Search results for: Gene prediction
790 Combining Fuzzy Logic and Data Miningto Predict the Result of an EIA Review
Authors: Kevin Fong-Rey Liu, Jia-Shen Chen, Han-Hsi Liang, Cheng-Wu Chen, Yung-Shuen Shen
Abstract:
The purpose of determining impact significance is to place value on impacts. Environmental impact assessment review is a process that judges whether impact significance is acceptable or not in accordance with the scientific facts regarding environmental, ecological and socio-economical impacts described in environmental impact statements (EIS) or environmental impact assessment reports (EIAR). The first aim of this paper is to summarize the criteria of significance evaluation from the past review results and accordingly utilize fuzzy logic to incorporate these criteria into scientific facts. The second aim is to employ data mining technique to construct an EIS or EIAR prediction model for reviewing results which can assist developers to prepare and revise better environmental management plans in advance. The validity of the previous prediction model proposed by authors in 2009 is 92.7%. The enhanced validity in this study can attain 100.0%.Keywords: Environmental impact assessment review, impactsignificance, fuzzy logic, data mining, classification tree.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1946789 VHL, PBRM1 and SETD2 Genes in Kidney Cancer: A Molecular Investigation
Authors: Rozhgar A. Khailany, Mehri Igci, Emine Bayraktar, Sakip Erturhan, Metin Karakok, Ahmet Arslan
Abstract:
Kidney cancer is the most lethal urological cancer accounting for 3% of adult malignancies. VHL, a tumor-suppressor gene, is best known to be associated with renal cell carcinoma (RCC). The VHL functions as negative regulator of hypoxia inducible factors. Recent sequencing efforts have identified several novel frequent mutations of histone modifying and chromatin remodeling genes in ccRCC (clear cell RCC) including PBRM1 and SETD2. The PBRM1 gene encodes the BAF180 protein, which involved in transcriptional activation and repression of selected genes. SETD2 encodes a histone methyltransferase, which may play a role in suppressing tumor development. In this study, RNAs of 30 paired tumor and normal samples that were grouped according to the types of kidney cancer and clinical characteristics of patients, including gender and average age were examined by RT-PCR, SSCP and sequencing techniques. VHL, PBRM1 and SETD2 expressions were relatively down-regulated. However, statistically no significance was found (Wilcoxon signed rank test, p>0.05). Interestingly, no mutation was observed on the contrary of previous studies. Understanding the molecular mechanisms involved in the pathogenesis of RCC has aided the development of molecular-targeted drugs for kidney cancer. Further analysis is required to identify the responsible genes rather than VHL, PBRM1 and SETD2 in kidney cancer.Keywords: Kidney cancer, molecular biomarker, expression analysis, mutation screening.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2014788 Prediction of the Total Decay Heat from Fast Neutron Fission of 235U and 239Pu
Authors: Sherif. S. Nafee, Ameer. K. Al-Ramady, Salem. A. Shaheen
Abstract:
The analytical prediction of the decay heat results from the fast neutron fission of actinides was initiated under a project, 10-MAT1134-3, funded by king Abdulaziz City of Science and Technology (KASCT), Long-Term Comprehensive National Plan for Science, Technology and Innovations, managed by a team from King Abdulaziz University (KAU), Saudi Arabia, and supervised by Argonne National Laboratory (ANL) has collaborated with KAU's team to assist in the computational analysis. In this paper, the numerical solution of coupled linear differential equations that describe the decays and buildups of minor fission product MFA, has been used to predict the total decay heat and its components from the fast neutron fission of 235U and 239Pu. The reliability of the present approach is illustrated via systematic comparisons with the measurements reported by the University of Tokyo, in YAYOI reactor.Keywords: Decay heat, fast neutron fission, and Numerical Solution of Linear Differential Equations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1492787 Prediction of Compressive Strength Using Artificial Neural Network
Authors: Vijay Pal Singh, Yogesh Chandra Kotiyal
Abstract:
Structures are a combination of various load carrying members which transfer the loads to the foundation from the superstructure safely. At the design stage, the loading of the structure is defined and appropriate material choices are made based upon their properties, mainly related to strength. The strength of materials kept on reducing with time because of many factors like environmental exposure and deformation caused by unpredictable external loads. Hence, to predict the strength of materials used in structures, various techniques are used. Among these techniques, Non-destructive techniques (NDT) are the one that can be used to predict the strength without damaging the structure. In the present study, the compressive strength of concrete has been predicted using Artificial Neural Network (ANN). The predicted strength was compared with the experimentally obtained actual compressive strength of concrete and equations were developed for different models. A good co-relation has been obtained between the predicted strength by these models and experimental values. Further, the co-relation has been developed using two NDT techniques for prediction of strength by regression analysis. It was found that the percentage error has been reduced between the predicted strength by using combined techniques in place of single techniques.
Keywords: Rebound, ultra-sonic pulse, penetration, ANN, NDT, regression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4386786 Prediction of Rubberised Concrete Strength by Using Artificial Neural Networks
Authors: A. M. N. El-Khoja, A. F. Ashour, J. Abdalhmid, X. Dai, A. Khan
Abstract:
In recent years, waste tyre problem is considered as one of the most crucial environmental pollution problems facing the world. Thus, reusing waste rubber crumb from recycled tyres to develop highly damping concrete is technically feasible and a viable alternative to landfill or incineration. The utilization of waste rubber in concrete generally enhances the ductility, toughness, thermal insulation, and impact resistance. However, the mechanical properties decrease with the amount of rubber used in concrete. The aim of this paper is to develop artificial neural network (ANN) models to predict the compressive strength of rubberised concrete (RuC). A trained and tested ANN was developed using a comprehensive database collected from different sources in the literature. The ANN model developed used 5 input parameters that include: coarse aggregate (CA), fine aggregate (FA), w/c ratio, fine rubber (Fr), and coarse rubber (Cr), whereas the ANN outputs were the corresponding compressive strengths. A parametric study was also conducted to study the trend of various RuC constituents on the compressive strength of RuC.Keywords: Rubberized concrete, compressive strength, artificial neural network, prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 909785 Evaluation of Model Evaluation Criterion for Software Development Effort Estimation
Authors: S. K. Pillai, M. K. Jeyakumar
Abstract:
Estimation of model parameters is necessary to predict the behavior of a system. Model parameters are estimated using optimization criteria. Most algorithms use historical data to estimate model parameters. The known target values (actual) and the output produced by the model are compared. The differences between the two form the basis to estimate the parameters. In order to compare different models developed using the same data different criteria are used. The data obtained for short scale projects are used here. We consider software effort estimation problem using radial basis function network. The accuracy comparison is made using various existing criteria for one and two predictors. Then, we propose a new criterion based on linear least squares for evaluation and compared the results of one and two predictors. We have considered another data set and evaluated prediction accuracy using the new criterion. The new criterion is easy to comprehend compared to single statistic. Although software effort estimation is considered, this method is applicable for any modeling and prediction.
Keywords: Software effort estimation, accuracy, Radial Basis Function, linear least squares.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2044784 Prediction of Compressive Strength of SCC Containing Bottom Ash using Artificial Neural Networks
Authors: Yogesh Aggarwal, Paratibha Aggarwal
Abstract:
The paper presents a comparative performance of the models developed to predict 28 days compressive strengths using neural network techniques for data taken from literature (ANN-I) and data developed experimentally for SCC containing bottom ash as partial replacement of fine aggregates (ANN-II). The data used in the models are arranged in the format of six and eight input parameters that cover the contents of cement, sand, coarse aggregate, fly ash as partial replacement of cement, bottom ash as partial replacement of sand, water and water/powder ratio, superplasticizer dosage and an output parameter that is 28-days compressive strength and compressive strengths at 7 days, 28 days, 90 days and 365 days, respectively for ANN-I and ANN-II. The importance of different input parameters is also given for predicting the strengths at various ages using neural network. The model developed from literature data could be easily extended to the experimental data, with bottom ash as partial replacement of sand with some modifications.Keywords: Self compacting concrete, bottom ash, strength, prediction, neural network, importance factor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2227783 Comparison of Bayesian and Regression Schemes to Model Public Health Services
Authors: Sotirios Raptis
Abstract:
Bayesian reasoning (BR) or Linear (Auto) Regression (AR/LR) can predict different sources of data using priors or other data, and can link social service demands in cohorts, while their consideration in isolation (self-prediction) may lead to service misuse ignoring the context. The paper advocates that BR with Binomial (BD), or Normal (ND) models or raw data (.D) as probabilistic updates can be compared to AR/LR to link services in Scotland and reduce cost by sharing healthcare (HC) resources. Clustering, cross-correlation, along with BR, LR, AR can better predict demand. Insurance companies and policymakers can link such services, and examples include those offered to the elderly, and low-income people, smoking-related services linked to mental health services, or epidemiological weight in children. 22 service packs are used that are published by Public Health Services (PHS) Scotland and Scottish Government (SG) from 1981 to 2019, broken into 110 year series (factors), joined using LR, AR, BR. The Primary component analysis found 11 significant factors, while C-Means (CM) clustering gave five major clusters.
Keywords: Bayesian probability, cohorts, data frames, regression, services, prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 227782 Typical Day Prediction Model for Output Power and Energy Efficiency of a Grid-Connected Solar Photovoltaic System
Authors: Yan Su, L. C. Chan
Abstract:
A novel typical day prediction model have been built and validated by the measured data of a grid-connected solar photovoltaic (PV) system in Macau. Unlike conventional statistical method used by previous study on PV systems which get results by averaging nearby continuous points, the present typical day statistical method obtain the value at every minute in a typical day by averaging discontinuous points at the same minute in different days. This typical day statistical method based on discontinuous point averaging makes it possible for us to obtain the Gaussian shape dynamical distributions for solar irradiance and output power in a yearly or monthly typical day. Based on the yearly typical day statistical analysis results, the maximum possible accumulated output energy in a year with on site climate conditions and the corresponding optimal PV system running time are obtained. Periodic Gaussian shape prediction models for solar irradiance, output energy and system energy efficiency have been built and their coefficients have been determined based on the yearly, maximum and minimum monthly typical day Gaussian distribution parameters, which are obtained from iterations for minimum Root Mean Squared Deviation (RMSD). With the present model, the dynamical effects due to time difference in a day are kept and the day to day uncertainty due to weather changing are smoothed but still included. The periodic Gaussian shape correlations for solar irradiance, output power and system energy efficiency have been compared favorably with data of the PV system in Macau and proved to be an improvement than previous models.
Keywords: Grid Connected, RMSD, Solar PV System, Typical Day.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1680781 A Performance Appraisal of Neural Networks Developed for Response Prediction across Heterogeneous Domains
Authors: H. Soleimanjahi, M. J. Nategh, S. Falahi
Abstract:
Deciding the numerous parameters involved in designing a competent artificial neural network is a complicated task. The existence of several options for selecting an appropriate architecture for neural network adds to this complexity, especially when different applications of heterogeneous natures are concerned. Two completely different applications in engineering and medical science were selected in the present study including prediction of workpiece's surface roughness in ultrasonic-vibration assisted turning and papilloma viruses oncogenicity. Several neural network architectures with different parameters were developed for each application and the results were compared. It was illustrated in this paper that some applications such as the first one mentioned above are apt to be modeled by a single network with sufficient accuracy, whereas others such as the second application can be best modeled by different expert networks for different ranges of output. Development of knowledge about the essentials of neural networks for different applications is regarded as the cornerstone of multidisciplinary network design programs to be developed as a means of reducing inconsistencies and the burden of the user intervention.Keywords: Artificial Neural Network, Malignancy Diagnosis, Papilloma Viruses Oncogenicity, Surface Roughness, UltrasonicVibration-Assisted Turning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1516780 A Prediction of Attractive Evaluation Objects Based On Complex Sequential Data
Authors: Shigeaki Sakurai, Makino Kyoko, Shigeru Matsumoto
Abstract:
This paper proposes a method that predicts attractive evaluation objects. In the learning phase, the method inductively acquires trend rules from complex sequential data. The data is composed of two types of data. One is numerical sequential data. Each evaluation object has respective numerical sequential data. The other is text sequential data. Each evaluation object is described in texts. The trend rules represent changes of numerical values related to evaluation objects. In the prediction phase, the method applies new text sequential data to the trend rules and evaluates which evaluation objects are attractive. This paper verifies the effect of the proposed method by using stock price sequences and news headline sequences. In these sequences, each stock brand corresponds to an evaluation object. This paper discusses validity of predicted attractive evaluation objects, the process time of each phase, and the possibility of application tasks.
Keywords: Trend rule, frequent pattern, numerical sequential data, text sequential data, evaluation object.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1235779 Pattern Recognition Using Feature Based Die-Map Clusteringin the Semiconductor Manufacturing Process
Authors: Seung Hwan Park, Cheng-Sool Park, Jun Seok Kim, Youngji Yoo, Daewoong An, Jun-Geol Baek
Abstract:
Depending on the big data analysis becomes important, yield prediction using data from the semiconductor process is essential. In general, yield prediction and analysis of the causes of the failure are closely related. The purpose of this study is to analyze pattern affects the final test results using a die map based clustering. Many researches have been conducted using die data from the semiconductor test process. However, analysis has limitation as the test data is less directly related to the final test results. Therefore, this study proposes a framework for analysis through clustering using more detailed data than existing die data. This study consists of three phases. In the first phase, die map is created through fail bit data in each sub-area of die. In the second phase, clustering using map data is performed. And the third stage is to find patterns that affect final test result. Finally, the proposed three steps are applied to actual industrial data and experimental results showed the potential field application.
Keywords: Die-Map Clustering, Feature Extraction, Pattern Recognition, Semiconductor Manufacturing Process.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3153778 Dynamic Simulation of IC Engine Bearings for Fault Detection and Wear Prediction
Authors: M. D. Haneef, R. B. Randall, Z. Peng
Abstract:
Journal bearings used in IC engines are prone to premature failures and are likely to fail earlier than the rated life due to highly impulsive and unstable operating conditions and frequent starts/stops. Vibration signature extraction and wear debris analysis techniques are prevalent in industry for condition monitoring of rotary machinery. However, both techniques involve a great deal of technical expertise, time, and cost. Limited literature is available on the application of these techniques for fault detection in reciprocating machinery, due to the complex nature of impact forces that confounds the extraction of fault signals for vibration-based analysis and wear prediction. In present study, a simulation model was developed to investigate the bearing wear behaviour, resulting because of different operating conditions, to complement the vibration analysis. In current simulation, the dynamics of the engine was established first, based on which the hydrodynamic journal bearing forces were evaluated by numerical solution of the Reynold’s equation. In addition, the essential outputs of interest in this study, critical to determine wear rates are the tangential velocity and oil film thickness between the journals and bearing sleeve, which if not maintained appropriately, have a detrimental effect on the bearing performance. Archard’s wear prediction model was used in the simulation to calculate the wear rate of bearings with specific location information as all determinative parameters were obtained with reference to crank rotation. Oil film thickness obtained from the model was used as a criterion to determine if the lubrication is sufficient to prevent contact between the journal and bearing thus causing accelerated wear. A limiting value of 1 μm was used as the minimum oil film thickness needed to prevent contact. The increased wear rate with growing severity of operating conditions is analogous and comparable to the rise in amplitude of the squared envelope of the referenced vibration signals. Thus on one hand, the developed model demonstrated its capability to explain wear behaviour and on the other hand it also helps to establish a co-relation between wear based and vibration based analysis. Therefore, the model provides a cost effective and quick approach to predict the impending wear in IC engine bearings under various operating conditions.Keywords: Condition monitoring, IC engine, journal bearings, vibration analysis, wear prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2301777 Using ANSYS to Realize a Semi-Analytical Method for Predicting Temperature Profile in Injection/Production Well
Authors: N. Tarom, M.M. Hossain
Abstract:
Determination of wellbore problems during a production/injection process might be evaluated thorough temperature log analysis. Other applications of this kind of log analysis may also include evaluation of fluid distribution analysis along the wellbore and identification of anomalies encountered during production/injection process. While the accuracy of such prediction is paramount, the common method of determination of a wellbore temperature log includes use of steady-state energy balance equations, which hardly describe the real conditions as observed in typical oil and gas flowing wells during production operation; and thus increase level of uncertainties. In this study, a practical method has been proposed through development of a simplified semianalytical model to apply for predicting temperature profile along the wellbore. The developed model includes an overall heat transfer coefficient accounting all modes of heat transferring mechanism, which has been focused on the prediction of a temperature profile as a function of depth for the injection/production wells. The model has been validated with the results obtained from numerical simulation.Keywords: Energy balance equation, reservoir and well performance, temperature log, overall heat transfer coefficient.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2736776 A Study on Early Prediction of Fault Proneness in Software Modules using Genetic Algorithm
Authors: Parvinder S. Sandhu, Sunil Khullar, Satpreet Singh, Simranjit K. Bains, Manpreet Kaur, Gurvinder Singh
Abstract:
Fault-proneness of a software module is the probability that the module contains faults. To predict faultproneness of modules different techniques have been proposed which includes statistical methods, machine learning techniques, neural network techniques and clustering techniques. The aim of proposed study is to explore whether metrics available in the early lifecycle (i.e. requirement metrics), metrics available in the late lifecycle (i.e. code metrics) and metrics available in the early lifecycle (i.e. requirement metrics) combined with metrics available in the late lifecycle (i.e. code metrics) can be used to identify fault prone modules using Genetic Algorithm technique. This approach has been tested with real time defect C Programming language datasets of NASA software projects. The results show that the fusion of requirement and code metric is the best prediction model for detecting the faults as compared with commonly used code based model.Keywords: Genetic Algorithm, Fault Proneness, Software Faultand Software Quality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1986775 Computational Model for Prediction of Soil-Gas Radon-222 Concentration in Soil-Depths and Soil Grain Size Particles
Authors: I. M. Yusuff, O. M. Oni, A. A. Aremu
Abstract:
Percentage of soil-gas radon-222 concentration (222Rn) from soil-depths contributing to outdoor radon atmospheric level depends largely on some physical parameters of the soil. To determine its dependency in soil-depths, survey tests were carried out on soil depths and grain size particles using in-situ measurement method of soil-gas radon-222 concentration at different soil depths. The measurements were carried out with an electronic active radon detector (RAD-7) manufactured by Durridge Company USA. Radon-222 concentrations (222Rn) in soil-gas were measured at four different soil depths of 20, 40, 60 and 100 cm in five feasible locations. At each soil depth, soil samples were collected for grain size particle analysis using soil grasp sampler. The result showed that highest value of radon-222 concentration (24,680 ± 1960 Bqm-3) was measured at 100 cm depth with utmost grain size particle of 17.64% while the lowest concentration (7370 ± 1139 Bqm-3) was measured at 100 cm depth with least grain size particle of 10.75% respectively. A computational model was derived using SPSS regression package. This model could be a yardstick for prediction on soil gas radon concentration reference to soil grain size particle at different soil-depths.
Keywords: Concentration, radon, porosity, diffusion, colorectal, emanation, yardstick.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 716774 ABURAS Index: A Statistically Developed Index for Dengue-Transmitting Vector Population Prediction
Authors: Hani M. Aburas
Abstract:
“Dengue" is an African word meaning “bone breaking" because it causes severe joint and muscle pain that feels like bones are breaking. It is an infectious disease mainly transmitted by female mosquito, Aedes aegypti, and causes four serotypes of dengue viruses. In recent years, a dramatic increase in the dengue fever confirmed cases around the equator-s belt has been reported. Several conventional indices have been designed so far to monitor the transmitting vector populations known as House Index (HI), Container Index (CI), Breteau Index (BI). However, none of them describes the adult mosquito population size which is important to direct and guide comprehensive control strategy operations since number of infected people has a direct relationship with the vector density. Therefore, it is crucial to know the population size of the transmitting vector in order to design a suitable and effective control program. In this context, a study is carried out to report a new statistical index, ABURAS Index, using Poisson distribution based on the collection of vector population in Jeddah Governorate, Saudi Arabia.Keywords: Poisson distribution, statistical index, prediction, Aedes aegypti.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1918773 Iraqi Short Term Electrical Load Forecasting Based On Interval Type-2 Fuzzy Logic
Authors: Firas M. Tuaimah, Huda M. Abdul Abbas
Abstract:
Accurate Short Term Load Forecasting (STLF) is essential for a variety of decision making processes. However, forecasting accuracy can drop due to the presence of uncertainty in the operation of energy systems or unexpected behavior of exogenous variables. Interval Type 2 Fuzzy Logic System (IT2 FLS), with additional degrees of freedom, gives an excellent tool for handling uncertainties and it improved the prediction accuracy. The training data used in this study covers the period from January 1, 2012 to February 1, 2012 for winter season and the period from July 1, 2012 to August 1, 2012 for summer season. The actual load forecasting period starts from January 22, till 28, 2012 for winter model and from July 22 till 28, 2012 for summer model. The real data for Iraqi power system which belongs to the Ministry of Electricity.
Keywords: Short term load forecasting, prediction interval, type 2 fuzzy logic systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1888772 Predicting Global Solar Radiation Using Recurrent Neural Networks and Climatological Parameters
Authors: Rami El-Hajj Mohamad, Mahmoud Skafi, Ali Massoud Haidar
Abstract:
Several meteorological parameters were used for the prediction of monthly average daily global solar radiation on horizontal using recurrent neural networks (RNNs). Climatological data and measures, mainly air temperature, humidity, sunshine duration, and wind speed between 1995 and 2007 were used to design and validate a feed forward and recurrent neural network based prediction systems. In this paper we present our reference system based on a feed-forward multilayer perceptron (MLP) as well as the proposed approach based on an RNN model. The obtained results were promising and comparable to those obtained by other existing empirical and neural models. The experimental results showed the advantage of RNNs over simple MLPs when we deal with time series solar radiation predictions based on daily climatological data.
Keywords: Recurrent Neural Networks, Global Solar Radiation, Multi-layer perceptron, gradient, Root Mean Square Error.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2563771 Performance Evaluation of Data Mining Techniques for Predicting Software Reliability
Authors: Pradeep Kumar, Abdul Wahid
Abstract:
Accurate software reliability prediction not only enables developers to improve the quality of software but also provides useful information to help them for planning valuable resources. This paper examines the performance of three well-known data mining techniques (CART, TreeNet and Random Forest) for predicting software reliability. We evaluate and compare the performance of proposed models with Cascade Correlation Neural Network (CCNN) using sixteen empirical databases from the Data and Analysis Center for Software. The goal of our study is to help project managers to concentrate their testing efforts to minimize the software failures in order to improve the reliability of the software systems. Two performance measures, Normalized Root Mean Squared Error (NRMSE) and Mean Absolute Errors (MAE), illustrate that CART model is accurate than the models predicted using Random Forest, TreeNet and CCNN in all datasets used in our study. Finally, we conclude that such methods can help in reliability prediction using real-life failure datasets.
Keywords: Classification, Cascade Correlation Neural Network, Random Forest, Software reliability, TreeNet.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1839770 Rain Cell Ratio Technique in Path Attenuation for Terrestrial Radio Links
Authors: Peter Odero Akuon
Abstract:
A rain cell ratio model is proposed that computes attenuation of the smallest rain cell which represents the maximum rain rate value i.e. the cell size when rainfall rate is exceeded 0.01% of the time, R0.01 and predicts attenuation for other cells as the ratio with this maximum. This model incorporates the dependence of the path factor r on the ellipsoidal path variation of the Fresnel zone at different frequencies. In addition, the inhomogeneity of rainfall is modeled by a rain drop packing density factor. In order to derive the model, two empirical methods that can be used to find rain cell size distribution Dc are presented. Subsequently, attenuation measurements from different climatic zones for terrestrial radio links with frequencies F in the range 7-38 GHz are used to test the proposed model. Prediction results show that the path factor computed from the rain cell ratio technique has improved reliability when compared with other path factor and effective rain rate models, including the current ITU-R 530-15 model of 2013.
Keywords: Packing density of rain drops, prediction model, rain attenuation, rain cell ratio technique.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 700769 Prediction of Dissolved Oxygen in Rivers Using a Wang-Mendel Method – Case Study of Au Sable River
Authors: Mahmoud R. Shaghaghian
Abstract:
Amount of dissolve oxygen in a river has a great direct affect on aquatic macroinvertebrates and this would influence on the region ecosystem indirectly. In this paper it is tried to predict dissolved oxygen in rivers by employing an easy Fuzzy Logic Modeling, Wang Mendel method. This model just uses previous records to estimate upcoming values. For this purpose daily and hourly records of eight stations in Au Sable watershed in Michigan, United States are employed for 12 years and 50 days period respectively. Calculations indicate that for long period prediction it is better to increase input intervals. But for filling missed data it is advisable to decrease the interval. Increasing partitioning of input and output features influence a little on accuracy but make the model too time consuming. Increment in number of input data also act like number of partitioning. Large amount of train data does not modify accuracy essentially, so, an optimum training length should be selected.
Keywords: Dissolved oxygen, Au Sable, fuzzy logic modeling, Wang Mendel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1893768 Multi-Faceted Growth in Creative Industries
Authors: Sanja Pfeifer, Nataša Šarlija, Marina Jeger, Ana Bilandžić
Abstract:
The purpose of this study is to explore the different facets of growth among micro, small and medium-sized firms in Croatia and to analyze the differences between models designed for all micro, small and medium-sized firms and those in creative industries. Three growth prediction models were designed and tested using the growth of sales, employment and assets of the company as dependent variables. The key drivers of sales growth are: prudent use of cash, industry affiliation and higher share of intangible assets. Growth of assets depends on retained profits, internal and external sources of financing, as well as industry affiliation. Growth in employment is closely related to sources of financing, in particular, debt and it occurs less frequently than growth in sales and assets. The findings confirm the assumption that growth strategies of small and medium-sized enterprises (SMEs) in creative industries have specific differences in comparison to SMEs in general. Interestingly, only 2.2% of growing enterprises achieve growth in employment, assets and sales simultaneously.
Keywords: Creative industries, growth prediction model, growth determinants, growth measures.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1579767 Simulation Model for Predicting Dengue Fever Outbreak
Authors: Azmi Ibrahim, Nor Azan Mat Zin, Noraidah Sahari Ashaari
Abstract:
Dengue fever is prevalent in Malaysia with numerous cases including mortality recorded over the years. Public education on the prevention of the desease through various means has been carried out besides the enforcement of legal means to eradicate Aedes mosquitoes, the dengue vector breeding ground. Hence, other means need to be explored, such as predicting the seasonal peak period of the dengue outbreak and identifying related climate factors contributing to the increase in the number of mosquitoes. Simulation model can be employed for this purpose. In this study, we created a simulation of system dynamic to predict the spread of dengue outbreak in Hulu Langat, Selangor Malaysia. The prototype was developed using STELLA 9.1.2 software. The main data input are rainfall, temperature and denggue cases. Data analysis from the graph showed that denggue cases can be predicted accurately using these two main variables- rainfall and temperature. However, the model will be further tested over a longer time period to ensure its accuracy, reliability and efficiency as a prediction tool for dengue outbreak.Keywords: dengue fever, prediction, system dynamic, simulation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2337766 Prediction Compressive Strength of Self-Compacting Concrete Containing Fly Ash Using Fuzzy Logic Inference System
Authors: O. Belalia Douma, B. Boukhatem, M. Ghrici
Abstract:
Self-compacting concrete (SCC) developed in Japan in the late 80s has enabled the construction industry to reduce demand on the resources, improve the work condition and also reduce the impact of environment by elimination of the need for compaction. Fuzzy logic (FL) approaches has recently been used to model some of the human activities in many areas of civil engineering applications. Especially from these systems in the model experimental studies, very good results have been obtained. In the present study, a model for predicting compressive strength of SCC containing various proportions of fly ash, as partial replacement of cement has been developed by using Fuzzy Inference System (FIS). For the purpose of building this model, a database of experimental data were gathered from the literature and used for training and testing the model. The used data as the inputs of fuzzy logic models are arranged in a format of five parameters that cover the total binder content, fly ash replacement percentage, water content, superplasticizer and age of specimens. The training and testing results in the fuzzy logic model have shown a strong potential for predicting the compressive strength of SCC containing fly ash in the considered range.
Keywords: Self-compacting concrete, fly ash, strength prediction, fuzzy logic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2852765 Dimensionality Reduction of PSSM Matrix and its Influence on Secondary Structure and Relative Solvent Accessibility Predictions
Authors: Rafał Adamczak
Abstract:
State-of-the-art methods for secondary structure (Porter, Psi-PRED, SAM-T99sec, Sable) and solvent accessibility (Sable, ACCpro) predictions use evolutionary profiles represented by the position specific scoring matrix (PSSM). It has been demonstrated that evolutionary profiles are the most important features in the feature space for these predictions. Unfortunately applying PSSM matrix leads to high dimensional feature spaces that may create problems with parameter optimization and generalization. Several recently published suggested that applying feature extraction for the PSSM matrix may result in improvements in secondary structure predictions. However, none of the top performing methods considered here utilizes dimensionality reduction to improve generalization. In the present study, we used simple and fast methods for features selection (t-statistics, information gain) that allow us to decrease the dimensionality of PSSM matrix by 75% and improve generalization in the case of secondary structure prediction compared to the Sable server.
Keywords: Secondary structure prediction, feature selection, position specific scoring matrix.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1938764 Finite Element Prediction and Experimental Verification of the Failure Pattern of Proximal Femur using Quantitative Computed Tomography Images
Authors: Majid Mirzaei, Saeid Samiezadeh , Abbas Khodadadi, Mohammad R. Ghazavi
Abstract:
This paper presents a novel method for prediction of the mechanical behavior of proximal femur using the general framework of the quantitative computed tomography (QCT)-based finite element Analysis (FEA). A systematic imaging and modeling procedure was developed for reliable correspondence between the QCT-based FEA and the in-vitro mechanical testing. A speciallydesigned holding frame was used to define and maintain a unique geometrical reference system during the analysis and testing. The QCT images were directly converted into voxel-based 3D finite element models for linear and nonlinear analyses. The equivalent plastic strain and the strain energy density measures were used to identify the critical elements and predict the failure patterns. The samples were destructively tested using a specially-designed gripping fixture (with five degrees of freedom) mounted within a universal mechanical testing machine. Very good agreements were found between the experimental and the predicted failure patterns and the associated load levels.Keywords: Bone, Osteoporosis, Noninvasive methods, Failure Analysis
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2101763 Critical Assessment of Scoring Schemes for Protein-Protein Docking Predictions
Authors: Dhananjay C. Joshi, Jung-Hsin Lin
Abstract:
Protein-protein interactions (PPI) play a crucial role in many biological processes such as cell signalling, transcription, translation, replication, signal transduction, and drug targeting, etc. Structural information about protein-protein interaction is essential for understanding the molecular mechanisms of these processes. Structures of protein-protein complexes are still difficult to obtain by biophysical methods such as NMR and X-ray crystallography, and therefore protein-protein docking computation is considered an important approach for understanding protein-protein interactions. However, reliable prediction of the protein-protein complexes is still under way. In the past decades, several grid-based docking algorithms based on the Katchalski-Katzir scoring scheme were developed, e.g., FTDock, ZDOCK, HADDOCK, RosettaDock, HEX, etc. However, the success rate of protein-protein docking prediction is still far from ideal. In this work, we first propose a more practical measure for evaluating the success of protein-protein docking predictions,the rate of first success (RFS), which is similar to the concept of mean first passage time (MFPT). Accordingly, we have assessed the ZDOCK bound and unbound benchmarks 2.0 and 3.0. We also createda new benchmark set for protein-protein docking predictions, in which the complexes have experimentally determined binding affinity data. We performed free energy calculation based on the solution of non-linear Poisson-Boltzmann equation (nlPBE) to improve the binding mode prediction. We used the well-studied thebarnase-barstarsystem to validate the parameters for free energy calculations. Besides,thenlPBE-based free energy calculations were conducted for the badly predicted cases by ZDOCK and ZRANK. We found that direct molecular mechanics energetics cannot be used to discriminate the native binding pose from the decoys.Our results indicate that nlPBE-based calculations appeared to be one of the promising approaches for improving the success rate of binding pose predictions.
Keywords: protein-protein docking, protein-protein interaction, molecular mechanics energetics, Poisson-Boltzmann calculations
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1806762 Mathematical Analysis of Stock Prices Prediction in a Financial Market Using Geometric Brownian Motion Model
Authors: Edikan E. Akpanibah, Ogunmodimu Dupe Catherine
Abstract:
The relevance of geometric Brownian motion (GBM) in modelling the behaviour of stock market prices (SMP) cannot be over emphasized taking into consideration the volatility of the SMP. Consequently, there is need to investigate how GBM models are being estimated and used in financial market to predict SMP. To achieve this, the GBM estimation and its application to the SMP of some selected companies are studied. The normal and log-normal distributions were used to determine the expected value, variance and co-variance. Furthermore, the GBM model was used to predict the SMP of some selected companies over a period of time and the mean absolute percentage error (MAPE) were calculated and used to determine the accuracy of the GBM model in predicting the SMP of the four companies under consideration. It was observed that for all the four companies, their MAPE values were within the region of acceptance. Also, the MAPE values of our data were compared to an existing literature to test the accuracy of our prediction with respect to time of investment. Finally, some numerical simulations of the graphs of the SMP, expectations and variance of the four companies over a period of time were presented using MATLAB programming software.
Keywords: Stock Market, Geometric Brownian Motion, normal and log-normal distribution, mean absolute percentage error.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 271761 Rainfall–Runoff Simulation Using WetSpa Model in Golestan Dam Basin, Iran
Authors: M. R. Dahmardeh Ghaleno, M. Nohtani, S. Khaledi
Abstract:
Flood simulation and prediction is one of the most active research areas in surface water management. WetSpa is a distributed, continuous, and physical model with daily or hourly time step that explains precipitation, runoff, and evapotranspiration processes for both simple and complex contexts. This model uses a modified rational method for runoff calculation. In this model, runoff is routed along the flow path using Diffusion-Wave equation which depends on the slope, velocity, and flow route characteristics. Golestan Dam Basin is located in Golestan province in Iran and it is passing over coordinates 55° 16´ 50" to 56° 4´ 25" E and 37° 19´ 39" to 37° 49´ 28"N. The area of the catchment is about 224 km2, and elevations in the catchment range from 414 to 2856 m at the outlet, with average slope of 29.78%. Results of the simulations show a good agreement between calculated and measured hydrographs at the outlet of the basin. Drawing upon Nash-Sutcliffe model efficiency coefficient for calibration periodic model estimated daily hydrographs and maximum flow rate with an accuracy up to 59% and 80.18%, respectively.
Keywords: Watershed simulation, WetSpa, stream flow, flood prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1036