

Abstract—This paper discusses the idea of capturing an expert’s

knowledge in the form of human understandable rules and then
inserting these rules into a dynamic cell structure (DCS) neural
network. The DCS is a form of self-organizing map that can be used
for many purposes, including classification and prediction. This
particular neural network is considered to be a topology preserving
network that starts with no pre-structure, but assumes a structure once
trained. The DCS has been used in mission and safety-critical
applications, including adaptive flight control and health-monitoring
in aerial vehicles. The approach is to insert expert knowledge into the
DCS before training. Rules are translated into a pre-structure and
then training data are presented. This idea has been demonstrated
using the well-known Iris data set and it has been shown that
inserting the pre-structure results in better accuracy with the same
training.

Keywords—Neural network, rule extraction, rule insertion, self-
organizing map.

I. INTRODUCTION

RTIFICIAL Intelligence plays a key role in developing
devices that can analyze situations like a human.

Developing systems with a set of guiding knowledge that is
then able to learn from new experiences to refine that
knowledge is key to simulating human decision making.
Neural-Symbolic learning systems play a key role by
combining the benefits of both the neural and symbolic
paradigms of artificial intelligence [1].

Accuracy and confidence is very important for safety-
critical uses of neural networks. The rationale for using rule
insertion is that expert knowledge represented in a set of rules,
which could possibly be incomplete or incorrect due to
insufficient knowledge, can be inserted to initialize a neural
network before training is applied. The initial knowledge is
inserted using a rules-to-network algorithm. The initial
symbolic knowledge that is inserted becomes the initial neural
network structure. This process creates a "neural-symbolic"
system utilizing a combination of theoretical and empirical
data. The initial symbolic knowledge then goes through a
stage of training and refinement. Upon completion of training,
rules are extracted again for comparison. This three-step
process assists in ensuring the most accurate output, reduces
training time, and provides confidence by allowing developers
and users to better understand the internal workings of the
neural network through inspection of the rules.

Neural networks are not recognized for their capacity to use
symbolic knowledge, but rather from their capability “to be

Marjorie Darrah is with the West Virginia University, United States (e-

mail: marjorie.darrah@mail.wvu.edu).

trained from data”. They have become an acknowledged tool
in machine learning toolboxes. Usually, neural networks
“readily” store knowledge in distributed internal weights, not
in symbolic form. Although neural networks are commonly
used for generalizations, other applications may require the
knowledge be used in symbolic form [2]. Therefore,
investigation into the interchange of information between
connections and symbolic representations is necessary for
effective learning.

Kurd et al. [3] discussed that the dilemma with the use of
artificial neural networks in a safety critical situation is that
the software lifecycle relies on determining the specifications
at the initial phase of development. This is not supported if the
neural network starts with no initial internal structure, which is
the case with the DCS self-organizing map that is the focus of
our research. The lifecycle of the hybrid systems like the one
we are suggesting can be described by the “W” model (Fig. 1)
[3].

Fig. 1 Rule Insertion/Extraction “W” Model [3]

In Fig. 1 the following levels are depicted:
 Symbolic Level: This level is associated with symbolic

information and deals with analysis in terms of symbolic
knowledge.

 Translation Level: This level is where symbolic
knowledge and neural architectures are joined or
separated.

 Neural Learning Level: This level uses neural learning
to adapt and refine symbolic knowledge.

In the past, others have explored the idea of combining rule-
based knowledge and neural learning. Towell and Shavlik [4],
[5] introduced the new algorithm named Knowledge-Based
Neural Network (KBANN). They felt that this algorithm

 Osama Elsarrar, Marjorie Darrah, Richard Devin

Rule Insertion Technique for Dynamic Cell Structure
Neural Network

A

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:14, No:8, 2020

287International Scholarly and Scientific Research & Innovation 14(8) 2020 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

4,
 N

o:
8,

 2
02

0
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

11
37

0.
pd

f

would improve the learning speed because it is not ignoring
any information. They described this algorithm as a way to
address the problems of training “deep” networks. Fig. 2
shows the process that Towell and Shavlik used for Rule
Insertion. KBANN is a hybrid learning system and is more
effective at classifying examples compared to other machine
learning algorithms. Unfortunately, the networks created by
KBANN, known as KBANN-nets, have “deep” network
properties that are not well suited to work with
backpropagation. To address this issue, the Desired
Antecedent Identification (DAID) algorithm was introduced.

Fig. 2 Towell and Shavlik [4] method for Rule Insertion

The DAID was motivated by two observations. First, the
“deep” neural networks cause trouble to the neural leaning
techniques because error signals become diffused. Second, it
had been shown that KBANN is most effective when
antecedents are ignored by the network. The DAID aids in this
issue by lessening error. Ultimately the DAID is most useful
in deep structures due to its learning bias towards learning at
the bottom, whereas backpropagation is most useful in shallow
structures due to its bias towards learning at the top of chains.

Another idea from Giles and Omlin [6] discusses methods
for extracting, inserting and refining symbolic grammatical
rules for recurrent networks. The issues also discussed in this
paper include how rules are inserted into the recurrent neural
network, how training and generalization is affected, and how
the rules can be checked in order for correction. The method
Giles and Omlin [6] devised requires the network size to
exceed the number of Deterministic Finite State Automata
(DFA) states. It was expected that the training time would
decline with rising rule strength, but the network does not
easily recognize partial correct rule insertion if the rule
strength is too great.

An additional aspect of symbolic knowledge extraction and
insertion is rule checking, allowing for the establishment of
the validity of the knowledge. Rule checking compares rules
extracted from trained networks with prior knowledge.
However, rule checking becomes increasingly difficult with
rising rule strength when incorrect rules are inserted into a
network. Further, Giles and Omlin [6] suggest that network
architecture can be altered during training with symbolic
guidance, and symbolic information gained from under-trained

networks could prove useful in determining the current
network architecture.

This paper presents an approach for inserting rules to a
specific neural network structure, the DCS neural network that
has been used in several safety critical applications including
adaptive aircraft control [7] and on-board health state
awareness for Unmanned Aerial Vehicles (UAVs) [8]. Section
II discusses the process by outlining the DCS structure, the
rule extraction process and the rule insertion process. Section
III discusses the application of the process to a common
benchmark data set. Section IV provides the result of the
experiment and Section V provides some conclusions that can
be drawn.

II. THE PROCESS

A. Structure of the DCS Neural Network

As previously mentioned, one type of self-organizing map
is called the DCS neural network [9]-[11]. The DCS is
designed to learn and represent the topology of the input
space. After training on data, the DCS structure is arranged
like a Voronoi diagram (Fig. 3) [12].

Fig. 3 Voronoi Diagram

The centroids of the Voronoi regions in Fig. 3 represent the
reference vector for each of the cells. These centroids are the
neurons in the neural network. The neurons, cij, of neighboring
cells are then connected using a Delaunay triangulation [12].

Given an input to the DCS, v, the best matching unit (BMU)
is the neuron whose weight, w, is closest to v, and the second
best matching unit (SEC) is the neuron whose weight is the
second closest to v. Along with the BMU, the neighbors of the
BMU are found through the Delaunay triangulation, which
connects the centers of the Voronoi regions if they share a
boundary. During training and the presentation of data,
adjustments are made to the BMU and SEC neurons [13].

The DCS algorithm consists of two types of learning rules,
Hebbian (1) and Kohonen (2) and (3). The learning rules
described in the equations allow the structure to change based
on the inputs it is presented. Neurons are added and neuron
positions are adjusted based on the data. This allows the
evolution of the network and the potential for many
arrangements [12].

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:14, No:8, 2020

288International Scholarly and Scientific Research & Innovation 14(8) 2020 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

4,
 N

o:
8,

 2
02

0
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

11
37

0.
pd

f

𝑐

1 𝑎 ∈ 𝐵𝑀𝑈, 𝑆𝐸𝐶 ∧ 𝑏 ∈ 𝐵𝑀𝑈, 𝑆𝐸𝐶
𝛼 ∙ 𝑐 𝛼 ∙ 𝑐 0

0 𝛼 ∙ 𝑐 0
0 𝑎 𝑏

 (1)

Δ𝑤 𝜀 𝑣 𝑤 (2)

Δ𝑤 𝜀 𝑣 𝑤 (3)

Below, the rule extraction process, DCS structure to Human

Understandable Rules, is discussed first, since this process
was established for the DCS neural network in previous work
[13]. Then we discuss how the rule insertion process, Human
Understandable Rules to DCS structure, would work.

III. RULE EXTRACTION

A negative seen when using neural networks is the fact that
the knowledge acquired during training is coded as weights or
activation values. This results in very few tools capable of
validating neural network techniques. By using rule extraction,
a developer can, at least in part, determine the internal
knowledge of the trained neural network and validate that
what has been learned matches expert understanding and
intended need [14].

Rule Extraction techniques have been developed for many
neural network types [15]-[17]. This is a process that can help
make neural network output more understandable by
representing the internal knowledge of the neural network as a
set of rules. The predictions or classifications of the network
can be explained through the rules extracted from it, making
neural networking less of a black box of unexplained answers
and more of an understandable process [18]. Accuracy of the
rules is generally judged by their agreement with the neural
network [19].

The process of extracting a list of human readable rules
from the cell list output of the DCS neural network is straight-
forward. Each data point is assigned a BMU; the BMU is a
centroid of a Voronoi region (cell). Then for each cell there is
a list of points that are assigned to that region. From this list of
points the minimum and maximum values are determined in
each dimension and these values are used to create a bounding
box in the parameter space. This bounding box is the smallest
such n-dimensional box that contains each point in the cell.
Each rule is simply a list of the boundaries of these bounding
boxes. In pseudocode the algorithm is as follows:

For each(cell in cells):

For each(datapoint in cell):
 For each(param in datapoint):
 maxes[cell,param]=max(maxes[cell,param],
 datapoint[param])
 mins[cell,param]=min(mins[cell,param],
 datapoint[param])

The following is an example of a list of extracted rules. The
data set used to train the DCS in this case was the IRIS
benchmark data that will be described later in the paper, with
four input variables and three output types.

RULES FOR CELL1
IF (sepal_length>=6.7 AND <=7.4) AND
IF (sepal_width>=2.8 AND <=3.6) AND
IF (petal_length>=5.7 AND <=6.1) AND
IF (petal_width>=1.6 AND <=2.5)

THEN...2

RULES FOR CELL2
IF (sepal_length>=4.3 AND <=5) AND
IF (sepal_width>=2.3 AND <=3.6) AND
IF (petal_length>=1 AND <=1.6) AND
IF (petal_width>=0.1 AND <=0.3)

THEN...0

RULES FOR CELL3
IF (sepal_length>=6.3 AND <=6.9) AND
IF (sepal_width>=2.5 AND <=3.4) AND
IF (petal_length>=5.1 AND <=6) AND
IF (petal_width>=1.8 AND <=2.5)

THEN...2

RULES FOR CELL4
IF (sepal_length>=5 AND <=6) AND
IF (sepal_width>=2 AND <=2.9) AND
IF (petal_length>=3 AND <=4) AND
IF (petal_width>=1 AND <=1.4)

THEN...1

RULES FOR CELL5
IF (sepal_length>=5.5 AND <=6.1) AND
IF (sepal_width>=2.6 AND <=3) AND
IF (petal_length>=4 AND <=4.5) AND
IF (petal_width>=1 AND <=1.5)

THEN...1

RULES FOR CELL6
IF (sepal_length>=7.3 AND <=7.7) AND
IF (sepal_width>=2.6 AND <=3.8) AND
IF (petal_length>=6.3 AND <=6.9) AND
IF (petal_width>=1.8 AND <=2.3)
THEN...2

As mentioned previously, the rules make up the bounding
boxes that loosely approximate the n-dimensional Voronoi
regions. To illustrate the idea, Fig. 4 is an example of a two-
dimensional Voronoi diagram that uses two of the variables,
sepal length and sepal width, from the rules in the preceding
list. The coordinates of the centroids for these two variables
were used to create the Voronoi diagram.

Fig. 4 shows some of the bounding boxes for the extracted
rules in the previous list overlaid on the Voronoi regions. We
observe how the bounding boxes approximate the cells of the
Voronoi diagram, even though it is limited to just two
dimensions. It can also be noted at this time that the
approximation is not exact, there was a more exact rule
extraction method developed [20], however the rules that were
the output of that method are not considered human
understandable, but were more mathematical.

Such drastic overlapping does not occur when the rules are
represented in all four dimensions.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:14, No:8, 2020

289International Scholarly and Scientific Research & Innovation 14(8) 2020 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

4,
 N

o:
8,

 2
02

0
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

11
37

0.
pd

f

Fig. 4 Voronoi diagram using a 2-dimensional projection of the
centroids of the DCS

Fig. 5 Voronoi diagram of a 2-dimensional projection of the centroids
of the DCS with some of the extracted rules bounding boxes overlaid

IV. RULE INSERTION

Rule insertion is the process of supplying internal
knowledge to influence the formation of the neural network
before training occurs. The knowledge influences the
formation towards a potential classification structure, which is
used in initializing the neural network, and then trained upon,
allowing the rules to be refined.

The hypothesis is that the neural network with rules inserted
should be able to be trained faster and be more accurate than
the original neural network. The human readable rules can be
represented simply as a collection of labeled convex subspaces
inside a parameter space, where the label is the category
assigned to each subspace. These subspaces are described by a
series of if-then statements for each input variable. For
example, "if a is less than x and x is less than b AND c is less
than y and y is less than d, then the dependent variable belongs
to category 1". Using the boundaries of these convex

subspaces (in this case a rectangle or bounding box), the rules
are converted into a collection of centers for the bounding box
or centroids for a Voronoi region. These Voronoi centroids
become the neurons of the DCS and provide the initial starting
point for neural network training. The DCS usually starts with
two or more randomly placed neurons and then either modifies
their positions or "grows" by adding additional neurons based
on the data.

Now we suppose that the rule list given previously is not
the result of training the DCS, but for example was given to us
by an expert botanist. Next, suppose we want to insert these
rules to give the DCS some prior knowledge on which to train.
In this case, we would take each rule and determine the middle
values for each parameter. This n-dimensional point then
becomes the centroid for a Voronoi region or a neuron of the
DCS. The list of centroids is taken and directly used as the
initial set of neurons for the DCS. The corresponding centroid
list for the previous list of rules would look like:

{7.05, 3.2, 5.9, 2.05}, {4.65, 2.95, 1.3, 0.2}, {6, 2.6, 5.2, 1.7}, {6.75,

3, 4.7, 1.5}, {6.6, 2.95, 5.55, 2.15}, {5.5, 2.45, 3.5, 1.2}

The output 0, 1, or 2 for the rules would also be stored
associated with the centroid (neuron).

In order to visualize the data, we use two dimensions and
take sepal length and sepal width as the horizontal and vertical
axes (respectively). In Fig. 6, we can see the boxes that depict
the rules and the centers of the boxes that become the
centroids of the Voronoi regions.

Fig. 6 Rule Set Depicted as Boxes in 2-dimension Projection

Overlaid on Voronoi Diagram Constructed from the Box Centers

The centroids given above produce the Voronoi regions in

Fig. 7. We note that Fig. 7 Voronoi diagram is not exactly like
Fig. 4 Voronoi diagram, but they have some similarity in
structure. We recall the structure in Fig. 4 resulted from
training and the structure in Fig. 7 resulted from using a set of
rules to develop the structure.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:14, No:8, 2020

290International Scholarly and Scientific Research & Innovation 14(8) 2020 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

4,
 N

o:
8,

 2
02

0
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

11
37

0.
pd

f

Fig. 7 Voronoi Diagram of a 2-dimension Projection of the Centroids
for an Inserted Rule Set

V. APPLICATION OF PROCESS TO BENCHMARK DATA SET

A. IRIS Data Set

One of the most popular machine learning benchmark data
sets is the Iris data set. The problem to be solved is to learn
which category an Iris flower belongs to based on four
measurements: sepal length, sepal width, petal length and
petal width. The three Iris categories are: Setosa, Versicolour,
and Virginica. The University of California Irvine (UCI)
Machine Learning Repository offers many free data sets for
testing algorithms. The Iris data set is one of the most popular
sets for testing machine learning algorithms. It is composed of
150 instances divided evenly between the three categories (i.e.
50 instances per category.)

B. Comparing the Results

In this section, we will test the efficacy of the rule insertion
by first training the DCS neural network with no pre-
knowledge (starting with the configuration of two random
neurons) and training the DCS with inserted pre-knowledge
(rule set inserted into neural network structure as a set of
starting neurons). Rule Insertion relies on the processes of
engaging an expert to help formulate an initial set of rules. In
the case of this proof of concept study using a benchmark Iris
data set, no expert was available to construct a set of rules, so
a "typical" set of rules was used. The rule set used as the pre-
knowledge in the test was similar to rules sets that were
extracted; the bounding values for the parameters were
approximated in order to provide a starting set of neurons.

For each training epoch, the DCS neural network was
trained using a random 75% of the data points from the IRIS
data. The remaining 25% of the data points were used to test
the accuracy of the resultant neural network. The "neural
network accuracy" was calculated as the percentage of data
points that were correctly classified by the neural network. In
addition, each time the DSC was trained, Human
Understandable rules were extracted using the process
described earlier. The extracted rules were then tested and the

"rule accuracy" was calculated as the percentage of data points
that were correctly classified by the set of extracted rules. To
avoid overfitting, the DCS was limited to only grow to the size
of four neurons, which leads to only four cells.

For testing whether the network would be more accurate
being initialized in the default way or initialized with the
inserted rules, two experiments were conducted. The DCS NN
was developed in both ways, trained using the Iris data ten
times, rules were extracted at the end of each training. To
compare the two methods of initialization, the accuracy of the
trained DCS NN to predict Iris type and the accuracy of the
extracted rules to predict Iris type were compiled.

First, the DCS NN was created with the default
initialization of two random neurons. The DCS was trained on
the Iris data ten different times. When the DCS was trained
with the default initialization, the accuracy for the neural
network prediction was on average $92.4 1.86% and the
average prediction from the set of the extracted rules
themselves averaged $90.2 1.66%.

Second, the DCS NN was created with the rules inserted.
This initialization started with several nodes that were based
on the rule set used (same rule set used each time). The DCS
was again trained on the Iris data ten different times. When the
DCS was trained with the rule-based initialization, the
accuracy for the neural network prediction was on average
$94.7 1.57% and the prediction from the set of the extracted
rules themselves averaged $94.2 1.28%. This was an
improvement of 2.5% for the network prediction and 2.2% for
the extracted rule prediction.

VI. CONCLUSIONS

Several methods of rule extraction from the DCS neural
network had already been developed [20], but there was no
previous rule insertion process investigated. Our research
focused on developing a method for inserting rules into a DCS
neural network structure. In this paper we determine a method
for rule insertion for this type of neural network and tested its
usefulness to produce results on a benchmark data set. These
findings show that there is great potential for this technique to
improve the accuracy of the neural network and also improve
the accuracy of any rules extracted. This opens up numerous
possibilities for creating more efficient and more accurate
neural networks. The initialization of the DCS with "expert"
rules allows the neural network to come to a better solution in
the same time, than can be developed by just training alone.

This DCS neural network has been used in several mission
and safety critical applications, namely adaptive aircraft
control [7] and on-board health state awareness for Unmanned
Aerial Vehicles (UAVs) [8]. The ability to allow a developer
to work with an expert to develop a better Neural-Symbolic
system is important to further the usefulness of this neural
network type.

REFERENCES
[1] A. S. Garcez, D. M. Gabbay, K. B. Broda, Neural-Symbolic Learning

Systems: Foundations and Applications, Springer-Verleg, 2002.
[2] M. Hoehfeld and S. E. Fahlman, “Learning with limited numerical

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:14, No:8, 2020

291International Scholarly and Scientific Research & Innovation 14(8) 2020 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

4,
 N

o:
8,

 2
02

0
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

11
37

0.
pd

f

precision using the cascade-correlation algorithm,” IEEE Transactions
on Neural Networks, vol. 3, no. 4, pp. 602-611, 1992.

[3] Z. Kurd, T. Kelly, and J. Austin, “Safety criteria and safety lifecycle for
artificial neural networks,” In Proceedings of Eunite, vol. 2003, 2003.

[4] G. G Towell and J. W. Shavlik, “Using symbolic learning to improve
knowledge-based neural networks,” In AAAI, pp. 177-182, 1992.

[5] G. G Towell and J. W. Shavlik, “Extracting refined rules from
knowledge-based neural networks,” In Machine learning, vol. 13, no. 1,
pp. 71-101, 1993.

[6] C. L. Giles and C. W. Omlin, “Extraction, insertion and refinement of
symbolic rules in dynamically driven recurrent neural networks,”
Connection Science, vol. 5, no. 3-4, pp. 307-337, 1993.

[7] M. Charles and C. Jorgensen, Direct adaptive aircraft control using
dynamic cell structure neural networks. NASA Technical Memorandum,
Ames Research Center, 1997.

[8] M. Darrah, A. Rubenstein, E. Sorton, and B. DeRoos, “On-board health-
state awareness to detect degradation in multirotor systems,” In
Proceedings of International Conference on Unmanned Aircraft Systems
(ICUAS), pp. 1134-1141, 2018.

[9] J. Bruske and G. Sommer, “Dynamic cell structures,” Advances in
neural information processing systems, pp. 497-504, 1995.

[10] B. Fritzke, “Growing cell structures a self-organizing network for
unsupervised and supervised learning,” Neural networks, vol. 7, no. 9,
pp. 1441-1460, 1994.

[11] T. Martinetz, “Competitive hebbian learning rule forms perfectly
topology preserving maps,” In ICANN’93, pp. 427-434, 1993.

[12] Darrah, M. and Taylor, Brian. (2011) Chapter 5: Rule Extraction to
Understand Changes in an Adaptive System in Adaptive Control
Approach for Software Quality Improvement (W. Eric Wong and Bojan
Cukic editors) World Scientific. 115-144.

[13] M. Darrah, B. J. Taylor, and S. T. Skias. “Rule extraction from dynamic
cell structure neural network used in a safety critical application,” In
Proceedings of Florida Artificial Intelligence Research Symposium,
Miami, FL, May 2004.

[14] L. L. Pullum, B. J. Taylor, and M. Darrah, Guidance for the Verification
and Validation of Neural Networks, vol. 11. John Wiley & Sons, 2007.

[15] B. J. Taylor and M. A. Darrah, “Rule extraction as a formal method for
the verification and validation of neural networks.” In Proceedings of
2005 IEEE International Joint Conference on Neural Networks, vol. 5,
pp. 2915-2920, 2005.

[16] G. Bologna and Y. Hayashi, “A Comparison Study on Rule Extraction
from Neural Network Ensembles, Boosted Shallow Trees, and SVMs,”
Applied Computational Intelligence and Soft Computing, vol. 2018,
Article ID 4084850, 20 pages, 2018.
https://doi.org/10.1155/2018/4084850.

[17] Y. xX. Liu, F. Doctor, S. Z. Fan, and J. S. Shieh, “Performance Analysis
of Extracted Rule-Base Multivariable Type-2 Self-Organizing Fuzzy
Logic Controller Applied to Anesthesia,” BioMed Research
International, vol. 2014, Article ID 379090, 19 pages, 2014.
https://doi.org/10.1155/2014/379090.

[18] R. Setiono and H. Liu, “Understanding neural networks via rule
extraction,” In IJCAI, vol. 1, pp. 480-485, 1995.

[19] S.M. Kamruzzaman and A. R. Hasan, “Rule extraction using artificial
neural networks, arXiv, preprint arXiv:1009.4984, 20102010.

[20] M. Darrah, B. J. Taylor, M. Webb, and R. Livingston. “A geometric rule
extraction approach used for verification and validation of a safety
critical application,” in Proceedings of Florida Artificial Intelligence
Research Symposium Conference, 2005.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:14, No:8, 2020

292International Scholarly and Scientific Research & Innovation 14(8) 2020 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

4,
 N

o:
8,

 2
02

0
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

11
37

0.
pd

f

