
 

 

 
Abstract—Structural frequency response testing is accurate in 

identifying the dynamic characteristic of a machinery structure. In 
practical perspective, conventional structural frequency response 
testing such as experimental modal analysis with impulse technique 
(also known as “impulse testing”) has limitation especially on its long 
acquisition time. The high acquisition time is mainly due to the 
redundancy procedure where the engineer has to repeatedly perform 
the test in 3 directions, namely the axial-, horizontal- and vertical-
axis, in order to comprehensively define the dynamic behavior of a 
3D structure. This is unfavorable to numerous industries where the 
downtime cost is high. This study proposes to reduce the testing time 
by using oblique impact. Theoretically, a single oblique impact can 
induce significant vibration responses and vibration modes in all the 
3 directions. Hence, the acquisition time with the implementation of 
the oblique impulse technique can be reduced by a factor of three (i.e. 
for a 3D dynamic system). This study initiates an experimental 
investigation of impulse testing with oblique excitation. A motor-
driven test rig has been used for the testing purpose. Its dynamic 
characteristic has been identified using the impulse testing with the 
conventional normal impact and the proposed oblique impact 
respectively. The results show that the proposed oblique impulse 
testing is able to obtain all the desired natural frequencies in all 3 
directions and thus providing a feasible solution for a fast and time 
effective way of conducting the impulse testing.  
 

Keywords—Frequency response function, impact testing, modal 
analysis, oblique angle, oblique impact.  

I. INTRODUCTION 

TRUCTURAL frequency response testing with impact 
testing is commonly used to identify the dynamic 

characteristics of a machinery structure. This testing is also 
known as “experimental modal analysis (EMA)” [1]. It has 
been implemented in a wide range of field for the purpose of 
testing, design, and development of a new product/system. 
Dynamic information such as the natural frequency, modal 
damping and mode shape are used in solving the vibration 
problem, fatigue & damage problem and inverse identification 
problem. However, conventional EMA has a limitation in the 
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data acquisition process where it requires the machine to be 
shut down completely [2]. Moreover, to comprehensively 
understand the dynamic behavior of a 3D structure, there is a 
need to conduct multi-reference EMA that repeatedly perform 
the impact testing in 3 principal directions, namely the axial-, 
horizontal- and vertical-axis [3]. Therefore, the high testing 
time of multi-reference EMA is not favorable in many 
industries. For example, the cost of downtime and 
unscheduled shutdown can be as high as USD 100,000 per day 
in the petrochemical industry [4]. Therefore, there is a need to 
reduce the testing time to save the maintenance cost. 

This study initiates an experimental investigation of 
impulse testing with oblique impact, i.e. the impact is excited 
to the structure at oblique or non-normal angle. The intention 
of imposing an oblique impact instead of normal impact is to 
induce a significant vibration response in all the 3 directions 
simultaneously. With that, the vibration modes at 3 directions 
can be obtained by using signal processing technique. Hence, 
it is expected that the acquisition time can be reduced by a 
factor of three by using the proposed method. 

II. THEORY 

A. Structural Frequency Response Testing with Normal 
Impact 

Structural frequency response testing with impulse 
technique is frequently used to measure the dynamic 
characteristic of a system such as natural frequency, damping 
and mode shape [1]. This technique requires a complete ‘shut 
down’ situation of the system with no unaccounted excitation 
force. Theoretically, if the impact force and the corresponding 
vibration can be measured, the structural frequency response 
function (FRF) can be obtained, as in (1): 

 

𝐻 :                                           (1) 

 
where 𝐻 :  is the FRF or the transfer function due to force, 𝐹  
acting at location 𝑛 and direction 𝑗 and its corresponding 
acceleration response, 𝑋 measured at location 𝑛 and direction 
𝑖.  

To perform the impulse testing, the reference DOF of the 
force must be normal to the surface of a 3D structure, denoted 
as  𝑥-, 𝑦-, & 𝑧- axis respectively. A complete FRF matrix can 
be obtained, as in (2): 
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Instead of measuring a complete FRF matrix, a single 

column or single row of FRF matrix is able to obtain the 
modal parameters of dynamic characteristics at particular 
direction [5]. Thus, a minimum 3 sets of single column/row 
FRF are needed to acquire vibration modes at all the three 
translational directions. However, the redundancy procedure is 
time consuming, especially conducting testing for a large 
structure where a large number of measurement points are 
needed.  Therefore, structural frequency response testing with 
oblique impact is proposed in this study to reduce the time 
consuming testing process.  

B. Structural Frequency Response Testing with Oblique 
Impact 

The schematic diagram of the oblique impact and normal 
impact is shown in Fig. 1.  

 

 
 
 
 

 
 
 

Fig. 1 (a) Normal impact 𝐹𝑥, 𝐹1𝑦, & 𝐹1𝑧  and (b) oblique impact 

𝐹𝑜𝑏𝑙𝑖𝑞𝑢𝑒  acting on a plate 
 

Theoretically, if we introduce an oblique impact on a 
structure, the oblique force, 𝐹  can be transformed to 3 
principal coordinates, as in (3): 

 
𝐹 𝐹 𝑐𝑜𝑠𝜃
𝐹 𝐹 𝑐𝑜𝑠𝜃
𝐹 𝐹 𝑐𝑜𝑠𝜃

                               (3) 

 
where 𝜃  , 𝜃 , and 𝜃  are the angles between the oblique force 
and the 𝑥-, 𝑦-, & 𝑧- axis respectively. In other words, a single 
oblique impact can represent 3 normal forces acting on the 
structure simultaneously. With that, we would be able to 
obtain the vibration modes at 3 normal directions 
simultaneously, as the oblique force will result response that is 

contributed by vibration modes in 𝑥-, 𝑦-, & 𝑧- axis.  

III. MATERIALS AND METHODS 

A. Set-up of Experiment Equipment 

A T-shaped Aluminium plate consisted of a motor coupled 
to rotor shaft is used as the test rig in this study, as shown in 
Fig. 2. A tri-axis accelerometer is used to measure the 3D 
translational vibration of the plate at 19 locations. A modally 
tuned impact hammer was used to record the time history of 
the impact force. The vibration and force signals were 
acquired by a data acquisition (DAQ) system and the data was 
transferred to a laptop. Hence, post-processing of the data can 
be proceeded by using DASYLab® and MESCOPE® 
software.  

 

 

Fig. 2 Motor-driven test rig 

B. Procedure 

Single Input Single Output (SISO) approach by using a 
roving accelerometer and a reference impact hammer was 
implemented to acquire the data. The reference point is chosen 
at the anti-node point of the vibration modes within 50 Hz, as 
this is the frequency of interest (i.e. based on the maximum 
operating frequency of the motor – 50 Hz). A total of 19 
measurements was taken at 19 locations by using tri-axis 
accelerometer for the EMA with normal impact acting at 𝑥-, 
𝑦-, & 𝑧- axis and the EMA with oblique impact respectively. 
The oblique angles used in the testing are given as follow: 
𝜃 60 , 𝜃 60 , 𝑎𝑛𝑑 𝜃 45 . All the force and 
response data were acquired by using DASYLab® software.  

A total of 50 averages are used to reduce the measurement 
noise. Sampling rate (2048 Hz) and block size (4096 samples) 
of the FRF measurement are set to obtain time and frequency 
resolutions of 0.000488 s and 0.5 Hz respectively. By post-
processing the data in DASYLab® software, the FRF due to 
normal force acting at  𝑥-, 𝑦-, & 𝑧- axis as well as the FRF due 
to oblique force can be obtained, as follows (1). Thus, the 
vibration modes at 3 principal modes can be curve fitted in 
MESCOPE® software, in order to obtain the modal 
parameters. The modal parameter results obtained from the 
EMA with normal force and oblique force will be compared 
and the result is reported and discussed in the next section. 

IV. RESULT AND DISCUSSION 

The FRF measurement results due to the normal impacts at 
𝑥-, 𝑦-, & 𝑧- axis respectively are plotted in Fig. 3. The FRF 
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measurement results due to the oblique impact (𝜃 60 , 
𝜃 60 , 𝑎𝑛𝑑 𝜃 45  are plotted in Fig.  4. 

 

 

 

Fig. 3 FRF measurement result due to normal impact at (a) 𝑥-axis, (b) 
𝑦-axis, and  (c) 𝑧- axis  

 
Fig. 3 shows that the FRF due to normal impact consists of 

3 vibration modes at 3 different frequencies across the 𝑥-, 𝑦-, 
& 𝑧-axis. A similar result is obtained for the FRF due to 
oblique impact, as shown in Fig. 4. Note that the peak of the 
FRF indicates the natural frequency of the test rig. 

 

 

 

Fig. 4 FRF measurement result due to normal impact at (a) 𝑥-axis, (b) 
𝑦-axis, and  (c) 𝑧- axis  

 
The overlaid results of FRF measurement due to normal 

force and oblique force are shown in Fig. 5. It clearly shows 
that proposed FRF measurement with oblique impact method 
is able to extract all the natural frequencies, as compared to 
the conventional FRF measurement result with normal impact. 
Both FRF measurement results contain 3 similar natural 
frequencies (i.e. frequencies at the peaks of the FRF 
magnitude).  

(a) 

(b) 

(c) 

(a)

(b)
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Fig. 5 Overlaid results of FRF measurement due to (a) normal impact 
and (b) oblique impact  

 
TABLE I 

NATURAL FREQUENCY RESULTS FOR EMA WITH OBLIQUE IMPACT AND 

NORMAL IMPACT 

Vibration Mode 
EMA with 

oblique impact 
(Hz) 

EMA with 
normal impact 

(Hz) 

Difference in 
Natural Frequency 

(%) 
Mode 1 11.0 11.0 0.00 

Mode 2 14.8 15.0 1.33 

Mode 3 18.1 17.9 1.12 

 
Next, the modal parameters can be extracted by using the 

curve fitting algorithm in MESCOPE® software. The natural 
frequencies for the EMA with normal forces and oblique force 
are given in Table I. Table I shows that the accuracy of the 
EMA with the proposed oblique impact method achieves 
100%, 98.67%, and 98.88% for mode 1, 2, and 3 respectively. 
However, the comparison between the mode shape is not 
available in this study. This is because multi-reference curve 
fitting of the FRFs with 3 reference normal impacts will 
generate 3 sets mode shapes while single-reference curve 
fitting of the FRFs with 1 reference oblique impact will 
generate 1 set mode shape only.  Despite that, the results show 
the great potential of the proposed oblique impact in 
enhancing and promoting the time effective structural 

frequency response testing instead of applying 3 repeated 
normal forces. 

V. CONCLUSION 

A time effective structural frequency response testing with 
oblique impact is successfully investigated in this study, where 
this proposed method able to reduce the testing time by a 
factor of 3 times. The accuracy of the measured natural 
frequencies using the oblique impact is more than 98.88%, as 
compared to the conventional normal impact method. 
Comparison of mode shape is not available in current study 
due to the limitation of the curve fitting and this should be 
improved in the future work. Also, it is suggested to determine 
the optimum oblique angle in future, in order to enhance the 
modal parameter extraction results.   
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