WASET
	%0 Journal Article
	%A O. Kratochvíl and  J. Križan
	%D 2012
	%J International Journal of Civil and Environmental Engineering
	%B World Academy of Science, Engineering and Technology
	%I Open Science Index 70, 2012
	%T Bridge Analysis Structure under Human Induced Dynamic Load
	%U https://publications.waset.org/pdf/9619
	%V 70
	%X The paper deals with the analysis of the dynamic
response of footbridges under human - induced dynamic loads.
This is a frequently occurring and often dominant load for
footbridges as it stems from the very purpose of a footbridge - to
convey pedestrian. Due to the emergence of new materials and
advanced engineering technology, slender footbridges are
increasingly becoming popular to satisfy the modern transportation
needs and the aesthetical requirements of the society. These
structures however are always lively with low stiffness, low mass,
low damping and low natural frequencies. As a consequence, they are
prone to vibration induced by human activities and can suffer severe
vibration serviceability problems, particularly in the lateral direction.
Pedestrian bridges are designed according to first and second limit
states, these are the criteria involved in response to static design load.
However, it is necessary to assess the dynamic response of bridge
design load on pedestrians and assess it impact on the comfort of the
user movement. Usually the load is considered a person or a small
group which can be assumed in perfect motion synchronization.
Already one person or small group can excite significant vibration of
the deck. In order to calculate the dynamic response to the movement
of people, designer needs available and suitable computational model
and criteria. For the calculation program ANSYS based on finite
element method was used.
	%P 841 - 846