Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6

# Search results for: Edikan E. Akpanibah

##### 6 Mathematical Analysis of Stock Prices Prediction in a Financial Market Using Geometric Brownian Motion Model

Abstract:

The relevance of geometric Brownian motion (GBM) in modelling the behaviour of stock market prices (SMP) cannot be over emphasized taking into consideration the volatility of the SMP. Consequently, there is need to investigate how GBM models are being estimated and used in financial market to predict SMP. To achieve this, the GBM estimation and its application to the SMP of some selected companies are studied. The normal and log-normal distributions were used to determine the expected value, variance and co-variance. Furthermore, the GBM model was used to predict the SMP of some selected companies over a period of time and the mean absolute percentage error (MAPE) were calculated and used to determine the accuracy of the GBM model in predicting the SMP of the four companies under consideration. It was observed that for all the four companies, their MAPE values were within the region of acceptance. Also, the MAPE values of our data were compared to an existing literature to test the accuracy of our prediction with respect to time of investment. Finally, some numerical simulations of the graphs of the SMP, expectations and variance of the four companies over a period of time were presented using MATLAB programming software.

##### 5 Pension Plan Memberâ€™s Investment Strategies with Transaction Cost and Couple Risky Assets Modelled by the O-U Process

Authors: Udeme O. Ini, Edikan E. Akpanibah

Abstract:

This paper studies the optimal investment strategies for a plan member (PM) in a defined contribution (DC) pension scheme with transaction cost, taxes on invested funds and couple risky assets (stocks) under the Ornstein-Uhlenbeck (O-U) process. The PM’s portfolio is assumed to consist of a risk-free asset and two risky assets where the two risky assets are driven by the O-U process. The Legendre transformation and dual theory is use to transform the resultant optimal control problem which is a nonlinear partial differential equation (PDE) into linear PDE and the resultant linear PDE is then solved for the explicit solutions of the optimal investment strategies for PM exhibiting constant absolute risk aversion (CARA) using change of variable technique. Furthermore, theoretical analysis is used to study the influences of some sensitive parameters on the optimal investment strategies with observations that the optimal investment strategies for the two risky assets increase with increase in the dividend and decreases with increase in tax on the invested funds, risk averse coefficient, initial fund size and the transaction cost.

##### 4 Optimal Portfolio Selection in a DC Pension with Multiple Contributors and the Impact of Stochastic Additional Voluntary Contribution on the Optimal Investment Strategy

Abstract:

In this paper, we studied the optimal portfolio selection in a defined contribution (DC) pension scheme with multiple contributors under constant elasticity of variance (CEV) model and the impact of stochastic additional voluntary contribution on the investment strategies. We assume that the voluntary contributions are stochastic and also consider investments in a risk free asset and a risky asset to increase the expected returns of the contributing members. We derived a stochastic differential equation which consists of the members’ monthly contributions and the invested fund and obtained an optimized problem with the help of Hamilton Jacobi Bellman equation. Furthermore, we find an explicit solution for the optimal investment strategy with stochastic voluntary contribution using power transformation and change of variables method and the corresponding optimal fund size was obtained. We discussed the impact of the voluntary contribution on the optimal investment strategy with numerical simulations and observed that the voluntary contribution reduces the optimal investment strategy of the risky asset.

##### 3 Mean-Variance Optimization of Portfolios with Return of Premium Clauses in a DC Pension Plan with Multiple Contributors under Constant Elasticity of Variance Model

Abstract:

In this paper, mean-variance optimization of portfolios with the return of premium clauses in a defined contribution (DC) pension plan with multiple contributors under constant elasticity of variance (CEV) model is studied. The return clauses which permit death members to claim their accumulated wealth are considered, the remaining wealth is not equally distributed by the remaining members as in literature. We assume that before investment, the surplus which includes funds of members who died after retirement adds to the total wealth. Next, we consider investments in a risk-free asset and a risky asset to meet up the expected returns of the remaining members and obtain an optimized problem with the help of extended Hamilton Jacobi Bellman equation. We obtained the optimal investment strategies for the two assets and the efficient frontier of the members by using a stochastic optimal control technique. Furthermore, we studied the effect of the various parameters of the optimal investment strategies and the effect of the risk-averse level on the efficient frontier. We observed that the optimal investment strategy is the same as in literature, secondly, we observed that the surplus decreases the proportion of the wealth invested in the risky asset.

##### 2 Effect of Supplementary Premium on the Optimal Portfolio Policy in a Defined Contribution Pension Scheme with Refund of Premium Clauses

Abstract:

In this paper, we studied the effect of supplementary premium on the optimal portfolio policy in a defined contribution (DC) pension scheme with refund of premium clauses. This refund clause allows death members’ next of kin to withdraw their relative’s accumulated wealth during the accumulation period. The supplementary premium is to help sustain the scheme and is assumed to be stochastic. We considered cases when the remaining wealth is equally distributed and when it is not equally distributed among the remaining members. Next, we considered investments in cash and equity to help increase the remaining accumulated funds to meet up with the retirement needs of the remaining members and composed the problem as a continuous time mean-variance stochastic optimal control problem using the actuarial symbol and established an optimization problem from the extended Hamilton Jacobi Bellman equations. The optimal portfolio policy, the corresponding optimal fund size for the two assets and also the efficient frontier of the pension members for the two cases was obtained. Furthermore, the numerical simulations of the optimal portfolio policies with time were presented and the effect of the supplementary premium on the optimal portfolio policy was discussed and observed that the supplementary premium decreases the optimal portfolio policy of the risky asset (equity). Secondly we observed a disparity between the optimal policies for the two cases.