, pp. 10156-10162, 2011.
[4] T. H. Cho, M. Tanaka, H. Onishi, Y. Kondo, T. Nakamura, H. Yamazaki, S. Tanase, and T. Sakai, "Battery performances and thermal stability of polyacrylonitrile nano-fiber-based nonwoven separators for Li-ion battery,” J. Power Sources,vol.181, pp. 155-160, 2008.
[5] H. Ahmad, S. K. Kamarudin, U.A. Hasran, and W. R. Daud, "Overview of hybrid membranes for direct-methanol fuel-cell applications,” Int. J. Hydrogen Ener, vol.35, pp.2160-2175, 2010.
[6] H. Ericson, C. Svanberg, A. Brodin, A. Grillone, S.Panero, B. Scrosati, and P. Jacobsson, "Poly (methylmethacrylate)-based protonic gel electrolytes: a spectroscopic study,” Electrochim. Acta, vol.45, pp.1409-1414, 2000.
[7] H. Xu, J. Fang, M. Guo, X. Lu, X. Wei, and S. Tu, "Novel anion exchange membrane based on copolymer of methyl methacrylate, vinylbenzyl chloride and ethyl acrylate for alkaline fuel cells,” J. Membr. Sci, vol.354, pp.206-211, 2010.
[8] V. Neburchilov, J. Martin, H. Wang, and J. Zhang, "A review of polymer electrolyte membranes for direct methanol fuel cells,” J.Power Sources, vol.169, pp.221-238, 2007.
[9] B. Smitha, S. Sridhar, and A. Khan, "Solid polymer electrolyte membranes for fuel cell applications—a review,” J.Membr. Scivol.259, pp.10-26, 2005.
[10] B. Scrosati, "Power sources for portable electronics and hybrid cars: lithium batteries and fuel cells,” Chem. Rec vol. 5, pp.286-297,2005.
[11] A. Oishi, H. Matsuoka, T. Yasuda, and M. Watanabe, "Novel styrene/N-phenylmaleimide alternating copolymers with pendant sulfonimide acid groups for polymer electrolyte fuel cell applications,” J. Mater. Chem., vol.19, pp.514-521, 2009.
[12] M. Isa, "Poly (Methyl Methacrylate)-Salicylic Acid-Oleic Acid Plasticized Gel Electrolyte System: Electrical and Ionic Transport Study,” Res. J. Phys, vol. 6, issue 2, pp. 50-58, 2012.
[13] R. He, Q. Li, G. Xiao, and N. J. Bjerrum, "Proton conductivity of phosphoric acid doped polybenzimidazole and its composites with inorganic proton conductors,” J. Membr Sci, vol.226,pp.169-184, 2003.
[14] S. Sekhon, and H. P. Singh, "Proton conduction in polymer gel electrolytes containing chloroacetic acids,” Solid State Ion, vol. 175, pp.545-548, 2004.
[15] R. Kumar, and S. Sekhon, "Conductivity, FTIR studies, and thermal behavior of PMMA-based proton conducting polymer gel electrolytes containing triflic acid, Ionics, pp.1-9, 2013.
[16] C. Rosenstein, "Methane Sulfonic Acid as an Electrolyte for Tin, Lead and Tin--Lead Plating for Electronics,” Met. Finish.88, 17-21, 1990.
[17] H. L. Zhao, Q.C. You, and A.M. Chun, "Electrochemical Oxidation of Ce (III) to Ce (IV) in Mixed Acid (H2SO4 and CH3SO3H),”Advanced Materials Research, vol.588, pp.90-94, 2012.
[18] P. L. Ng, A. Jamaludin, Y. Alias, W. J. Basirun, Z.A. Ahmad, and A.A Mohamad, "Effect of KOH concentration in the gel polymer electrolyte for direct borohydride fuel cell,” J. Appl. Polym. Sci., vol.123, pp.2662-2666, 2012.
[19] W. Wieczorek, and J. Stevens, "Proton transport in polyacrylamide based hydrogels doped with H3PO4or H2SO4, Polymervol.38, pp.2057-2065, 1997.
[20] M. Rozali, A. Samsudin, and M. Isa, "Ion Conducting Mechanism of Carboxy Methylcellulose Doped With Ionic Dopant Salicylic Acid Based Solid Polymer Electrolytes,” International Journal of Applied2, 2012.
[21] S. Sekhon, N. Arora, and H. P. Singh, "Effect of donor number of solvent on the conductivity behaviour of nonaqueous proton-conducting polymer gel electrolytes,” Solid State Ion, vol. 160, pp.301-307, 2003.
[22] L. Shmukler, N. Van Thuc, Y. Fadeeva and L. Safonova,(2012) "Proton conducting gel electrolytes based on polymethylmethacrylate doped with sulfuric acid solutions in N, N-dimethylformamide,” J. Polym. Res., vol. 19, pp.1-8, 2012.
[23] A. Kaisheva, "Metal-air batteries: research, development, application,” In Proceedings of the International Workshop: Portable and Emergency Energy Sources–from Materials to Systems, Primorsko, Bulgaria, 2005
[24] N. Johari, T. Kudin, A. Ali, and M. Yahya, "Electrochemical Studies of Composite Cellulose Acetate-Based Polymer Gel Electrolytes for Proton Batteries,” Proc. Nat. Acad. Sci. India A, vol.82, pp.49-52, 2012.
[25] I. Noor, S. Majid and A. Arof, "Poly (vinyl alcohol)-LiBOB complexes for lithium-air cells,” Electrochim Acta, 2013.
[26] A. Mohamad, (2008) "Electrochemical properties of aluminum anodes in gel electrolyte-based aluminum-air batteries,” Corrosion Sci., vol.50, pp.3475-3479, 2008.
[27] M. Masri, M. Nazeri, and A. Mohamad, "Sago Gel Polymer Electrolyte for Zinc-Air Battery,” Adv Sci Tech, vol.72, pp.305-308, 2010.
[28] J. K Jian, X.L Chen, W.J Wong, L. Dai, and Y.P Xu, "Growth and Morphologies of large scale SnO2 nanowires, nanobelts and nanodendrites,” Appl. Phys. A, vol. 76, pp. 291-294, 2003.