
 

 

 
Abstract—This paper discusses the idea of capturing an expert’s 

knowledge in the form of human understandable rules and then 
inserting these rules into a dynamic cell structure (DCS) neural 
network. The DCS is a form of self-organizing map that can be used 
for many purposes, including classification and prediction. This 
particular neural network is considered to be a topology preserving 
network that starts with no pre-structure, but assumes a structure once 
trained. The DCS has been used in mission and safety-critical 
applications, including adaptive flight control and health-monitoring 
in aerial vehicles. The approach is to insert expert knowledge into the 
DCS before training. Rules are translated into a pre-structure and 
then training data are presented. This idea has been demonstrated 
using the well-known Iris data set and it has been shown that 
inserting the pre-structure results in better accuracy with the same 
training. 
 

Keywords—Neural network, rule extraction, rule insertion, self-
organizing map.  

I. INTRODUCTION 

RTIFICIAL Intelligence plays a key role in developing 
devices that can analyze situations like a human. 

Developing systems with a set of guiding knowledge that is 
then able to learn from new experiences to refine that 
knowledge is key to simulating human decision making. 
Neural-Symbolic learning systems play a key role by 
combining the benefits of both the neural and symbolic 
paradigms of artificial intelligence [1].  

Accuracy and confidence is very important for safety-
critical uses of neural networks. The rationale for using rule 
insertion is that expert knowledge represented in a set of rules, 
which could possibly be incomplete or incorrect due to 
insufficient knowledge, can be inserted to initialize a neural 
network before training is applied. The initial knowledge is 
inserted using a rules-to-network algorithm. The initial 
symbolic knowledge that is inserted becomes the initial neural 
network structure. This process creates a "neural-symbolic" 
system utilizing a combination of theoretical and empirical 
data. The initial symbolic knowledge then goes through a 
stage of training and refinement. Upon completion of training, 
rules are extracted again for comparison. This three-step 
process assists in ensuring the most accurate output, reduces 
training time, and provides confidence by allowing developers 
and users to better understand the internal workings of the 
neural network through inspection of the rules.  

Neural networks are not recognized for their capacity to use 
symbolic knowledge, but rather from their capability “to be 
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trained from data”. They have become an acknowledged tool 
in machine learning toolboxes. Usually, neural networks 
“readily” store knowledge in distributed internal weights, not 
in symbolic form. Although neural networks are commonly 
used for generalizations, other applications may require the 
knowledge be used in symbolic form [2]. Therefore, 
investigation into the interchange of information between 
connections and symbolic representations is necessary for 
effective learning. 

Kurd et al. [3] discussed that the dilemma with the use of 
artificial neural networks in a safety critical situation is that 
the software lifecycle relies on determining the specifications 
at the initial phase of development. This is not supported if the 
neural network starts with no initial internal structure, which is 
the case with the DCS self-organizing map that is the focus of 
our research. The lifecycle of the hybrid systems like the one 
we are suggesting can be described by the “W” model (Fig. 1) 
[3]. 

 

 

Fig. 1 Rule Insertion/Extraction “W” Model [3]  
 

In Fig. 1 the following levels are depicted: 
 Symbolic Level: This level is associated with symbolic 

information and deals with analysis in terms of symbolic 
knowledge. 

 Translation Level: This level is where symbolic 
knowledge and neural architectures are joined or 
separated. 

 Neural Learning Level: This level uses neural learning 
to adapt and refine symbolic knowledge. 

In the past, others have explored the idea of combining rule-
based knowledge and neural learning. Towell and Shavlik [4], 
[5] introduced the new algorithm named Knowledge-Based 
Neural Network (KBANN). They felt that this algorithm 
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would improve the learning speed because it is not ignoring 
any information. They described this algorithm as a way to 
address the problems of training “deep” networks. Fig. 2 
shows the process that Towell and Shavlik used for Rule 
Insertion. KBANN is a hybrid learning system and is more 
effective at classifying examples compared to other machine 
learning algorithms. Unfortunately, the networks created by 
KBANN, known as KBANN-nets, have “deep” network 
properties that are not well suited to work with 
backpropagation. To address this issue, the Desired 
Antecedent Identification (DAID) algorithm was introduced.  

 

 

Fig. 2 Towell and Shavlik [4] method for Rule Insertion 
 

The DAID was motivated by two observations. First, the 
“deep” neural networks cause trouble to the neural leaning 
techniques because error signals become diffused. Second, it 
had been shown that KBANN is most effective when 
antecedents are ignored by the network. The DAID aids in this 
issue by lessening error. Ultimately the DAID is most useful 
in deep structures due to its learning bias towards learning at 
the bottom, whereas backpropagation is most useful in shallow 
structures due to its bias towards learning at the top of chains. 

Another idea from Giles and Omlin [6] discusses methods 
for extracting, inserting and refining symbolic grammatical 
rules for recurrent networks. The issues also discussed in this 
paper include how rules are inserted into the recurrent neural 
network, how training and generalization is affected, and how 
the rules can be checked in order for correction. The method 
Giles and Omlin [6] devised requires the network size to 
exceed the number of Deterministic Finite State Automata 
(DFA) states. It was expected that the training time would 
decline with rising rule strength, but the network does not 
easily recognize partial correct rule insertion if the rule 
strength is too great. 

An additional aspect of symbolic knowledge extraction and 
insertion is rule checking, allowing for the establishment of 
the validity of the knowledge. Rule checking compares rules 
extracted from trained networks with prior knowledge. 
However, rule checking becomes increasingly difficult with 
rising rule strength when incorrect rules are inserted into a 
network. Further, Giles and Omlin [6] suggest that network 
architecture can be altered during training with symbolic 
guidance, and symbolic information gained from under-trained 

networks could prove useful in determining the current 
network architecture.  

This paper presents an approach for inserting rules to a 
specific neural network structure, the DCS neural network that 
has been used in several safety critical applications including 
adaptive aircraft control [7] and on-board health state 
awareness for Unmanned Aerial Vehicles (UAVs) [8]. Section 
II discusses the process by outlining the DCS structure, the 
rule extraction process and the rule insertion process. Section 
III discusses the application of the process to a common 
benchmark data set. Section IV provides the result of the 
experiment and Section V provides some conclusions that can 
be drawn. 

II. THE PROCESS 

A. Structure of the DCS Neural Network 

As previously mentioned, one type of self-organizing map 
is called the DCS neural network [9]-[11]. The DCS is 
designed to learn and represent the topology of the input 
space. After training on data, the DCS structure is arranged 
like a Voronoi diagram (Fig. 3) [12].  

 

 

Fig. 3 Voronoi Diagram 
 

The centroids of the Voronoi regions in Fig. 3 represent the 
reference vector for each of the cells. These centroids are the 
neurons in the neural network. The neurons, cij, of neighboring 
cells are then connected using a Delaunay triangulation [12]. 

Given an input to the DCS, v, the best matching unit (BMU) 
is the neuron whose weight, w, is closest to v, and the second 
best matching unit (SEC) is the neuron whose weight is the 
second closest to v. Along with the BMU, the neighbors of the 
BMU are found through the Delaunay triangulation, which 
connects the centers of the Voronoi regions if they share a 
boundary. During training and the presentation of data, 
adjustments are made to the BMU and SEC neurons [13].  

The DCS algorithm consists of two types of learning rules, 
Hebbian (1) and Kohonen (2) and (3). The learning rules 
described in the equations allow the structure to change based 
on the inputs it is presented. Neurons are added and neuron 
positions are adjusted based on the data. This allows the 
evolution of the network and the potential for many 
arrangements [12]. 
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𝑐

1 𝑎 ∈ 𝐵𝑀𝑈, 𝑆𝐸𝐶  ∧ 𝑏 ∈ 𝐵𝑀𝑈, 𝑆𝐸𝐶
𝛼 ∙ 𝑐  𝛼 ∙ 𝑐 0 

0 𝛼 ∙ 𝑐 0 
0 𝑎 𝑏 

       (1) 

  
Δ𝑤 𝜀 𝑣 𝑤          (2) 

 
Δ𝑤 𝜀 𝑣 𝑤           (3) 

 
Below, the rule extraction process, DCS structure to Human 

Understandable Rules, is discussed first, since this process 
was established for the DCS neural network in previous work 
[13]. Then we discuss how the rule insertion process, Human 
Understandable Rules to DCS structure, would work. 

III. RULE EXTRACTION 

A negative seen when using neural networks is the fact that 
the knowledge acquired during training is coded as weights or 
activation values. This results in very few tools capable of 
validating neural network techniques. By using rule extraction, 
a developer can, at least in part, determine the internal 
knowledge of the trained neural network and validate that 
what has been learned matches expert understanding and 
intended need [14]. 

Rule Extraction techniques have been developed for many 
neural network types [15]-[17]. This is a process that can help 
make neural network output more understandable by 
representing the internal knowledge of the neural network as a 
set of rules. The predictions or classifications of the network 
can be explained through the rules extracted from it, making 
neural networking less of a black box of unexplained answers 
and more of an understandable process [18]. Accuracy of the 
rules is generally judged by their agreement with the neural 
network [19]. 

The process of extracting a list of human readable rules 
from the cell list output of the DCS neural network is straight-
forward. Each data point is assigned a BMU; the BMU is a 
centroid of a Voronoi region (cell). Then for each cell there is 
a list of points that are assigned to that region. From this list of 
points the minimum and maximum values are determined in 
each dimension and these values are used to create a bounding 
box in the parameter space. This bounding box is the smallest 
such n-dimensional box that contains each point in the cell. 
Each rule is simply a list of the boundaries of these bounding 
boxes. In pseudocode the algorithm is as follows: 
 
For each(cell in cells): 

For each(datapoint in cell): 
      For each(param in datapoint): 
        maxes[cell,param]=max(maxes[cell,param], 
       datapoint[param])  
       mins[cell,param]=min(mins[cell,param], 
       datapoint[param])  
 

The following is an example of a list of extracted rules. The 
data set used to train the DCS in this case was the IRIS 
benchmark data that will be described later in the paper, with 
four input variables and three output types. 

 

RULES FOR CELL1 
IF (sepal_length>=6.7 AND <=7.4) AND 
IF (sepal_width>=2.8 AND <=3.6) AND 
IF (petal_length>=5.7 AND <=6.1) AND 
IF (petal_width>=1.6 AND <=2.5) 

THEN...2 
 

RULES FOR CELL2 
IF (sepal_length>=4.3 AND <=5) AND 
IF (sepal_width>=2.3 AND <=3.6) AND 
IF (petal_length>=1 AND <=1.6) AND 
IF (petal_width>=0.1 AND <=0.3) 

THEN...0 
 
RULES FOR CELL3 
IF (sepal_length>=6.3 AND <=6.9) AND 
IF (sepal_width>=2.5 AND <=3.4) AND 
IF (petal_length>=5.1 AND <=6) AND 
IF (petal_width>=1.8 AND <=2.5) 

THEN...2 
 
RULES FOR CELL4 
IF (sepal_length>=5 AND <=6) AND 
IF (sepal_width>=2 AND <=2.9) AND 
IF (petal_length>=3 AND <=4) AND 
IF (petal_width>=1 AND <=1.4) 

THEN...1 
 
RULES FOR CELL5 
IF (sepal_length>=5.5 AND <=6.1) AND 
IF (sepal_width>=2.6 AND <=3) AND 
IF (petal_length>=4 AND <=4.5) AND 
IF (petal_width>=1 AND <=1.5) 

THEN...1 
 
RULES FOR CELL6 
IF (sepal_length>=7.3 AND <=7.7) AND 
IF (sepal_width>=2.6 AND <=3.8) AND 
IF (petal_length>=6.3 AND <=6.9) AND 
IF (petal_width>=1.8 AND <=2.3) 
THEN...2 
 

As mentioned previously, the rules make up the bounding 
boxes that loosely approximate the n-dimensional Voronoi 
regions. To illustrate the idea, Fig. 4 is an example of a two-
dimensional Voronoi diagram that uses two of the variables, 
sepal length and sepal width, from the rules in the preceding 
list. The coordinates of the centroids for these two variables 
were used to create the Voronoi diagram. 

Fig. 4 shows some of the bounding boxes for the extracted 
rules in the previous list overlaid on the Voronoi regions. We 
observe how the bounding boxes approximate the cells of the 
Voronoi diagram, even though it is limited to just two 
dimensions. It can also be noted at this time that the 
approximation is not exact, there was a more exact rule 
extraction method developed [20], however the rules that were 
the output of that method are not considered human 
understandable, but were more mathematical. 

Such drastic overlapping does not occur when the rules are 
represented in all four dimensions. 
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Fig. 4 Voronoi diagram using a 2-dimensional projection of the 
centroids of the DCS 

 

 

Fig. 5 Voronoi diagram of a 2-dimensional projection of the centroids 
of the DCS with some of the extracted rules bounding boxes overlaid 

IV. RULE INSERTION 

Rule insertion is the process of supplying internal 
knowledge to influence the formation of the neural network 
before training occurs. The knowledge influences the 
formation towards a potential classification structure, which is 
used in initializing the neural network, and then trained upon, 
allowing the rules to be refined. 

The hypothesis is that the neural network with rules inserted 
should be able to be trained faster and be more accurate than 
the original neural network. The human readable rules can be 
represented simply as a collection of labeled convex subspaces 
inside a parameter space, where the label is the category 
assigned to each subspace. These subspaces are described by a 
series of if-then statements for each input variable. For 
example, "if a is less than x and x is less than b AND c is less 
than y and y is less than d, then the dependent variable belongs 
to category 1". Using the boundaries of these convex 

subspaces (in this case a rectangle or bounding box), the rules 
are converted into a collection of centers for the bounding box 
or centroids for a Voronoi region. These Voronoi centroids 
become the neurons of the DCS and provide the initial starting 
point for neural network training. The DCS usually starts with 
two or more randomly placed neurons and then either modifies 
their positions or "grows" by adding additional neurons based 
on the data. 

Now we suppose that the rule list given previously is not 
the result of training the DCS, but for example was given to us 
by an expert botanist. Next, suppose we want to insert these 
rules to give the DCS some prior knowledge on which to train. 
In this case, we would take each rule and determine the middle 
values for each parameter. This n-dimensional point then 
becomes the centroid for a Voronoi region or a neuron of the 
DCS. The list of centroids is taken and directly used as the 
initial set of neurons for the DCS. The corresponding centroid 
list for the previous list of rules would look like:  

 
{7.05, 3.2, 5.9, 2.05}, {4.65, 2.95, 1.3, 0.2}, {6, 2.6, 5.2, 1.7}, {6.75, 

3, 4.7, 1.5}, {6.6, 2.95, 5.55, 2.15}, {5.5, 2.45, 3.5, 1.2} 
 

The output 0, 1, or 2 for the rules would also be stored 
associated with the centroid (neuron).  

In order to visualize the data, we use two dimensions and 
take sepal length and sepal width as the horizontal and vertical 
axes (respectively). In Fig. 6, we can see the boxes that depict 
the rules and the centers of the boxes that become the 
centroids of the Voronoi regions. 

 

 
Fig. 6 Rule Set Depicted as Boxes in 2-dimension Projection 

Overlaid on Voronoi Diagram Constructed from the Box Centers 

 
The centroids given above produce the Voronoi regions in 

Fig. 7. We note that Fig. 7 Voronoi diagram is not exactly like 
Fig. 4 Voronoi diagram, but they have some similarity in 
structure. We recall the structure in Fig. 4 resulted from 
training and the structure in Fig. 7 resulted from using a set of 
rules to develop the structure. 
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Fig. 7 Voronoi Diagram of a 2-dimension Projection of the Centroids 
for an Inserted Rule Set 

V. APPLICATION OF PROCESS TO BENCHMARK DATA SET 

A. IRIS Data Set 

One of the most popular machine learning benchmark data 
sets is the Iris data set. The problem to be solved is to learn 
which category an Iris flower belongs to based on four 
measurements: sepal length, sepal width, petal length and 
petal width. The three Iris categories are: Setosa, Versicolour, 
and Virginica. The University of California Irvine (UCI) 
Machine Learning Repository offers many free data sets for 
testing algorithms. The Iris data set is one of the most popular 
sets for testing machine learning algorithms. It is composed of 
150 instances divided evenly between the three categories (i.e. 
50 instances per category.) 

B. Comparing the Results 

In this section, we will test the efficacy of the rule insertion 
by first training the DCS neural network with no pre-
knowledge (starting with the configuration of two random 
neurons) and training the DCS with inserted pre-knowledge 
(rule set inserted into neural network structure as a set of 
starting neurons). Rule Insertion relies on the processes of 
engaging an expert to help formulate an initial set of rules. In 
the case of this proof of concept study using a benchmark Iris 
data set, no expert was available to construct a set of rules, so 
a "typical" set of rules was used. The rule set used as the pre-
knowledge in the test was similar to rules sets that were 
extracted; the bounding values for the parameters were 
approximated in order to provide a starting set of neurons. 

For each training epoch, the DCS neural network was 
trained using a random 75% of the data points from the IRIS 
data. The remaining 25% of the data points were used to test 
the accuracy of the resultant neural network. The "neural 
network accuracy" was calculated as the percentage of data 
points that were correctly classified by the neural network. In 
addition, each time the DSC was trained, Human 
Understandable rules were extracted using the process 
described earlier. The extracted rules were then tested and the 

"rule accuracy" was calculated as the percentage of data points 
that were correctly classified by the set of extracted rules. To 
avoid overfitting, the DCS was limited to only grow to the size 
of four neurons, which leads to only four cells.  

For testing whether the network would be more accurate 
being initialized in the default way or initialized with the 
inserted rules, two experiments were conducted. The DCS NN 
was developed in both ways, trained using the Iris data ten 
times, rules were extracted at the end of each training. To 
compare the two methods of initialization, the accuracy of the 
trained DCS NN to predict Iris type and the accuracy of the 
extracted rules to predict Iris type were compiled. 

First, the DCS NN was created with the default 
initialization of two random neurons. The DCS was trained on 
the Iris data ten different times. When the DCS was trained 
with the default initialization, the accuracy for the neural 
network prediction was on average $92.4  1.86% and the 
average prediction from the set of the extracted rules 
themselves averaged $90.2  1.66%. 

Second, the DCS NN was created with the rules inserted. 
This initialization started with several nodes that were based 
on the rule set used (same rule set used each time). The DCS 
was again trained on the Iris data ten different times. When the 
DCS was trained with the rule-based initialization, the 
accuracy for the neural network prediction was on average 
$94.7  1.57% and the prediction from the set of the extracted 
rules themselves averaged $94.2  1.28%. This was an 
improvement of 2.5% for the network prediction and 2.2% for 
the extracted rule prediction. 

VI. CONCLUSIONS 

Several methods of rule extraction from the DCS neural 
network had already been developed [20], but there was no 
previous rule insertion process investigated. Our research 
focused on developing a method for inserting rules into a DCS 
neural network structure. In this paper we determine a method 
for rule insertion for this type of neural network and tested its 
usefulness to produce results on a benchmark data set. These 
findings show that there is great potential for this technique to 
improve the accuracy of the neural network and also improve 
the accuracy of any rules extracted. This opens up numerous 
possibilities for creating more efficient and more accurate 
neural networks. The initialization of the DCS with "expert" 
rules allows the neural network to come to a better solution in 
the same time, than can be developed by just training alone.  

This DCS neural network has been used in several mission 
and safety critical applications, namely adaptive aircraft 
control [7] and on-board health state awareness for Unmanned 
Aerial Vehicles (UAVs) [8]. The ability to allow a developer 
to work with an expert to develop a better Neural-Symbolic 
system is important to further the usefulness of this neural 
network type. 
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